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Abstract

Ocean-biogeochemical models show typically significant errors in the representation

of chlorophyll concentrations. The model state can be improved by the assimilation

of satellite chlorophyll data with algorithms based on the Kalman filter. However,

these algorithms do usually not account for the possibility that the model predic-

tion contains systematic errors in the form of model bias. Accounting explicitly for

model biases can improve the assimilation performance. To study the effect of bias

estimation on the estimation of surface chlorophyll concentrations, chlorophyll data

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are assimilated on a

daily basis into the NASA Ocean Biogeochemical Model (NOBM). The assimila-

tion is performed by the ensemble-based SEIK filter combined with an online bias

correction scheme. The SEIK filter is simplified here by the use of a static error co-
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variance matrix. The performance of the filter algorithm is assessed by comparison

with independent in situ data over the 7-year period 1998–2004. The bias correction

results in significant improvements of the surface chlorophyll concentrations com-

pared to the assimilation without bias estimation. With bias estimation, the daily

surface chlorophyll estimates from the assimilation show about 3.3% lower error

than SeaWiFS data. In contrast, the error in the global surface chlorophyll estimate

without bias estimation is 10.9% larger than the error of SeaWiFS data.

Key words: Data assimilation, ecosystem modeling, Kalman filter, SEIK, bias

correction, Ocean color, Ocean chlorophyll

1 Introduction

Since September 1997, SeaWiFS has provided an uninterrupted time series of

high quality global ocean chlorophyll data. This unprecedented data set has

led to many advances in our understanding of ocean biological processes, and

has been an invaluable resource for assessing the skill of ocean biological mod-

els. Recently there has been expanding interest in using the data set in data

assimilation studies, see Gregg [2007] for an overview of previous studies using

SeaWiFS data for assimilation. Such applications hold potential for improving

estimates of model state fields and model parameters. As an emerging field,

researchers have only recently begun to use satellite data for improving the

model state directly, a process known as state estimation.
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Aiming at a direct state estimation without changing model parameters in

a 3-dimensional model, Carmillet et al. [2001] applied a singular “evolutive”

extended Kalman (SEEK) filter to assimilate simulated observations into a

model in the North Atlantic. These twin experiments focused on the general

possibilities for multivariate assimilation with ocean chlorophyll data. Using

very accurate data with a prescribed error of 10%, Carmillet et al. [2001] were

able to constrain phytoplankton as well as fields like nitrate and ammonium

over 70 days experiment length. Using almost the same ocean-biogeochemical

model, Natvik and Evensen [2003], assimilated real SeaWiFS data with an

Ensemble Kalman filter (EnKF) over the period April and May 1998. In this

study, the EnKF was able to improve surface phytoplankton and to reduce the

variance of surface nitrate fields. In addition, subsurface nitrate and zooplank-

ton was affected, but the changes were difficult to interpret quantitatively.

The first global long-time assimilation of SeaWiFS ocean chlorophyll data was

discussed by Gregg [2007]. The data were assimilated daily into the global 3-

dimensional NASA Ocean Biogeochemical Model (NOBM) over the period

of 1997-2003 using a conditional relaxation method. The rather simple as-

similation method substantially improved the estimated surface chlorophyll

of the model and was able to provide daily global surface chlorophyll fields.

Compared to independent in situ data, the assimilation resulted in a smaller

bias than SeaWiFS data while the root-mean square (RMS) error was slightly

higher for the assimilation than for the satellite data. In addition, the estimate

of primary production was improved.

Recently, Nerger and Gregg [2007] used a simplified form of the singular “evo-

lutive” interpolated Kalman (SEIK) filter with localized analysis [Nerger et al.,

2005a] to assimilate SeaWiFS ocean chlorophyll data over a period of 7 years
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into an updated version of the NOBM used by Gregg [2007]. The univariate

application of the SEIK filter to surface chlorophyll provided daily global sur-

face chlorophyll fields that exhibited a lower RMS log error than the SeaWiFS

data in the majority of the oceanic basins when compared to in situ data. Glob-

ally, the RMS log error for the assimilation was 13% larger than the error of

the SeaWiFS data. In connection to the estimation of surface chlorophyll, the

primary production in the model was improved. The univariate assimilation

scheme was not configured to constrain other fields. However, it was shown

that the univariate assimilation did not harm other model fields, like nutrients,

which remained constant during the assimilation updates but reacted on the

changed chlorophyll concentrations during the model integration.

The previous assimilation studies with ocean-biogeochemical models applied

algorithms that do not explicitly account for model bias. While even in this

case biases can be reduced by the assimilation, this reduction is not systematic

and suboptimal because the noise in the assimilation estimate is increased [see

Dee and Da Silva, 1998]. The application of bias correction algorithms together

with sequential assimilation algorithms has been demonstrated to improve the

performance of the assimilation systems in atmospheric applications [Dee and

Todling, 2000, Baek et al., 2006] as well as with physical ocean circulation

models [Chepurin et al., 2005, Keppenne et al., 2005].

To study the influence of bias estimation on the assimilation of satellite chloro-

phyll data, the SEIK algorithm applied by Nerger and Gregg [2007] is extended

here with an online bias correction scheme. This extended assimilation algo-

rithm is used to estimate daily surface chlorophyll over the period September

1997 to December 2004. The assimilation performance is assessed by compari-

son with independent in situ data. Our objective is to apply data assimilation

4



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

with an established biogeochemical model to produce improved estimates of

global chlorophyll. Although the model is more complex than necessary to

demonstrate the effectiveness of the data assimilation application in principle,

its use provides an opportunity to quantitatively evaluate improvements in a

realistic context with an extensively validated model.

2 Methods

The configuration of the assimilation experiment performed here is similar to

the assimilation discussed by Nerger and Gregg [2007]. The differences of both

studies are summarized in table 1. Below, the parts of the assimilation system

and the experimental configuration are described.

2.1 The NASA Ocean-Biogeochemical Model

The NOBM used here for the data assimilation is a fully coupled general circu-

lation/biogeochemical/radiative model. It consists of three major components,

which are depicted in figure 1. Simulated are the ocean general circulation,

radiative transfer processes, and biogeochemical processes as outlined below.

