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Abstract

Chlorophyll data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is assimilated into the three-dimensional global
NASA Ocean Biogeochemical Model (NOBM) for the period 1998–2004 in order to obtain an improved representation of
chlorophyll in the model. The assimilation is performed by the SEIK filter, which is based on the Kalman filter algorithm. The filter
is implemented to univariately correct the concentration of surface total chlorophyll. A localized filter analysis is used and the filter
is simplified by using a static state error covariance matrix. The assimilation provides daily global surface chlorophyll fields and
improves the chlorophyll estimates relative to a model simulation without assimilation. The comparison with independent in situ
data over the seven years also shows a significant improvement of the chlorophyll estimate. The assimilation reduces the RMS log
error of total chlorophyll from 0.43 to 0.32, while the RMS log error is 0.28 for the in situ data considered. That is, the global RMS
log error of chlorophyll estimated by the model is reduced by the assimilation from 53% to 13% above the error of SeaWiFS.
Regionally, the assimilation estimate exhibits smaller errors than SeaWiFS data in several oceanic basins.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Satellite ocean chlorophyll data is the only direct
global-scale source of information on marine ecosys-
tems. Routine observations have been available for a
decade, and have reached a level of maturity that
assimilation of the data into biological and biogeochem-
ical models is now practical. Assimilation systems for
satellite data have been shown to produce impressive
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results in ocean physical applications (e.g., Stammer
et al., 2002; Brusdal et al., 2003; Keppenne et al., 2005)
and can potentially provide similar improvements in
functionality and results for ocean biology. While there
are many biological assimilation efforts utilizing in situ
data (e.g., Spitz et al., 2001; Schlitzer, 2002; Schartau
and Oschlies, 2003), there are relatively few utilizing
satellite ocean chlorophyll data. Variational methods
have been the most common assimilation methodology
for satellite ocean chlorophyll data, spanning the model
range from 0-dimensional (Hemmings et al., 2003, 2004;
Losa et al., 2004) through 1-dimensional (Friedrichs,
2002), to 3-dimensional (Garcia-Gorriz et al., 2003). The
emphasis on these investigations was parameter
S data into a global ocean-biogeochemical model using a local SEIK
09

mailto:lnerger@gmao.gsfc.nasa.gov
http://dx.doi.org/10.1016/j.jmarsys.2006.11.009
http://dx.doi.org/10.1016/j.jmarsys.2006.11.009


2 L. Nerger, W.W. Gregg / Journal of Marine Systems xx (2007) xxx–xxx

ARTICLE IN PRESS
estimation. Here, model parameters are adjusted to
improve the model performance with regard to observa-
tions. While improvements in model parameterizations
have been obtained, the parameter estimates tend to be
specific for the particular model formulation and
configuration. Thus, they may not be suitable for other
models. In addition, the model using the estimated
optimal parameters will only provide a good representa-
tion of the data, if the model formulation is able to
reproduce the observational information (see e.g. Fennel
et al., 2001). However, an unsuccessful parameter
estimation can point to inadequacies in the model
formulation (Spitz et al., 1998).

Other work focuses on state estimation. Here, the
model parameters remain fixed, while the model fields
are constrained by the observations to obtain improved
estimates of the model fields. There are two main
motivations for performing state estimation with
biogeochemical models. First, the representation of
assimilated variables, both (partially) observed and
unobserved, can be improved by combining the best
features of a model and data set. Second, more accurate
derived variables in the model can be obtained, such as
primary production and biogeochemical constituents.
Satellite data from the Coastal Zone Color Scanner
(CZCS) has been assimilated with the aim of state
estimation into a 3-dimensional model of the southeast
US coast by direct insertion (Ishizaka, 1990). CZCS
data has also been used in the North Atlantic with a
nudging method (Armstrong et al., 1995). Using
simulated satellite data, Carmillet et al. (2001) applied
a singular “evolutive” extended Kalman (SEEK) filter
to assimilate simulated observations into a 3-dimen-
sional model in the North Atlantic to study the
possibilities for multivariate data assimilation. Using
very accurate data with a prescribed error of 10%,
Carmillet et al. (2001) were able to constrain phyto-
plankton as well as other fields like nitrate and
ammonium over 70 days experiment length. Using
almost the same ocean-biogeochemical model, Natvik
and Evensen (2003), assimilated real SeaWiFS data
with an Ensemble Kalman filter (EnKF) over the period
April and May 1998. In this study, the EnKF was able to
improve surface phytoplankton and to reduce the
variance of surface nitrate fields. In addition, subsurface
nitrate and zooplankton was affected, but the changes
were difficult to interpret quantitatively.

