The Exploitation of Satellite Data at the U.K. Met Office

Roger Saunders

with the help of Steve English Bill Bell, Mary Forsythe, Brett Candy, James Cameron and many others

- The Met Office satellite group and NWP SAF
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

Satellite Group

Satellite Group Funding

SA Funding 2006/07 31 Staff in total

NWP Satellite Application Facility

- The Met Office leads the NWP SAF
- In final year of initial operational phase
- Preparing proposal for follow-on operational phase (5 years) to start in March 2007.
- Major deliverables are:
 - AAPP (ATOVS/AVHRR direct readout software)
 - RTTOV (Fast radiative transfer model)
 - IDVAR (Met Office and ECMWF versions)
 - Satellite data monitoring (Radiance, AMVs, O₃)
 - Scatterometer processor
 - Reports on many aspects of satellite data
- Also involved in GRAS (GPS RO) SAF

Summary of model –AIRS observations

🗖 Mean bias all 1.4 RMSD all Mean bias no CO2/O3 1.2 RMSD no CO2/O3 1 J.8 Model - AIRS (degK) J.6 0.4 J.2 0 SARTA ARTS PCRIM RFM LBLR 0.55 RTT0V8 ٩Þ Gastropod **ARTCODE** SIGMA_IASI RTT0V7 FLBL **OPTRAN** -J.2 · -].4

Model - AIRS Obe

Talk topics

The Met Office satellite group

- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

Met Office Operational Models : 2006

Data assimilation 4DVar 6 hour window for global and regional models

Operational data usage (Apr 2006)

Observation group	Observation Sub-group	Items used	Daily extracted	% used in assimilation
Ground-based vertical profiles	TEMP PILOT PROFILER	T, V, RH processed to model layer average As TEMP, but V only As TEMP, but V only	1250 850 6500	87,92,50 92 40
Satellite-based vertical profiles	AMSU-A/B NOAA-15/16/18 Aqua AIRS	Radiances directly assimilated with channel selection dependent on surface instrument and cloudiness	430000	3
Aircraft	<i>Manual</i> AIREPS <i>Automated</i> AMDARS	T, V as reported with duplicate checking and blacklist	24000 185000	14 28
Satellite atmospheric motion vectors	GOES 10,12 BUFR Meteosat 5, 8 BUFR MTSAT SATOB Aqua/Terra MODIS	High resolution IR winds IR, VIS and WV winds IR and VIS winds IR and WV	110000 190000 4000	10 5 55
Satellite-based surface winds	SSMI-13,15 Seawinds, ERS-2	In-house 1DVAR wind-speed retrieval NESDIS retrieval of ambiguous winds. Ambiguity removal in 4DVAR.	3000000 1800000	1 1.5
Ground-based surface © Crown copyright 2006	Land SYNOP SHIP, Fixed Buoy Drifting BUOY	Pressure only (processed to model surface) Pressure and wind Pressure	28000 6700 10000	75 94, 92 76

Talk topics

- The Met Office satellite group
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

- Aqua AMSU-A replaced by NOAA-18 AMSU
 - Better coverage with NOAA-18
 - Issue of Aqua AMSU-A antenna correction
- AIRS central fov replaced by AIRS warmest fov
- Reintroduction of ERS-2 scatterometer winds
- Meteosat-7 AMVs replaced by Meteosat-8 AMVs

Satellite data delays

/ Main run data cutoff

Average AMSU Data Assimilated for a Main forecast Run

Control

Experiment

EARS-Mitigating Data Delay

EARS System Overview

EARS timeliness

EARS (3)

EARS coverage

There are plans to:

- extend coverage of EARS to the whole extra-tropical NH
- develop other regional systems
- (e.g. S. America, Australia / NZ)

Arrival Times of Data

EARS 93979 Obs

Global 109229 obs -

• six-hour window 09/09/2003 09:00-15:00

Moved to use AIRS warmest FOV

Warmest FOV any of 9

This results in an increased coverage of AIRS clear sky radiances

Removed Double Peaked AIRS Channels

Channel 2107 at 2386cm⁻¹ (4.19 microns), FWHM 1.880cm⁻¹

The sharp, strong absorption CO_2 lines cause a double peak in the Jacobian.