The Poseidon model [Schopf and Loughe, 1995] simulates the ocean general

circulation. This finite-difference, reduced gravity ocean model is used here in

a global configuration extending from near the South Pole to 72◦N including

all regions with bottom depth > 200m. The discretization uses a uniform

resolution of 2/3◦ in latitude and 5/4◦ in longitude. 14 layers in quasi-isopycnal

coordinates are used in the vertical. The model is forced by wind stress, sea

surface temperature, and short-wave radiation.
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The biogeochemical processes model is described in detail in Gregg and Casey

[2007]. It consists of ecosystems and carbon components. The ecosystem com-

ponent simulates four phytoplankton groups: Diatoms, Chlorophytes, Cyanobac-

teria, and Coccolithophores. These are characterized by distinct growth and

sinking rates, as well as differences in nutrient requirements. Further, spectral

absorption and scattering, as well as light saturation constants are distinct.

The phytoplankton groups interact with 4 nutrients: nitrate, regenerated am-

monium, silica, and iron. Storage of organic material, sinking and eventual

remineralization back to usable nutrients are simulated using three detrital

pools. In addition, a single herbivore group is modeled. The carbon compo-

nent models the interaction of dissolved organic and inorganic carbon with

phytoplankton, herbivores and detritus. In addition, the exchange of carbon-

dioxide with the atmosphere is considered. The model is forced by transient

monthly atmospheric fields.

2.2 SeaWiFS Ocean Chlorophyll Data

The assimilation uses daily global chlorophyll data from SeaWiFS, version 5.1

at 9km resolution obtained from the NASA Ocean Color Web site. The data

fields were remapped to the model grid for the assimilation.

For the assimilation daily SeaWiFS chlorophyll data with concentrations larger

than twice the monthly mean are considered as outliers and excluded. These

exclusions are motivated by the fact the remote sensing errors are typically

expressed as overestimates as the most dominant error sources, absorbing

aerosols, chromophoric dissolved organic matter (CDOM), sub-pixel scale clouds

and ice most often lead to overestimates of chlorophyll [Gregg and Casey,
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2004]. These overestimates can have a very deleterious effect on the quality

and stability of the assimilation process.

The distribution of chlorophyll and errors in chlorophyll are assumed to be

log-normal [see, Campbell, 1995, Nerger and Gregg, 2007]. As the analysis of

the Kalman filter is only variance minimizing for normal distributions of the

state and observation errors, the assimilation is performed on the logarithm

of the observed and modeled chlorophyll concentrations.

The observation errors are assumed to be independent. Thus, the observation

error covariance matrix Rk (see appendix, equations 13 and 14) is diagonal.

Regionally varying errors are specified for the observations as shown in figure

2. These error estimates are chosen to minimize the estimation errors in the

assimilation. In the North and Equatorial Indian Ocean observations with con-

centrations above 1 mg m−3 are excluded. This is motivated by the prevalence

of light-absorbing dust [Wang et al., 2005], which can result in overestimates

of the chlorophyll concentration. This problem also occurs in the tropical At-

lantic where all observations with concentrations larger than 1 mg m−3 are

excluded in the Mauritanian offshore region (region B in figure 2). The same

approach is used in the Amazon and Congo river outflow regions (regions A

and C in figure 2, respectively). These regions are dominated by CDOM, which

produce erroneous chlorophyll values in the satellite data.

2.3 Local SEIK Filter

The data assimilation is performed using the SEIK filter [Pham et al., 1998],

which was also utilized by Nerger and Gregg [2007] to assimilate ocean chloro-
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phyll data. Here, only a brief description of the concepts of the filter algorithm

is provided. Details of the mathematical formulation of the SEIK filter and its

localization are given in the appendix.

The SEIK filter is an ensemble-based Kalman filter that uses a precondi-

tioned ensemble and a numerically very efficient scheme to incorporate the

observational information during the analysis step. SEIK is based on an ex-

plicit low-rank approximation of the covariance matrix that estimates the er-

ror in the state estimate. The merging of model state and observational data,

denoted “analysis”, is computed efficiently in the low-dimensional error sub-

space, which is represented by the low-rank approximated covariance matrix.

Compared to the EnKF, which has also been applied for assimilation with

ocean-biogeochemical models [Allen et al., 2003, Natvik and Evensen, 2003],

the SEIK filter requires much less computation time if the dimension of the

observation vector is much larger than the ensemble size. In addition, SEIK

can be applied with smaller ensembles than the EnKF. A detailed comparison

of the SEIK filter with other, more common, filter algorithms like the EnKF

can be found in Nerger et al. [2005a].

Here, the assimilation applies the localized variant of the SEIK filter [Nerger

et al., 2006]. The analysis update of some horizontal location in the model grid

considers only observations within some influence radius. The localization is

combined with a spatial weighting of covariances, which reduces the influence

of remote observations within the influence radius. This method is typically de-

noted as “covariance localization”, [see, e.g. Houtekamer and Mitchell, 2001].

The SEIK filter algorithm applied here is simplified by keeping the state er-

ror covariance matrix constant. Hence, the same error estimate for the model

state is used for each analysis step. With this simplification only the ensemble
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mean state is propagated by the model. This avoids the computational cost

of integrating a full ensemble of model states during the assimilation process.

2.4 Online Bias Correction

Biases in the model fields are generated by systematic errors in the formulation

of the discretized model operator. The time propagation of the true state xt of

a modeled system is given by the stochastic-dynamic time discretized model

equation

xt
i = Mi,i−1[x

t
i−1] + ηi . (1)

Here Mi,i−1 is a, possibly nonlinear, operator describing the state propagation

between the two consecutive time steps i − 1 and i. The vector ηi is the

model error. Data assimilation algorithms that are not bias-aware base on the

assumption that ηi is a stochastic perturbation with zero mean and covariance

matrix Qi. If the mean of ηi is non-zero, the model is biased. This leads to

systematic differences between the model state and observations, because the

modeled state drifts away from the true state during the integration of the

numerical model, which does not include the model error term.

In the case of the state modeled by the NOBM, systematic differences between

the model state and the SeaWiFS chlorophyll data exist. These are typically

slowly-changing differences. For example, the underestimation of the spring

bloom in the North Atlantic can be considered to be a bias. The SEIK filter

without bias correction assumes that the errors of the model and the observa-

tions are unbiased, e.g. they are distributed with alternating signs around the

mean state estimate of the filter. If the errors are biased, e.g. if for a longer
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period of time the model underestimates the data within some region, the

efficiency of the filter analyses is reduced.