Algorithms based on the Kalman filter (KF) (Kalman,
1960), like the SEEK filter, the EnKF, or the SEIK filter
used here, have several interesting properties. They
directly provide dynamic error estimates of the state
estimate. The error estimate is propagated throughout the
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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assimilation period by the model dynamics. The
implementation of KF-based algorithms is rather simple,
as e.g. no adjoint model is required. Further, the
algorithms can easily account for imperfect models.
Thus, the model is not required to reproduce the
observational data, but the error estimate of the filter
combines observation errors, and model errors. With
regard to operational data assimilation, KF-based
algorithms share the advantage of being sequential.
Thus observational data can be incorporated when it
becomes available, without the need to rerun the model
over an extended period of model time. However, the
classical linear Kalman filter as well as its first-order
extension to nonlinear models, the Extended Kalman
filter (see Jazwinski, 1970), have a prohibitive cost for
high-dimensional models. For this reason, several
algorithms based on the Kalman filter have been
developed during about the last decade, which are well
suited for high-dimensional numerical models andwhich
are, to some extent, able to handle the nonlinearity of
models of the ocean or atmosphere. KF-based algorithms
are typically applied for state estimation. However,
parameter estimation is also possible with sequential
assimilation algorithms, see e.g. Losa et al. (2001).

In a recent study (Gregg, in press) the first global
long-time assimilation of SeaWiFS ocean chlorophyll
data was discussed. The data was assimilated into a
global 3-dimensional ocean biogeochemical model over
the period of 1997–2003 using a conditional relaxation
method (CRAM). The rather simple assimilation method
substantially improved the estimated surface chlorophyll
of the model and was able to provide daily global surface
chlorophyll fields. Compared to in situ data, the
assimilation resulted in a smaller bias than SeaWiFS
data while the root-mean square (RMS) error was
slightly higher for the assimilation than for the satellite
data. In addition, the estimate of primary production was
improved.

While CRAM was successful in the univariate
assimilation of surface chlorophyll, it cannot be
extended to a multivariate scheme which would allow
to correct other model fields, such as nutrients in con-
junction with the surface chlorophyll. As an initial effort
of the application of an advanced KF-based algorithm
for state and flux estimation with a global 3-dimensional
ocean biogeochemical model, we apply here a simplified
form of the singular “evolutive” interpolated Kalman
(SEIK) filter (see, Nerger et al., 2005a) to assimilate
SeaWiFS ocean chlorophyll data over a period of 7 years
into an updated version of the model used by Gregg (in
press). The simplification consists in keeping the state
error covariance matrix, which estimates the error in the
S data into a global ocean-biogeochemical model using a local SEIK
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model state, constant analogous to the application of the
SEEK filter by Carmillet et al. (2001). This avoids the
requirement of an expensive ensemble integration
necessary in a full dynamic SEIK filter. To focus on
the surface total chlorophyll, the filter is applied
univariately to only update the surface total chlorophyll.
The effectiveness of the assimilation is analyzed by
comparing back to the assimilated SeaWiFS data and by
a comparison with independent in situ chlorophyll data.
In addition, the influence of the assimilation on the
model estimate of primary production and surface
nutrients is assessed.

2. The NASA Ocean Biogeochemical Model

The NASA Ocean Biogeochemical Model (NOBM)
is a fully coupled general circulation/biogeochemical/
radiative model. The general structure of the NOBM is
depicted in Fig. 1. The three major components simulate
the ocean general circulation, radiative transfer pro-
cesses, and biogeochemical processes.