AIRS q increments

Impact on AMSU-B Channels

- Assimilating AIRS leads to significant humidity changes.
- All AIRS trials show improved fits to SSMI TCWV (not assimilated) and all AMSU-B channels.
- An improvement to RH is not confirmed by sondes, where no particular effect is apparent.
- •We have not seen a big improvement in forecasts going from AIRS to AIRSWF.

What is the NWP SAF AMV monitoring?

- NWP SAF <u>N</u>umerical <u>Weather Prediction Satellite Application Facility</u>
- A EUMETSAT-funded initiative, led by the Met Office, with partners ECMWF, KNMI and Météo-France
- Aim to improve the benefits derived by European National Met. Services from NWP by developing techniques for more effective use of satellite data and to prepare for effective exploitation of new data/products.

AMV Monitoring

Displays comparable AMV monitoring output from different NWP centres in order to help identify and partition error contributions from AMVs and NWP models.

Analysis reports produced periodically (planned every 2 years to coincide with winds workshops).

Intended to stimulate discussion and to lead to improvements in AMV derivation and AMV use in NWP.

http://www.metoffice.gov.uk/research/interproj/nwpsaf/satwind_report

Data used - Mar 2006

GOES-10 GOES-12 Meteosat-8 Meteosat-5 MTSAT-1R

© Crown copyright 2006

- 1. 8th Feb 05 Introduce NESDIS MODIS polar winds
- 14th Jun 05 GOES SATOB IR -> GOES BUFR IR and cloudy WV
- 3. 1st Sep 05 start using MTSAT-1R SATOB
- 4. 14th Mar 06 Meteosat-7 -> Meteosat-8

Meteosat-7→ Meteosat-8

Replace Meteosat-7 IR, WV and VIS with Meteosat-8 IR10.8, WV7.3, HRVIS and VIS0.8 using same QC as applied to Meteosat-7

Impact neutral in Jul-Aug and moderately positive in Dec-Jan.

Main benefit from tropical wind fields (W250 and W850) and southern hemisphere PMSL (against both observations and analyses).

Few forecast parameters improved or degraded by more than 2%.

MODIS winds

© Crown copyright 2006

Forecast error evolution Aug 14th, 2004 500 hPa geopotential height

CONTROL T+48

. T+72

T+120

T+144

MODIS

T+48

T+120

Page 27

- •Why do we struggle to see impact from AMVs?
- Is it poor height assignment of some winds?
- We are starting to investigate this
- Discussed at IWW in Beijing

Comparison to model best-fit pressure

Model best-fit at minimum in vector difference profile.

AMV pressure and model best-fit pressure agree well in this case.

Case studies – Sahara 8th Dec

From 7th December 21:00 UTC to 8th December 2005 3:00UTC (night time)

Can also compare to other cloud top pressure products

Talk topics

- The Met Office satellite group
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

Global NWP Index Analysis based – 12 Month Mean – Normalised to Mar 2000

7/ 1

е

Comparison of impact of observing sounding data

★ Ten years ago? TOVS NESDIS retrievals, AMV, © Crown copyright 2006 more but lower quality radiosondes

Forecast skill vs time

© Crown copyright 2006

Talk topics

- The Met Office satellite group
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

Work in progress.....

- Use of SSMIS
- GPS radio occultation
- GPS total column water vapour
- Meteosat precipitation
- Longer term....
- NPP
- AMSR-E precip
- WINDSAT
- Scatterometer soil moisture
- ADM

SSMIS: Instrument and scan geometry

Special Sensor Microwave Imager/Sounder (SSMIS)

Background: Accuracy Requirements and Initial Performance

Instrumental Biases: warm load solar intrusions

Flagging solar intrusions

Improved corrections under test At NRL/ NESDIS – will allow recovery of this data Yellow : rejected Black: OK (30 - 40% data flagged)