To account for model bias in conjunction with the SEIK filter, an online bias

correction (OBC) scheme is applied, which follows the formulation by Dee and

Da Silva [1998]. Assuming that the observations are unbiased, this two-stage

bias correction scheme estimates a bias vector analogous to the estimation

of the state vector performed by the SEIK filter. The analysis of the state

estimate is then performed on the basis of deviations of the de-biased state

estimate from the observations. The bias vector is kept constant during the

forecast phase while the bias state estimate is propagated by the model. The

error estimate for the bias correction uses a fraction of the ensemble covariance

matrix that is also used for the state estimation. This scheme separates the

state correction into a systematic bias component and a random unbiased

component. The mathematical formulation of the OBC scheme in combination

with the SEIK filter is provided in the appendix.

2.5 Experimental setup

In the experiments global daily chlorophyll observations from SeaWiFS are

assimilated into the NOBM at model midnight. Only the 4 phytoplankton

groups in the surface layer are updated by the filter algorithm. Since only

total chlorophyll is observed, the sum of the chlorophyll concentrations of the

four phytoplankton groups is used as total chlorophyll of the model state.

After adjusting the total chlorophyll concentration by the filter algorithm,

the phytoplankton groups are updated under the constraint that their rela-

tive abundances remain constant. With this, the assimilation of chlorophyll
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does not affect the relative abundances of the phytoplankton groups directly.

However, the relative abundances can be indirectly modified. For example,

changing to total chlorophyll can change the irradiance availability and its

spectral nature. This in turn can benefit or hinder one or more phytoplank-

ton group relative to the others. Similarly, assimilation of total chlorophyll can

change the vertical and horizontal gradients of the phytoplankton or nutrients,

thus potentially leading to a different environment favoring different groups

from the free-run conditions.

The data assimilation process is initialized by a model state estimate for Jan-

uary 1997 obtained from a spin-up run over 20 years with monthly climatolog-

ical forcing. This state is integrated with transient monthly forcing to obtain a

model state estimate for September 1997, the start month of the assimilation

experiment. The initial state error covariance matrix Pa
0 for the logarithm of

the total chlorophyll concentration is estimated from a free model run over

the 6 years 1998 to 2003 with monthly forcing data. A perturbation matrix

is assembled by computing the differences of the state at each 15th day from

a running mean over three months. The decomposition Pa
0 = V0U0V

T
0 (see

equation 5 in the appendix) is then obtained by the singular value decom-

position of this perturbation matrix. The covariance matrix obtained by this

procedure showed overall variances that were too small to represent a realistic

estimate of the initial error of the model state. For this reason, the variance was

inflated to obtain a magnitude of variance that is comparable to differences

between the initial model state and observations. A factor of 0.06−1 resulted

in the best assimilation performance when varying the inflation factor. This

inflation results in maximum variance estimates of the same order as those in

the covariance matrix used by Nerger and Gregg [2007]. The singular value de-
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composition directly yields the eigenvector matrix V0 and the square-roots of

the eigenvalues, which build the diagonal of the matrix C0 with U0 = CT
0 C0.

For the data assimilation experiment the leading 30 eigenvectors and eigen-

values are used to generate the state ensemble. The ensemble of 31 members

proved to be sufficiently large as larger ensembles resulted only in marginal im-

provements of the state estimate, while the assimilation performance degraded

for smaller ensembles.

The simplified variant of the local SEIK filter is implemented within a data

assimilation framework [PDAF, Nerger et al., 2005b], which provides fully-

implemented filter algorithms to be connected to existing models in order

to generate a data assimilation system. In the experiments only the ensemble

mean state is propagated by the model without applying any stochastic forcing

to the integration. The forgetting factor is set to one. For the localization, a

small cut-off distance of 5 grid points in zonal and meridional directions is

used to define rectangular local observation domains. A localizing weighting

of the observations is performed by an exponential decrease from the grid

point to be updated with a length scale of 1 grid point to reduce the variance

estimate by a factor of 1/e. A fraction of 10% of the ensemble-represented

covariance matrix is used for the OBC, while 90% are utilized for the state

estimation. The influence of this choice to partition the covariance matrix is

further discussed in section 4.

2.6 Performance Evaluation of the Assimilation

To assess the performance of the assimilation, we compare the estimated total

surface chlorophyll concentrations with independent in situ chlorophyll data.
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The in situ data were obtained from the SeaWiFS Bio-Optical archive and

Storage Systems [SeaBASS, Werdell and Bailey, 2002] and the NOAA/National

Oceanographic Data Center (NODC)/Ocean Climate Laboratory (OCL) archives

[Conkright et al., 2002]. For the comparison with the model, daily in situ data

were mapped to the model grid by computing the average of measurements

within each single grid cell. For the comparison, we excluded in situ data for

May 1998 in the South Pacific. Nerger and Gregg [2007] found that these

points lead to a large bias in the comparison of the in situ data with both the

modeled chlorophyll and SeaWiFS data. This was caused by high transient

and localized concentrations in the eastern part of Melanesia that couldn’t be

represented by the model at its spatial resolution and monthly forcing.

The analysis is performed globally and separated over 12 ocean basins. The

basins are defined as follows: The Antarctic basin is considered to be south of

40◦S. The southern basins lie between the Antarctic basin and the equatorial

basins, which extent from 10◦S to 10◦N. The North Indian as well as the North

Central Pacific and Atlantic basins are located north of 10◦N. The latter two

basins have a northern boundary at 40◦N. The North Pacific and Atlantic

basins are located north of 40◦N.

To quantify the assimilation performance in accordance with the log-normal

distribution of total chlorophyll, statistics for the logarithms of the chlorophyll

concentrations are computed. Specifically, the RMS log error, the bias as mean

deviation between the logarithms of the state estimate and the in situ data,

as well as the correlation coefficient between the logarithms of the fields are

computed for daily collocated data.
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3 Results

We will first discuss the filter performance obtained from the assimilation

using the SEIK filter combined with the OBC scheme. Subsequently, the im-

provements resulting from the OBC are discussed.