The ocean general circulation is modeled by the
Poseidon model (Schopf and Loughe, 1995). It is a
finite-difference, reduced gravity ocean model. Here, a
global configuration extending from near the South Pole
to 72° N is used which includes all regions with bottom
depth >200 m. The configuration uses a uniform
resolution of 2/3° in latitude and 5/4° in longitude. It
contains 14 vertical layers in quasi-isopycnal coordi-
Fig. 1. General structure of the NOBM showing the interactions among the
shown.
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nates. The model is forced by wind stress, sea surface
temperature, and shortwave radiation.

The radiative model, the Ocean Atmosphere Spectral
Irradiance Model (OASIM, Gregg, 2002), provides
underwater irradiance fields which drive the growth of
the phytoplankton groups. The OASIM is based on the
spectral model by Gregg and Carder (1990), expanded
to the spectral regions 200 nm to 4 μm. It considers
spectral and directional properties of radiative transfer in
the oceans, and explicitly accounts for clouds. The
radiative transfer calculations also interact with the heat
budget. Three irradiance paths are enabled: down-
welling direct and diffuse (scattered) paths, as well as an
upwelling diffuse path. The oceanic radiative properties
are driven by water absorption and scattering, chromo-
phoric dissolved organic matter (CDOM), as well as the
optical properties of the phytoplankton groups. The
spectral nature of the irradiance is included in all oceanic
radiative calculations. The forcing data sets for OASIM
are shown in Fig. 1.

The biogeochemical processes model is described in
detail by Gregg and Casey (in press). The model consists
of ecosystem and carbon components. The ecosystem
component (Fig. 2a) contains 4 phytoplankton groups
and 4 nutrient groups. In addition, a single herbivore
group as well as 3 detrital pools are modeled. The
phytoplankton groups have distinct growth and sinking
rates, nutrient requirements. Also the optical properties,
spectral absorption and scattering as well as light
main components. In addition forcing fields and nominal outputs are

S data into a global ocean-biogeochemical model using a local SEIK
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Fig. 2. Components of the Biogeochemical Processes Model: (a) Ecosystem component showing pathways and interaction between the 4
phytoplankton groups, 4 nutrients, one herbivore group and 3 detrital pools. (b) Carbon component depicting the interactions between dissolved
organic and dissolved inorganic Carbon with phytoplankton, herbivores, and carbon detritus as well as exchange of CO2 with the atmosphere.
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saturation constants, are distinct. The modeled nutrients
are nitrate, regenerated ammonium, silica, and iron.
Storage of organic material, sinking and eventual
remineralization back to usable nutrients are simulated
using the three detrital pools. The carbon component
(Fig. 2b) simulates the interaction of dissolved organic
and inorganic carbon with phytoplankton, herbivores
and detritus and considers the exchange of carbon-
dioxide with the atmosphere. The model uses a variable
carbon:chlorophyll ratio while the carbon:nutrient ratios
are constant. External forcing for the biogeochemical
processes model is required in the form of atmospheric
deposition of iron and sea ice fields as well as partial
pressure of atmospheric CO2.

The model is forced by transient monthly atmo-
spheric fields. Ozone data is obtained from the Total
Ozone Mapping Spectrometer. Soil dust is from Ginoux
et al. (2001). Data about cloud cover and liquid data path
are obtained from the International Satellite Cloud
Climatology project. The atmospheric CO2 is from the
Ocean Carbon-cycle Intercomparison Project (ICMIP,
http://www.ipsl.jussieu.fr/OCMIP, derived from Enting
et al., 1994) with the value for the year 2000 used as the
climatological mean. All remaining forcing data is
obtained from National Center for Environmental
Prediction (NCEP) reanalysis products.