Reflector emission

SSMIS – reflector emission correction using constructed antenna T

AVERAGED INNOVATIONS QU18 06/06/05

Consistent with solution of heat transfer equation, assuming conductive cooling

Characterising T_{ANT} & ϵ : Chs 2 – 7

SSMIS Assimilation trials at the Met Office

OPNS vs OPNS +SSMIS

2 2 1.5 1.5 change in RMSE (%) SH change in RMSE (%) -> 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 NH -2 -2 -2.5 -2.5 -3 -3 T+72 **GHT T+48** PMSL T+24 PMSL T+48 PMSL T+96 PMSL T+120 GHT T+24 GHT T+48 **GHT T+72** PMSL T+24 PMSL T+48 MSL T+72 PMSL T+96 PMSL T+120 GHT T+24 ЗНТ T+72 PMSL T+48 PMSL T+72 GHT T+48 **3HT T+72** PMSL T+96 PMSL T+120 GHT T+24 GHT T+48 GHT T+72 PMSL T+24 PMSL T+48 PMSL T+72 PMSL T+96 PMSL T+120 GHT T+24 PMSL T+24 - TSM4 FORECAST VARIABLES FORECAST VARIABLES

Conservative use of SSMIS gives significant improvement in SH forecasts of PMSL for forecast days 1 - 4 on top of 2 and 3 satellite systems

© Crown copyright 2006

Page 45

Summary

- NWP DA systems require high quality radiances (U(T_B) ~ 0.2K) in temperature sounding channels to deliver improvements to forecast accuracy
- Post launch Cal/Val program has identified two sources of significant bias associated with solar intrusions into cal warm load and thermal emission from the main reflector.
- Correction strategies have been developed to deal with both effects and the resulting radiances are of comparable quality to those from AMSU-A for the tropospheric T sounding channels
- Assimilation experiments at the Met Office show significant benefit from assimilating T sounding channels for SSMIS in SH verified against baseline configurations with 2 and 3 AMSU's.
- Assimilation experiments at ECMWF show SSMIS delivers > 50% the benefit of N15 AMSU against NOSAT controls.
- Further improvements are expected as correction algorithms are refined.

GPS Radio Occultation

Radio Occultation

© Crown copyright 2006

Platted at: 11:51 9-Mar-2006

Radio Occultation impacts

Ground-based GPS

- Uses standard GPS navigation signals and standard geodetic-quality receivers
- Atmospheric zenith total delay (ZTD) included in position solution
- Information on 'dry' (ZHD) and 'wet' (ZWD) components
- $IWV = (ZTD-ZHD)/k = ZWD/k (k \sim 6.5)$
- European collaboration via EUMETNET E-GVAP (& previously EU COST-715 & TOUGH)
- Semi-operational hourly data downloads from 500+ stations over Europe
- Processed to Total Zenith Delay in <2 hours</p>

Ground-based GPS over Europe

Page 51

Talk topics

- The Met Office satellite group
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation
- METOP

Meteosat vs MSG: Differences

Meteosat 7

- 30 Minutes
- 3 Channels
- 2500 x 2500 pixels
- 5 km at SSP (2.5km)

Meteosat 8

- 15 Minutes
- 12 Channels
- 3712 x 3712 pixels
- 3 km at SSP (1km)

High Res Vis image

Meteosat-8

Meteosat-7

MSG channels

55

Day-time correlations – 1200Z, 1st December 2005

Simulated imagery at Met Office

- Use regional NWP analysed fields of T(p), RH(p), Ts as input to fast RT model (RTTOV-7)
- Estimate cloud at each level from RH (if RH>80% then cloud fraction assigned 0-1)
- Compute cloud overlap (maximal or random)
- Run RTTOV with cloud layers seen by satellite
- All IR channels simulated for each model grid box (clear+cloudy)
- Display alongside measured SEVIRI imagery
- Only 6.2um used at present by forecasters

Simulated MSG imagery from NWP

MSG

Simulated MSG imagery from NWP

NWP

Talk topics

- The Met Office satellite group
- Current status of models and observation use
- Recent upgrades to use of satellite data
- Satellite data impacts
- Research into use of new data types
- Meteosat Second Generation

METOP preparations

- Launch on 17 July from Baikonur
- Testing systems using NCEP simulated METOP datasets
- Data reception tests using EUMETCAST
- •Use ATOVS within a few months of launch
- Use ASCAT, GRAS and IASI within 18 months of launch

- IASI poses huge challenges because of the volume of data
 - 8461 channels, 120 observations per scan
- We will reduce this data volume by using only 300 channels and one in four observations
 - Channels selected on the basis of information content
 - Reduces data volume of one IASI to about the level of three ATOVS
- Initially, we will use the data in a very similar way to AIRS
 - Sea only
 - Clear only (via 1D-Var cloud detection)

IASI Channel Selection

Satellite data increases

Any questions?