3.1 Assimilation Performance with Bias Correction

To assess the assimilation performance of the filter with OBC, the estimated

daily chlorophyll concentrations for the years 1998 to 2004 were compared with

independent in situ data. Figure 3 shows RMS log errors, bias, and correla-

tions coefficients for the comparison as described in section 2.6. In addition,

the number of collocation points over the 7 years is shown below the uppermost

panel for both the model estimates and SeaWiFS data. More than twice as

much collocation points exist for the complete model fields than for the daily

SeaWiFS data. However, the data availability varies strongly by region. The

Equatorial Pacific and North Central Pacific oceans dominate the data, fol-

lowed by the North Central Atlantic and Antarctic oceans. These four basins

comprise about 86% of the available in situ data.

The panels of Fig. 3 show a significant improvement of the model-predicted

surface chlorophyll field by the assimilation. The RMS log error is reduced

globally from 0.441 to 0.266 by the assimilation. The assimilation reduces

the error to be about 3.3% below that of SeaWiFS data, which exhibits an

RMS log error of 0.275. In addition, the global bias is reduced from -0.076 to

-0.034. However, the SeaWiFS data show an even lower bias of -0.008. The

correlation coefficient is increased by the assimilation, too. While the free-
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run model showed only a positive correlation of 0.52, it was increased by the

assimilation to 0.83. The correlation of SeaWiFS data is slightly lower at 0.81.

Overall, the assimilation strongly improves the estimate of surface chlorophyll

with regard to all three considered statistics.

Regionally, RMS log errors are lower for the assimilation than for SeaWiFS

data in all basins except the Equatorial Pacific, the Antarctic and the North

Indian Oceans. In the latter basin, the errors are equal. In the Antarctic, the

RMS error for the assimilation estimate is about 5% larger than the error of

SeaWiFS data. In the Equatorial Pacific Ocean, the error of the assimilation

estimate is about 9% larger than that of the SeaWiFS data. However, the

error level is quite small here, with 0.185 for the assimilation and 0.169 for

SeaWiFS. The improvements from the free run model are significant (P< 0.05)

in all basins and globally. With regard to the satellite data, only the differences

between assimilation and SeaWiFS data in the South Atlantic and North

Central Pacific are significant.

While the global bias is small for the free-run model, the assimilation, as well

as the SeaWiFS data, larger biases occur regionally. In particular, the free-run

model strongly underestimates the concentrations in the in situ data in several

basins. The amount of bias is significantly reduced by the assimilation in most

basins and globally. The bias in the assimilation estimate remains within the

limits of 0.13 for the South Indian Ocean and -0.23 for the Antarctic.

The assimilation provides estimates that are significantly correlated (P< 0.05)

with the in situ data in all basins, except the South Pacific. However, in this

basin only 9 collocation points are available for the comparison. Due to this,

also the negative correlation of the free-run model with the in situ data is
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not significant. In addition, the 100% correlation of SeaWiFS with the in situ

data is based on only 2 collocation points. The significant correlation for the

assimilation in all other basins is an improvement over the free-run model

in which also the Equatorial Atlantic and the Antarctic were not significantly

correlated with the in situ data. (Note, that the model shows a significant pos-

itive seasonal correlation with SeaWiFS data in all basins [see Gregg, 2007]).

Next to the increase of the correlation in all basins by the assimilation in

comparison to the free-run model, the assimilation results also in improved

correlations compared to the SeaWiFS data. In particular, the SeaWiFS data

are not significantly correlated with the in situ data in the North Pacific. Here,

the assimilation estimate shows a larger significant correlation than both the

free-run model and SeaWiFS data.

3.2 Influence of the Bias Estimation

The green and yellow bars in the panels of figure 3 compare the assimilation

performance for the algorithms without and with OBC. The OBC significantly

reduces the global RMS errors from about 10.9% above the error of SeaWiFS

data to about 3.3% below. Regionally, the error reduction is significant in all

northern and equatorial basins except the Indian Ocean.

Next to the RMS log errors, also the log bias between the model and in situ

data is reduced in several basins. The slight global increase in bias is not sig-

nificant. However, the changes in the bias between the algorithms without and

with OBC are significant in all basins, except the South Pacific and Atlantic,

and the North Indian Ocean. These are the basins with the smallest number

of collocation points. Further, the correlation is increased in all basins, except
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the Antarctic, South Pacific and Equatorial Indian Oceans.

Figure 4 shows a snapshot of the estimated logarithmic model bias for April

1, 2000. The bias reaches values between about ±1. The general pattern of

the bias estimate is persistent over the full multi-year assimilation period. In

particular, the band of positive bias, i.e. the model overestimates the concen-

tration, in the North Central Pacific around 30◦N, and the band of positive

bias at about 30◦S in all basins exist during all seasons with slightly varying

amplitude. This is also true for the large negative bias in the tropical Atlantic

and the North Indian Oceans. In addition, the pattern of positive bias in the

eastern Equatorial Pacific and negative bias in the western part of the tropical

Pacific is persistent with the exception of the first months of the assimilation

where the El Niño conditions lead to a larger extend of the positive bias to the

western part of the Equatorial Pacific. The model bias varies seasonally in the

North Pacific and Atlantic Oceans. In general the bias is rather small here,

but negative bias is apparent during bloom periods, e.g. in the Atlantic north

of 60◦N in figure 4, while negative bias occurs at the end of the blooms. The

largest variability in the bias is visible in the Antarctic south of 50◦S. Again,

the bias is negative during boreal spring while during summer and autumn

the bias is widely positive.

To examine the actual influence of the bias estimate on the concentration of

surface chlorophyll, figure 5 shows the chlorophyll fields for the assimilation

without OBC, the biased and de-biased fields for the assimilation with OBC

as well as the chlorophyll field from the free-run model for April 1, 2000.

Comparing the concentrations from the assimilation without OBC and the

de-biased concentration from the assimilation with OBC (upper panels), it is

obvious that both estimates are very similar. The concentration in the North
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and Equatorial Pacific is slightly smaller in the de-biased field. In addition, the

concentration of the bloom in the North Atlantic is slightly lower in the de-

biased field. With these differences, the chlorophyll field from the assimilation

with OBC corresponds slightly better to the satellite data on the same day

than the estimate without OBC.