3. Local SEIK filter

The data assimilation is performed using the SEIK
filter (Pham et al., 1998a). The SEIK filter has been
introduced as a variant of the SEEK filter (Pham et al.,
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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1998a). However, it has been found (Nerger et al.,
2005a) that it can be considered as an ensemble-based
Kalman filter which uses a preconditioned ensemble and
a numerically very efficient scheme to incorporate the
observational information during the analysis step. Like
the SEEK filter, SEIK bases on an explicit low-rank
approximation of the covariance matrix which estimates
the error in the state estimate. The state correction
(denoted “analysis”) is computed very efficiently in the
low-dimensional error sub-space which is represented
by the low-rank approximated covariance matrix. In
contrast, the EnKF (Evensen, 1994; Burgers et al., 1998)
bases on a Monte-Carlo approach. For a detailed
comparison of the EnKF, SEEK, and SEIK see Nerger
et al. (2005a). The SEIK filter algorithm demonstrated
advantages over the widely used EnKF and the SEEK
filter (Pham et al., 1998b) in recent studies (Nerger et al.,
2005a, in press) in which sea surface height observa-
tions were assimilated. For example, compared to the
SEEK filter, the ensemble integration applied in both the
EnKF and the SEIK filter showed to be better suited for
nonlinear models. Compared to the EnKF, the SEIK
filter requires much less computation time than the
EnKF, if the dimension of the observation vector is
much larger than the ensemble size. In addition, the
SEIK filter was able to obtain estimates with smaller
errors than the EnKF.

Here, the experiments apply the localized variant of
the SEIK filter (Nerger et al., 2006) which restricts
the analysis update of some horizontal location in the
grid of the numerical model to consider only observa-
tions within some influence radius. The algorithm
S data into a global ocean-biogeochemical model using a local SEIK
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applied here is simplified by keeping the state error
covariance matrix constant. Accordingly, the same error
estimate for the model state is used for each analysis
step. This simplification avoids the computational cost
of integrating a full ensemble of model states during the
assimilation process.

3.1. The (global) SEIK filter

The SEIK filter, as other algorithms based on the
Kalman filter, expresses the estimate of the state of a
physical system, such as the ocean, at some time tk in
terms of the estimated analysis state vector xk

a of
dimension n and the corresponding covariance matrix
Pk
a which represents the error estimate of the state vector.

Being an ensemble-based Kalman filter scheme, the
SEIK filter represents these quantities by an ensemble of
state vectors

Xa
k ¼ fxað1Þk ; N ; xaðNÞ

k g ð1Þ

of N model state realizations. In this case, the state
estimate is given by the ensemble mean

Pxak ¼ 1
N

XN
i¼1

xaðiÞk ; ð2Þ

while the ensemble covariance matrix

P̃
a

k :¼
1

N−1
ðXa

k−
P
Xa

k ÞðXa
k−

P
Xa

k ÞTcPa
k ; ð3Þ

with
P
Xa

k ¼ fPxak ; N ;Pxakg, is an estimate of the covar-
iance matrix Pk

a.
The SEIK algorithm can be subdivided into several

phases and is prescribed by the following equations:
Initialization:
To initialize the filter algorithm, we assume an initial

state estimate x0
a. Further we suppose that the initial

covariance matrix P0
a is estimated by a rank-r matrix

which is given in decomposed form as

Pa
0 :¼ V0U0V

T
0 ð4Þ

where U0 is an r× r matrix while V0 has size n× r.
Based on these initial estimates, a random ensemble

of minimum size N= r+1 is generated whose statistics
represent x0

a and P0
a exactly. For this, we transform the

columns in matrix V0 by a random matrix with special
properties. Let C0 be a square root of the matrix U0, i.e.
U0=C0

TC0. Then P0
a can be written as

Pa
0 ¼ V0C

T
0W

T
0W0C0V

T
0 ; ð5Þ
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filter. Journal of Marine Systems (2007), doi:10.1016/j.jmarsys.2006.11.0
where Ω0 is an N× r random matrix whose columns are
orthonormal and orthogonal to the vector (1,…, 1)T. The
ensemble of state realizations is then given by

Xa
0 ¼

P
Xa

0 þ
ffiffiffiffiffiffiffiffiffi
N−1

p
V0C

T
0W

T
0 ; ð6Þ

where each column of
P
Xa

0 contains the vector Pxa0.
Forecast:
In the “forecast phase” the state ensemble is

integrated by the numerical model to propagate the
state and error estimates toward the next time when
observations are available. Let Mi,i−1 be the nonlinear
dynamic model operator that integrates a model state
from time ti−1 to time ti. Then each ensemble member
{Xa(α), α=1,…,N} is evolved up to time tk by iterating
the model equation

xf ðaÞi ¼ Mi;i−1½xaðaÞi−1 � þ hðaÞ
i : ð7Þ

Here the superscript ‘f ’ denotes the forecast while ‘a’
denotes the analysis. Each integration is subject to
individual Gaussian noise ηi

(α) which allows to simulate
model errors.

