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� All land surface models (LSMs) include numerical treatment of heat and 
moisture diffusion in the Soil-Vegetation-Atmosphere continuum

� Latent heat (common boundary condition) needs to be consistent.

MotivationMotivation

Vertical Moisture
Dynamics in the soil

Vertical temperature 
Dynamics in the soil

Diffusion of  Moisture in the 
column

Flux of Evaporation (E) at 
surface, Water Drainage (BC)

Diffusion of heat in the 
column

Residual of net radiation , 
Sensible and Latent heat flux 
at the surface (BC)
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� Links (and closure) for surface water and energy balance

Surface water & energy balance 
linked through latent Heat flux

The need for consistency
requires a closure function

Over bare soil this closure often can 
take the form of soil moisture (s)
dependent empirical functions:

In plant continuum, it often takes
the form of :  

1.  Soil moisture-dependent root water 
extraction resistance rg

2.  Stomatal resistance rs due to plant 
water stress

nEvaporatio Potential

nEvaporatio Actual
β(s)  =.1

interface atmosphere-soil at Humidity(s)  =h.2

MotivationMotivation
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Importance of the closure relationship

� All Land Surface Models – LSMs include (explicitly or 
implicitly) a form of this soil moisture dependent closure 

� Land response to radiative forcing and partitioning of 
available energy are critically dependent on the functional 
form (shape) of the closure relationship.

� The function affects the surface fluxes, the influence 
reaches through the boundary layer and manifests itself in 
the lower atmosphere weather

� Important as these closure functions are, they still remain 
essentially empirical and untested across diverse soil and 
vegetation conditions.

MotivationMotivation
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ObjectiveObjective

The overarching goal of this project is to develop a scale free technique
to better estimate the unknown parameters (e.g. the flux components) of 
water and energy balance equation ( and the closure relation between the 
two) using discrete observation.

�Estimation procedure is distinct from “calibration” since only forcing ( P,       ) 
and state (s, Ts) observations are used. No information about fluxes ( e.g. flux
towers) is needed. 

�The method is scale- free, i.e. it can be applied to diverse scales of states and 
forcing (remote sensing applications)

�The method can be applied to diverse climates and land surface conditions using 
remotely sensed measurements. 

↓
inR
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MethodologyMethodology

�The overall approach is based on the conditional sampling method of Salvucci(2001) 
which exploits the fact that the expected value of increments of seasonally detrended
soil moisture (s) conditioned on moisture is zero (E[ds/dt|s]=0) for stationary systems.

� [Mathematical proof: conditional expectation minimizes least squared loss function]

�Model parameters (sum of evaporation and drainage) are estimated by matching the 
soil moisture conditional expectation of modeled fluxes to soil moisture conditional 
expectation of precipitation. (E[Sum of fluxes|s]=E[P|s])

� Problem in distinguishing evaporation from drainage 

Result of 
stationarity
E[ds/dt|s]=0
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MethodologyMethodology

� in my thesis I prove that for seasonally (periodically) stationary process 
(Xt), The relation E[dXt/dt|Xt]=0 holds

Result of 
Stationarity
E[dXt/dt|Xt]=0

Soil moisture (S) and soil surface temperature(Ts) are seasonally stationary,                 
Thus: E[dS/dt|S]=0 and E[dTs/dt|Ts]=0

Thus by applying to the two balance equations we can separate out drainage from  
evaporation( Note: both hydrologic fluxes important but not measured widely)



9

CRDETP
dt

ds
l +−−=

]s|CR[E]s|D[E]s|ET[E          

]s|P[E

+−

=

]T|TE[]T| )T-(T.E[P]T|E[H]T|E[LE

T|RE

s
4
ssDsiss

sin

εσ+
πω

πω
++

=




 ↓

MethodologyMethodology

Example Moisture Diffusion Eq : Example Heat Diffusion Eq :
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Process Unknown Par’s Form

Drainage Ks, c D(s)=Ks.s
c

Capillary rise w, n CR(s)=w.sn

Thermal Inertia Pi f( soil type, soil moisture)