The effect of the OBC on the chlorophyll estimate that is actually evolved with

the model in form of the four phytoplankton groups is visible in the lower pan-

els of figure 5. The biased total chlorophyll estimated by the assimilation with

OBC is similar to the chlorophyll field from the free-run model. Generally, the

assimilation with OBC adds finer structures to the model field while preserving

the large-scale structure of the chlorophyll field from the free-run model. Ma-

jor changes are visible in the North Atlantic where the phytoplankton bloom

is strongly reduced north of about 55◦N and in the North and North Central

Pacific. In the South Pacific and the Antarctic Oceans, the concentrations are

mostly increased but decreased in several regions south of 60◦S.

4 Discussion

Several aspects of the daily assimilation of SeaWiFS data, such as the im-

provement of the chlorophyll estimate from the free-run model, the possibility

to obtain complete daily chlorophyll fields, the influence of the univariate

assimilation of chlorophyll on nitrate, and the positive influence of the assim-

ilation on the estimate of primary production have been discussed by Nerger

and Gregg [2007]. For this reason, we focus here on aspects that relate to the

influence of the OBC.
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The independent in situ data comparison shows that the application of OBC in

the assimilation of daily SeaWiFS chlorophyll data significantly improves the

surface chlorophyll estimates. Without OBC, all data assimilation algorithms

based on the Kalman filter assume that the model forecast is unbiased. The

positive influence of OBC is possibly a general conclusion, and other data

assimilation algorithms using ensemble-based Kalman filters that assume the

model forecast is unbiased, e.g. Natvik and Evensen [2003], Allen et al. [2003]

or Triantafyllou et al. [2003], may also profit from the application of OBC if

the models exhibit bias.

The OBC scheme reduces the influence of the SEIK filter on the chlorophyll

concentrations evolved by the model. A large part of the correction to the

state estimate is contained in the model bias estimate, which is kept static

during the forecast phases. The smaller changes to the evolved chlorophyll

fields can generally stabilize the evolution of all model fields. An example for

the influence of the OBC is the Costa Rica upwelling dome (CRD). Here, the

upwelling can result in elevated chlorophyll concentrations as visible in figure

5a. However, the free-run model (Fig. 5c) does not show elevated concentra-

tions, because the upwelling is not well represented by the reduced gravity

model. Accordingly, if the assimilation without OBC increases the chlorophyll

concentration in the region of the CRD without changing the hydrography, the

forecast will reduce the concentrations again. This effect will lead to persistent

daily increases in the chlorophyll concentration at the CRD at each analysis.

The model dynamics react on this change, e.g. with a decrease in nutrient con-

centrations. When the increments in chlorophyll are sufficiently large, this can

even result in the occurrence of negative nutrient concentrations because the

model does intentionally not contain a constraint for positiveness [see Nerger
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and Gregg, 2007]. With OBC, however, the repeated positive increment to

the chlorophyll result in an elevated estimate of negative bias (see figure 4)

while the change to the chlorophyll concentrations evolved by the model is

very small. Accordingly, the deteriorating effect of the artificial increase in

chlorophyll by the analysis followed by its decrease during the forecast will be

minimized. In a multivariate analysis, like that applied by Natvik and Evensen

[2003], nitrate concentrations are updated directly in conjunction with the

correction of chlorophyll. However, the bias correction is still beneficial when

switching to a multivariate analysis because also a multivariate ensemble will

not be able to represent model bias, if the assimilation algorithm does not

account for it.

Some basins need special care when interpreting the statistical comparison of

the assimilation estimates with in situ data. One has to keep in mind that the

availability of in situ data is very irregular. In addition, the amount of data

(4732 collocation points for the comparison of the model fields with in situ

data; 2186 points for the comparison of SeaWiFS data) over the 7-year period

of the comparison is very limited.

The largest amount of data is available in the Equatorial Pacific and the

North Central Pacific. In the North Central Pacific, the RMS log error for the

assimilation is 0.26 and about 9% below the error of SeaWiFS data. The in

situ data in this basin are dominated by data from the California Cooperative

Oceanic Fisheries Investigations (CalCOFI) project, which accounts for about

69% of the data. For this reason, the major amount of this data allows only to

access the assimilation performance in a small area near the coast of California.

In this region, the RMS log errors are larger than for the total North Central

Pacific with 0.37 for the assimilation without OBC, 0.27 for the assimilation
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with OBC, and 0.30 for SeaWiFS data. According to these numbers, the OBC

has a large positive influence in this region by reducing the RMS log error by

27%.

The Equatorial Pacific exhibits a systematic large-scale sampling that follows

the Tropical Ocean-Global Atmosphere program/Tropical Atmosphere Ocean

(TOGA/TAO) array. Here up to 10 measurements at the same grid point are

available over the 7-year period. The assimilation results in a very small RMS

log error and in the Equatorial Pacific. However, the RMS error and bias of

SeaWiFS data is even lower. If we only consider in situ data points collocated

with satellite data, thus using the same in situ data for SeaWiFS and assimila-

tion, the error of the assimilation estimate in the Equatorial Pacific is reduced

to about 1% below the error of the SeaWiFS data. The larger error for the

comparison with all available collocation points shows that the information

transfer into the gaps of the satellite data incurs some error. The effect of the

OBC is very small in the Equatorial Pacific, because biases are very small in

this region.

A basin of particularly strong difficulties for both the assimilation and the

performance evaluation is the Antarctic Ocean. This is due to the presence

of sea ice, the limited and irregular availability of SeaWiFS data, and the

irregular availability of in situ data. The availability of SeaWiFS data is limited

by the presence of clouds and sea ice. Poleward of 60◦S typically less than 10

days of data per month are available per grid point. Accordingly, the model is

less constrained and more frequent extrapolation of the data into gaps occurs.

This will likely result in an inferior quality of the data assimilation estimate.

In addition, the model is less constrained due to the presence of sea ice. At

grid points with non-zero ice concentration, the assimilation update of the
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state is scaled relative to the percentage of open water. This ensures a gradual

transition from the constrained ice-free grid points to the unconstrained points

with 100% ice concentration. However, the model is less constrained at points

with, at least partial, ice coverage. This becomes evident when we neglect all

points covered with ice from the comparison of the assimilation estimate with

the in situ data. In this case with 296 collocation points, the RMS error drops

from being 5% above to 5% below the error of the satellite data. In addition,

the amount of bias is reduced from -0.23 to -0.17. The performance evaluation

is also influenced by the distribution of the available in situ data. The majority

of the data are measured in the Drake passage and near the coast of the

Antarctic Peninsula. Thus, the comparison provides mostly information about

the errors in the model state and the SeaWiFS data in this very limited region

and only during the seasons in which blooms of the phytoplankton occur. This

is likely the reason for the rather large positive bias in the Antarctic shown

in figure 3. Regarding the influence of the OBC, the Antarctic is the only

basin in which the bias correction significantly increases the RMS error and

the amount of bias compared to the assimilation without OBC. This shows

the difficulty to obtain reasonable estimates of the model bias from the very

limited amount of satellite data available in this region.

While the OBC algorithm assumes that the observations are unbiased, the

second panel of figure 3 shows that this assumption is not fulfilled. There are

significant regional biases in the SeaWiFS data that will reduce the assimi-

lation performance. The OBC scheme is able to reduce the model bias with

respect to the SeaWiFS data in most basins. However, not in all of these

basins the bias from the in situ data is reduced. An example for this effect

is the North Central Pacific. As discussed above, the error in the CalCOFI
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region is strongly reduced, but the bias with regard to in situ data remains

almost constant.

The efficiency of the OBC also depends on the choice of the weight given for

the OBC compared to the state correction. This is defined by the fraction γ

of the ensemble-represented state covariance matrix that is used for the OBC

(see equations 23 and 24 in the appendix). The results presented here were

obtained from experiments using γ = 0.1. This value resulted in the smallest

global RMS log error and smallest log bias when varying γ. However, the

global RMS log error and bias only changed by up to 0.5% when varying γ

between 0.05 and 0.3. Regionally, the variations of the RMS log error and log

bias are larger in some regions. Further, some regions benefit from a higher

bias weight while others show better results for smaller γ. For example, the

RMS log error in the Antarctic ocean exhibited the smallest RMS log error

for γ = 0.05, while for γ = 0.3 the RMS log error increased by about 5%.

In contrast, the North Central Pacific showed a 2% larger RMS log error for

γ = 0.05 compared to γ = 0.3.

Since the assimilation was only performed univariately here, only the chloro-

phyll concentrations are directly modified while other fields, like nutrients,

herbivores, and detritus react on the changes chlorophyll during the model

integration. Accordingly, we cannot expect a systematic improvement of these

fields in our assimilation experiments. Nerger and Gregg [2007] discussed that,

without OBC, nitrate concentrations exhibit only small changes due to data

assimilation. With OBC these changes are even smaller, because the change

in the model-integrated biased chlorophyll fields is smaller.

The assimilation experiments discussed here are influenced by the assumption
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that the errors in chlorophyll concentrations exhibit a log-normal distribution.

This assumption is in contrast to other studies [Carmillet et al., 2001, Natvik

and Evensen, 2003, Allen et al., 2003] who assimilated actual concentrations

and hence implicitly assumed a normal distribution of the errors. The stud-

ies, however, assumed a fixed relative error of the observations. Analogously,

the regional RMS log observations errors assumed here correspond to relative

errors. The log-normal assumption influences the generation of the initial en-

semble, as well as the analysis and re-initialization phases of the SEIK filter.

All these operations have to be performed using the logarithm of the con-

centrations. An immediate advantage of the log-normal assumption for the

filter analysis, apart from the mathematical consistency, is that unrealistic

negative concentrations, e.g. reported by Natvik and Evensen [2003], cannot

be caused by the analysis update. A detailed assessment of the influence of

the log-normal assumption compared to an assumption of a normal error dis-

tribution is beyond the scope of this work. However, the general behavior in

the scalar case of a single state vector element and a single observation is

the following. If the analysis update increases concentrations, the log-normal

assumption will lead to smaller increments compared to a filter with normal

error assumption. If the increment is negative, its size will be larger for a

log-normal error distribution compared to a normal distribution.

5 Conclusion

An online bias correction scheme has been applied with the SEIK filter with lo-

calized analysis and constant error covariance matrix to estimate total surface

chlorophyll from September 1997 to the end of 2004. For this, daily SeaW-
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iFS chlorophyll data have been assimilated into the surface layer of the global

3-dimensional NASA Ocean Biogeochemical Model.

The assimilation performance was assessed by comparison to independent in

situ data. The application of bias correction resulted in improvements of the

estimated surface chlorophyll. Compared to the assimilation without OBC,

the improvements are significant globally and regionally in the equatorial and

northern regions of the Pacific and Atlantic Oceans. The improvements ob-

tained by the application of the OBC also show that there are significant

systematic errors in the model estimate and that these can be estimated as

model bias.

The estimated surface chlorophyll shows smaller RMS errors than SeaWiFS

data in almost all of the major oceanic basins. Globally, the assimilation esti-

mate shows a 3.3% smaller RMS log error and a larger correlation with the in

situ data, than the SeaWiFS data. The assimilation estimate shows smaller er-

rors than SeaWiFS data in all basins, except the Equatorial Pacific, the North

Indian, and Antarctic oceans. In the Equatorial Pacific, the satellite data are

already very accurate and practically unbiased. The assimilation estimate is

inferior to the satellite data, because of the extrapolation of this information

into data gaps. In the Antarctic ocean, the assimilation performance is reduced

by limited availability of satellite data and by the occurrence of sea ice.

Despite the bias correction scheme applied here, the assimilation estimate

shows significant biases with regard to in situ data. Partly, this is due to biases

in the SeaWiFS data. These are neglected by the bias correct scheme, which

assumes unbiased observations. To improve the assimilation performance it

would be necessary to account also for the bias in the SeaWiFS data.
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This study is an intermediate step toward a full-featured multivariate assim-

ilation system based on a SEIK filter with dynamic evolution. It shows the

importance of bias correction in the assimilation system. Further, in conjunc-

tion with [Nerger and Gregg, 2007], it was shown, that daily assimilation of

satellite chlorophyll data into a global ocean-biogeochemical model over a pe-

riod of several years is feasible with an advanced data assimilation method. It

results in significant improvements of the model-estimated surface chlorophyll

concentrations with errors that are below those of SeaWiFS chlorophyll data.
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Appendix