Neutral turbulent heat 
coefficient  ( CHN)

α, β CHN= exp(αLAI+β) 

Evaporative Fraction a,θs,θw EF=1-exp(-a(θ/ θs- θw/ θs)
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� S and Ts are discretized to n and m ranges respectively
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� The cost function:
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d :  Vector of data (n+m x1)

M: Vector of Model Counterparts (n+m x1)

A=σ-2I  (n+m x n+m )

Units:W/m2                   

Forcing uncertainty:

� Note: Estimation procedure is distinct from “ calibration” since only 
forcing data ( P,       ) and state observation (s, Ts) are used. No information on 
fluxes ( e.g. Problematic evaporation and drainage) is needed.

Where:
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- Minimize nonlinear Cost Function J

- Estimation of Uncertainty Bounds

� Inverse of Hessian of Cost function is an approximation for the Covariance 
matrix.

� Covariance matrix is used to estimate the uncertainty of any model output 
and thus determine which aspects of the model are poorly determined by 
the data 

� First Order Second Moment propagation of uncertainty ( FOSM) analysis,  
or Monte Carlo method is used to define the uncertainty around different 
flux components.

MethodologyMethodology
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� Determining the sufficiency of a particular data set to determine the model 
state

1- Uncertainty of each individual parameter should be reasonable in physical sense.

2-Uncertainty of the least well-determined combination of variables given by the 
eigenvectors of Hessian should be reasonable. 

3- Correlation matrix between unknown variables should be reasonable.

-Linear dependency between variables is a sign of discrepancy 
between data and model 

-Best scenario:  The correlation between all the parameters is small, 

-The next best scenario: High correlation is only between parameters representing 
one flux type and suggests the model is robust with regard to flux components 

-The worse scenario: The correlation between parameters representing different flux 
types is high and/ or physically not meaningful.
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� 30 year of hourly meteorological data for humid climate of  Charlotte North Carolina obtained from 
“ Solar and Meteorological Surface Observational Network” (SAMSON) [National Climate Data 
Center]; 

� Simultaneous Heat and Water( SHAW) model was used to derive consistent hourly time series of 
state and fluxes 

� Assume 20% precipitation and radiation error.

� Daily Water balance is coupled to midday energy balance� Unknown parameters are obtained.

Synthetic data caseSynthetic data case
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1- Optimization with 9 unknown variables

� Pi  is considered a constant effective value

� Optimization is insensitive to the value of thermal inertia ( Pi) . The optimum is either the 
same as the initial guess for Pi value picked from the physically accepted range or a value in its 
close proximity. ( This is consistent with findings of other studies) 

� Thermal inertia is a property of soil composition, porosity and soil moisture. Murray and 
Verhoeff (2007) method is used. 

[ ]n Par'sEF functio,P,par's function C,spar' riseCapillary  ,spar'flux  Drainage iHN=α










θ

θ
=β==α s

s

w
wiHNs θ),(S,a,P, ))exp((C,n,w,c,K

Process Unknown Par’s Form

Drainage Ks, c D(s)=Ks.s
c

Capillary rise w, n CR(s)=w.sn

Neutral turbulent heat 
coefficient  ( CHN)

α, β CHN= exp(αLAI+β)

Evaporative Fraction a,θs,θw EF=1-exp(-a(θ/ θs- θw/ θs)
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2- Optimization with 8 unknown variables

� Data is insufficient to determine the model states with acceptable accuracy- linear dependency is generated 
as seen in the correlation matrix

�W ~0;  its variation is high; 
in addition,  n is large,  Sn is very small ( 0<S<1)
Thus, WSn is negligible

� Due to high linearity btw “ Ks ,θs” and “ a, θs”
Taking θs out of the parameter space will improve 
the condition number of Hessian ;

( replace : θs ~ max( recorded θ) )

� This is not a sample correlation but derived from
Hessian and related to shape of J around minimum. 
Used for diagnosing collinearity and  has no 
statistical significance.

[ ]swHNs θSa CnwcK ,,,,,,,=α

∞→



16

-Parameters are estimated  reasonably well 

-High correlation between Ks and C  is the sign of robust estimation of 
Drainage. 
Ks  increases� Ks.Sc increases
C increases� Ks.Sc Decreases

-“CHN and a” parameters have negative Correlation; 
Increase in parameter “CHN” � Increase in estimated sensible heat flux 
Decrease in parameter “ a” � Decrease in  estimated Latent heat flux

This result is physically meaningful, since the sum of sensible heat flux       
( H)  and Latent heat flux (LE) represent the available energy to the system  
( Rn-G) and when the available energy to the system is constant, an increase 
in H results in a decrease in LE and vice versa.

[ ]wHNs SaCCK ,,,,=α

3- Optimization with 5 unknown variables



17

Comparing Actual EF and model estimate of EF Comparing Actual /measured net soil water flux 
and its model counterpart 

× 100

� The closure function EF(s)=LE/LE+H is well estimated in this synthetic data set
� This approach is robust at point scale

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

SM(%)

E
F

=
L

E
/L

E
+

H

 

 

Actual/Measured

Estimate

Estimate(+/-)err

0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-10

0

10

20

30

40

50

SM(%)

S
o

il
 n

e
t 

D
ra

in
a

g
e
(m

m
/d

a
y

)

 

 

Actual/Measured

Estimate

Estimate(+/-)err

× 100



18

3 Field sites investigated are as follow:

� Vaira Ranch, grassland, CA,  Mediteranation climate
� Audubon Research ranch,  grassland, AZ, Arid/semi arid climate
� Santa Rita  Mesquite , woody savannah, AZ, Arid/semi arid climate

� Source of Data ( estimation and validation)

- AMERIFLUX : Soil water content θ ; Wind speed( u), Air temperature (Ta), Soil 

surface Temperature (Ts), Precipitation ( P), Net radiation (Rn)

- MODIS: LAI

� Daily water balance equation is linked to midday energy balance 
equation

� Error of data 
εE[ P|s]~ N(0, (6% E[ P|S])2);  εE[ Rin|s]~ N(0, (8% E[ Rin|Ts])2); 

Field testsField tests
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� Vaira Ranch, grassland, CA

E
F
=
L
E
/L

E
+
H

SM(%) ×100

C
H
N

LAI

D
a
il
y
 e

st
im

a
te

d
 H

 (
W

/m
2
)

Measured H (W/m2)

D
a
il
y
 e

st
im

a
te

d
 L

E
 (
W

/m
2
)

Measured LE (W/m2)

SM(%)
×100

D
ra

in
a
ge

(m
m
/d

a
y
)



20

�Audubon Research Ranch,  grassland, AZ
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� Santa Rita Mesquite, woody savannah, AZ
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E
F
=
L
E
/L

E
+
H

SM(%) ×100

� EF is distinct for each site ; hence it needs to be mapped 
using remote sensing. 
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� Closure function ( EF) at different field sites
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� The Gourma meso scale site in Mali of West Africa is an area located in the Gourma region. 
This region stretches from the loop of Niger River southward down the border region with 
Burkina- Faso. Location of the Gourma meso- scale site is (14.5-17.5 ON, 1-2 OW). Thus it is a 
40,000 km2 area.

� Why this region
1- vast spatial and temporal coverage, remote sensing data which give access to surface 
variables in this area;

2- Gourma region is located in Sahara & Sahelian-Sahara climate; Evaporation is generally 
water limited ( EF=EF(S)) ;

3- Runoff can be considered negligible in most areas; 

Remote Sensing Remote Sensing 

Reference [ AMMA Documentation]
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Gourma site- Source of data Gourma site- Source of data 

Variable Definition Source of Data Spatial 
Resolution

Temporal 
Resolution

u Wind speed AMMA-ECMWF 50km 6hr

Ta Air Temp AMMA-ECMWF 50km 6hr

Rs Down Welling short 
wave

SEVIRI 3km 15 min

α albedo SEVIRI 3km Daily

LAI Leaf Area Index SEVIRI 3km Daily

P Precipitation PERSIANN 4km hrly , daily

s Soil Moisture AMSR-E 25km 1:30 pm;1:30 am

Ts Surface Temperature SEVIRI 3km 15 min

TD Soil Deep Temperature Filtering Ts 3km 15 min

- 2008 data sets were selected. 