Here, the details of the mathematical formulation of the SEIK filter, its local-

ization, and the online bias correction are described in their general form for

Gaussian errors. Finally, implementation aspects for the experiments discussed

above are discussed. In particular the handling of log-normal distributions is

considered.
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A The (global) SEIK Filter

In the SEIK filter, the estimate of the state of a physical system, such as the

ocean, is expressed at some time tk in terms of the estimated analysis state

vector xa
k of dimension n and the corresponding covariance matrix Pa

k that

represents the error estimate of the state vector. The ensemble-based filter

scheme represents these quantities by an ensemble of N vectors {xa(α), α =

1, . . . , N} of model state realizations:

Xa
k = {xa(1)

k , . . . ,x
a(N)
k } (2)

The state estimate is given by the ensemble mean

xa
k =

1

N

N
∑

i=1

x
a(i)
k , (3)

and the covariance matrix Pa
k is approximated by the ensemble covariance

matrix

P̃a
k :=

1

N − 1
(Xa

k − Xa
k)(X

a
k − Xa

k)
T ≈ Pa

k , (4)

with Xa
k = {xa

k, . . . ,x
a
k}.

The SEIK algorithm can be subdivided into several phases and is prescribed

by the following equations:

Initialization:

To initialize the filter algorithm, a state estimate xa
0 is required. In addition,

an initial covariance matrix Pa
0 is estimated by a rank-r matrix, which is given

in decomposed form as

Pa
0 := V0U0V

T
0 . (5)
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Here U0 and V0 are matrices of size r × r and n × r, respectively.

From xa
0 and Pa

0 a random ensemble of minimum size N = r + 1 is generated

whose statistics represent xa
0 and Pa

0 exactly. This can be achieved by trans-

forming the columns of matrix V0 by a random matrix with special properties.

Pa
0 can be written as

Pa
0 = V0C

T
0 ΩT

0 Ω0C0V
T
0 , (6)

were CT
0 C0 = U0 is a square root of the matrix U0. If the decomposition

in equation (5) is obtained by a singular value decomposition, C0 will be a

diagonal matrix holding singular values. Ω0 is a N × r random matrix gen-

erated form uniformly distributed random numbers. The columns of Ω0 are

constrained to be orthonormal and orthogonal to the vector (1, . . . , 1)T . The

ensemble of state realizations is then given by

Xa
0 = Xa

0 +
√

N − 1 V0C
T
0 ΩT

0 . (7)

Forecast:

The state ensemble is integrated using the numerical model in the “forecast

phase”. Each ensemble member {xa(α), α = 1, . . . , N} is evolved up to time tk

by iterating the model equation

x
f(α)
i = Mi,i−1[x

a(α)
i−1 ] + η

(α)
i . (8)

where Mi,i−1 denotes the nonlinear dynamic model operator that integrates

a model state from time ti−1 to time ti. The superscript ’f’ denotes the fore-

cast while ’a’ denotes the analysis. Each integration is subject to individual

Gaussian noise η
(α)
i , which allows to simulate model errors.
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Analysis:

In the “analysis phase”, the information from the model state and the data

are merged to provide updated state and error estimates. Pf
k can be com-

puted from the state ensemble Xf
k in analogy to the covariance matrix in (5)

according to

Pf
k = LkGLT

k (9)

with

Lk := Xf
k T, G := (N − 1)−1

(

TTT
)

−1
. (10)

Here, T is a N × r matrix with zero column sums, such as

T =

















Ir×r

01×r

















− 1

N
(1N×r) (11)

where 0 represents the matrix whose elements are equal to zero. The elements

of the matrix 1 are equal to one. Matrix T implicitly subtracts the ensemble

mean when computing Pf
k .

The analysis update of the state estimate is given by

xa
k = xf

k + Lkak (12)

where the vector ak of size N − 1 is computed by

ak =Uk(HkLk)
TRk

−1
(

yo
k − Hkx

f
k

)

, (13)

U−1
k = ρG−1 + (HkLk)

TR−1
k HkLk. (14)
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Here, Hk is the observation operator, which computes what observations would

be measured given the state xk. Further, Rk is the observation error covariance

matrix and yo
k denotes the vector of observations. ρ is denoted forgetting factor

(0 < ρ ≤ 1). It leads to an inflation of the estimated variances of the model

state and can stabilize the filter algorithm and, to some degree, account for

model errors. The analysis covariance matrix is given by Pa
k := LkUkL

T
k , but

does not need to be computed explicitly.

Re-Initialization:

Before the next forecast phase, the “re-initialization phase” is performed in

which the forecast ensemble is transformed such that it represents the analysis

state xa
k and the corresponding covariance matrix Pa

k. Analogously to the

generation of the initial ensemble it is

Xa
k = Xa

k +
√

N − 1 LkC
T
k ΩT

k . (15)

where a Cholesky decomposition is applied on the matrix U−1
k to obtain

C−1
k (C−1)T

k = U−1
k . The matrix Ωk has the same properties as in the ini-

tialization.

B Localized Analyses and Re-initializations in SEIK

Here we shortly describe the mathematical formulation of the local SEIK filter.

For a detailed derivation of the local SEIK filter from the global SEIK filter

see Nerger et al. [2006].

For the localization of the analysis and re-initialization phases in the SEIK

filter the operations in these phases are performed in a loop through disjoint
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local analysis domains of the model grid, rather than performing the update

of the full state vector at once. In a simple case, a local analysis domain

can be a single water column. The results of the analysis and re-initialization

phases remain unchanged by this reformulation, as long as all globally available

observations are considered in the analysis phase.

In the analysis step, the localization is performed by neglecting observations

that are beyond a prescribed influence distance from a local domain. Below, we

omit the time index k for clarity, as all quantities refer to the same time. Let the

subscript σ denote a local analysis domain. The domain of the corresponding

observations is denoted by the subscript δ. Then, the equations for the local

SEIK analysis can be written analogously to the global analysis equations (12

– 14) as

xa
σ =xf

σ + Lσaδ, (16)

aδ =Uδ(HδL)T (Rδ)
−1

(

yo
δ − Hδxf

)

, (17)

U−1
δ = ρδG

−1 + (HδL)T (Rδ)
−1 HδL . (18)

Hδ is the observation operator, which projects a (global) state vector onto

the local observation domain. Thus, it combines the operation of a global

observation operator with the restriction of the observation vector to the local

observation domain. ρδ denotes the local forgetting factor, which can vary for

different local analysis domains.