- Data were aggregated to present daily time step ( temporal resolution).

- Data are interpolated on a 3km*3km grid (spatial resolution)
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� In order to reduce dimensionality, categorical soil maps are used to find common soil 
hydraulic parameters in similar regions ( alternative dimensionality reduction approaches 
can be applied) 

Sand 
Loamy Sand 
Clay 
Loam 

�Water Bodies and a 9km area around them are neglected
(removes shallow water table locations where capillary rise may be significant)

-Also runoff can be considered negligible in most areas

----

Clay

Loam

Loamy Sand 

Sand
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Sand region….

Sand pixels ~ 81% of the pixels corresponding to the 4 different soil 
categories)

[ ]CSaK ws ,,,,,  βαα =

� Collinearity exists between parameter Ks and C
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Sand region…. 

Vector of parameters is reduced to:

� Expectation Maximization (EM) method is used to reduce the parameter space

� In EM method the aim is to maximize the probability (likelihood) of seeing the observed values     
(find the parameter values which would maximize the likelihood of our observations)

� Select a typical C value based on soil type ; C=2b+3
� Solve the coupled system with 5 Unknowns 
� Ks should be within the appropriate range for the soil type 
� Iterate untill Ks value is consistent with soil type

Example of look up table used by LSM Community( Based on Clapp and Hornberger)

[ ]),,,, ws SaK  βαα =
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Sand region….

[ ]),,,, ws SaK  βαα =

� Parameters are estimated robustly

� Correlation btwn different parameters 
is reasonable  & physically meaningful
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Validating The results ….

� Agoufa flux tower site

� hourly H, LE, LE/(LE+H) 

� Soil type: Sand 

� Vegetation type: Grassland

� Soil water content: AMSR-E data interpolation   
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Loamy sand

Loam

clay

�Soil water potential increases between 
coarser to finer soils.

� Higher water potential is a barrier to water 
extraction, thus the rate of Evaporation 
from soils with coarser texture is higher 
than from soils with finer texture.

Validating the results …

� EF-SM relationship for different soils
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Gourma is globally endorheic system, meaning it contributes little water to, nor receives water from, the 
Niger river. 

�Cumulative distribution of the estimated drainage and evapotranspiration averaged over 
the entire pixels within the Gourma region is close to cumulative distribution of precipitation

�Expected values of water balance residual (potentially Runon/ Runoff) ~0.11 mm/day ( small)

Validating the results …

� Endorheic property 



Validating the results …

� Map of water balance residual (runoff/runon) over the Gourma region
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� Yearly average water balance equation over all the pixels results in the map of runoff/ runon (+/-) 

� The errors in this estimation methodology manifests itself in the form of runoff/ run residuals

� The map of runoff/ runon corresponds well with the characteristics of Gourma region 
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Day 190

Day 191

Day 192

Evaluating the results …

� Precipitation- Evaporation patterns   
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Evaluating the results …

� CHN patterns   

June( Beginning of Monsoon) August( Peak of Monsoon)
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� CHN effective value over pixel area 

� Mapped values

�Dynamics 
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� Methodology developed to use both water and energy balance to 
constrain parameter estimation of surface energy and moisture balance

� Method is distinct from traditional calibration because it does not need 
flux information ( eg. problomatic drainage and evaporation data) to 
estimate parameters 

� Only forcing (P,      ) and states (s,Ts) used; hence scalable for remote 
sensing and mapping applications

� Feasibility demonstrated at point-scale with synthetic data (true 
parameters known for evaluation) and Ameriflux field site data 

� Application over West Africa using remote sensing shows feasibility of 
using satellite data to estimate effective values of important land 
surface model parameters 

ConclusionsConclusions

↓
inR
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Questions ? 

Leila Farhadi
farhadi@mit.edu