The localization of the re-initialization phase is performed analogously to the

analysis step. The local state ensemble is transformed according to

Xa
σ = Xa

σ +
√

N − 1 Lσ(Cδ)
TΩT (19)

where C−1
δ (C−1

δ )T = U−1
δ . Here, the same transformation matrix Ω is used for

31



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

each local analysis domain to ensure consistent transformations throughout

all local domains.

The localization above can be combined with a “covariance localization” [Houtekamer

and Mitchell, 2001]. For this, a Schur (element-wise) product is applied to mul-

tiply the ensemble covariance matrix element by element with a matrix holding

correlations of typically local support. In contrast to the EnKF, the ensemble

covariance matrix or its projection onto the observation space is never ex-

plicitly computed in the SEIK filter. However, the covariance localization can

be performed on the matrix HδL. In the case that the local analysis domain

consists of a single water column and the localization is applied horizontally,

we can rewrite equations (17) and (18) as

aδ =Uδ(D ◦ HδL)T (Rδ)
−1

(

yo
δ − Hδxf

)

, (20)

U−1
δ = ρδG

−1 + (D ◦ HδL)T (Rδ)
−1 D ◦ HδL . (21)

Here ◦ denotes the Schur product and D is the matrix holding the correla-

tions. Possible functions for the correlations are, for example, an exponential

decrease or the use of a polynomial representing a correlation function of

compact support [Gaspari and Cohn, 1999], which reduce the influence of ob-

servations with growing distance from the local analysis domain. Depending

on the form of R−1, this formulation can be equivalent to the down-weighting

of distant observations discussed by Nerger and Gregg [2007] and to the co-

variance localization applied in the EnKF, e.g. by Houtekamer and Mitchell

[2001].
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C Online bias correction

To correct for model bias, a two-stage online bias correction scheme [Dee and

Da Silva, 1998] is applied. Here, a bias vector bk of dimension ñ is estimated

analogously to the state estimation described in section 5. For simplicity, we

discuss only the online bias estimate for the simplified SEIK filter using a static

covariance matrix. We only show the equations for the global filter. Notes on

the localization of the two-stage bias correction scheme are provided after the

description of the scheme.

Denoting x̂k the de-biased analysis estimate of the state is given by

x̂a
k = xa

k − ba
k. (22)

We assume that the bias error can be estimated by the state ensemble Xk

analogously to the error of the state estimate. Specifically, we assume that

some fraction γ, 0 < γ < 1, accounts for the bias error. Accordingly, the

covariance matrix for the online bias estimation is given by

P̃f
k = γPf

k , (23)

while the remaining fraction of the covariance matrix provides the error esti-

mate for the state update:

P̂f
k = (1 − γ)Pf

k (24)

The evolution of the bias is typically much slower than that of the state. This

motivates to assume a persistence model for the forecast of the bias. Thus,
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the forecast for the bias vector is given by

bf
k = ba

k−1. (25)

The analysis of the SEIK filter with online bias correction is conducted as a

two-stage algorithm. First, the bias vector is updated according to

ba
k =xf

k − γLkãk, (26)

ãk = Ũk(H̃kLk)
T R̃−1

k

[

ỹo
k − H̃k

(

xf
k − bf

k

)]

, (27)

Ũ−1
k = ρ̃G−1 + (H̃kLk)

T R̃−1
k H̃kLk. (28)

Here, H̃ is the observation operator that provides the part of the observations,

which are considered for the bias estimation, that would be measured given the

de-biased model state xf
k−bf

k . The corresponding observation error covariance

matrix is R̃k while the corresponding observation vector is ỹo
k. Further, a

forgetting factor ρ̃ distinct from that used for the state estimation can be

applied.

Subsequently, the state estimate is updated by

xa
k =xf

k + (1 − γ)Lkâk, (29)

âk = Ûk(HkLk)
TRk

−1
[

yo
k −Hk

(

xf
k − ba

k

)]

, (30)

Û−1
k =

ρ̂

1 − γ
G−1 + (HkLk)

TR−1
k HkLk. (31)

In equation 29 the biased analysis state estimate is obtained. Together with

the bias obtained from equation 26 the de-biased state can be computed using

equation 22. Following Keppenne et al. [2005], the forecast is performed by

integrating the biased state xa
k.

The localization of the two-stage analysis can be performed analogously to
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the localization of the state estimation discussed in section 5. However, it is

possible to use different influence distances for the observations for the bias

and state updates. In addition, the use of different localizing weightings of the

observations is possible.

D Implementation Aspects

For the experiments performed here, the forecast phase is simplified by keeping

the state error covariance matrix static. For this, a matrix of ensemble per-

turbations (
√

N − 1 V0C
T
0 ΩT

0 in equation 7) is stored and only the ensemble

mean xa
i is integrated without applying a stochastic forcing ηi. Subsequent to

the integration, a forecast ensemble Xf
k is obtained by adding the ensemble

perturbations to the forecast state xf
k .

With regard to the log-normal distribution of chlorophyll, the assimilation al-

gorithm is implemented such that the ensemble X of model states holds the

logarithm of the chlorophyll concentrations. For the model forecast the log-

arithmic concentrations are back-transformed to actual concentrations which

are used in the routines of the numerical model. In addition, the observation

vectors hold logarithmic concentrations. Due to this the observation opera-

tor Hk contains only the selection of grid points holding observations at a

particular analysis time.
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Nerger and Gregg [2007] this work

Assimilation

algorithm

LSEIK LSEIK with online bias correc-

tion

Update at grid

points with ice

neglect data; no update at grid

points with non-zero ice concen-

tration

consider all data; perform update

relative to percentage of open wa-

ter

Model older forcing fields (e.g. dust) new forcing fields (e.g. dust)

Observation

errors

special regions with prescribed

larger errors for concentrations >

1mg m−3

neglecting data with concentra-

tions > 1mg m−3 in special re-

gions

Model error co-

variance matrix

based on monthly deviations from

8-year mean state

based on deviation of state at

each 15th day from 3-month run-

ning mean during 1998–2003

Assimilation

period

1/1998–12/2004 9/1997–12/2004

Table 1

Comparison of the differences in the experimental configurations between Nerger

and Gregg [2007] and the current work.

40



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

List of Figures
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