For the experiments performed here, we simplify the
forecast phase. For this, a matrix of ensemble perturba-

tions (
ffiffiffiffiffiffiffiffiffi
N−1

p
V0C

T
0W

T
0 in Eq. (6)) are stored and only the

ensemble mean Pxai is integrated without applying the
stochastic forcing ηi. Subsequent to the integration, a
forecast ensemble Xk

f is obtained by adding the
ensemble perturbations to the forecast state Px f

k .
Analysis:
In the analysis phase, the state and error estimates are

updated on the basis of the observations, the ensemble
covariance matrix, and the error covariance matrix of the
observations. The SEIK filter uses a description of the
covariance matrix Pk

f which allows for a very efficient
algorithm. Pk

f can be computed from the state ensemble
Xk
f in analogy to the covariance matrix in Eq. (4)

according to

Pf
k ¼ LkGLT

k ð8Þ
with

Lk :¼ Xf
kT; G :¼ ðN−1Þ−1ðTT−TÞ−1 ð9Þ

Here, T is an N× r matrix with zero column sums, such
as

T ¼ Ir�r

01�r

� �
−
1
N
ð1N�rÞ ð10Þ

where 0 represents the matrix whose elements are equal
to zero. The elements of the matrix 1 are equal to one.
S data into a global ocean-biogeochemical model using a local SEIK
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Matrix T implicitly subtracts the ensemble mean when
computing Pk

f .
The analysis update of the state estimate, which is

given by the mean of the forecast ensemble, can be
expressed as the combination of the columns ofLkwhich
span the error subspace represented by the ensemble:

xak ¼ Px f
k þ Lkak ð11Þ

The vector ak of weights can be computed in the error
subspace as

ak ¼ UkðHkLkÞTR−1
k ðyok−Hk

Px f
k Þ; ð12Þ

U−1
k ¼ qG−1 þ ðHkLkÞTR−1

k HkLk : ð13Þ

Here, Hk is the measurement operator which computes
what observations would be measured given the state
xk. Further, Rk is the observation error covariance
matrix and yk

o denotes the vector of observations. The
forgetting factor ρ, (0<ρ≤1), leads to an inflation of
the estimated variances of the model state. It can
stabilize the filter algorithm and, to some degree,
account for model errors. The analysis covariance
matrix is given by Pk

a:=LkUkLk
T, but does not need to

be computed explicitly.
Re-Initialization:
In the re-initialization phase, the forecast ensemble is

transformed such that it represents the analysis state xk
a

and the corresponding covariance matrix Pk
a. Analo-

gously to the generation of the initial ensemble it is

Xa
k ¼

P
Xa

k þ
ffiffiffiffiffiffiffiffiffi
N−1

p
LkC

T
kW

T
k ; ð14Þ

where a Cholesky decomposition is applied on the
matrix Uk

−1 to obtain Ck
−1(C−1)k

T=Uk
−1. The matrix Ωk

has the same properties as in the initialization.
3.2. Localized analyses and re-initializations in SEIK

Here we shortly describe the local SEIK filter. For a
detailed derivation of the local SEIK filter from the
global SEIK filter see Nerger et al. (2006).

To localize the SEIK filter we restructure the analysis
and re-initialization steps. We perform the operations in
a loop through disjoint local analysis domains of the
model grid, rather than updating the full state vector at
once. For example, a local domain can be a single water
column. This reformulation involves no approximation
to the filter algorithm as long as all globally available
observations are considered for the update of the state
vector in each local domain.
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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For the localization of the analysis step, we neglect
observations which are beyond a prescribed cut-off
distance from a local domain. Since below all quantities
refer to the time index k, we drop this index here for
clarity of notation. Let the subscript σ denote a local
analysis domain. The domain of the corresponding
observations is denoted by the subscript δ. Then, the
equations for the local SEIK analysis can be written
analogously to the global analysis Eqs. (11), (12) and
(13) as

xar ¼ Px f þ Lrad; ð15Þ

ad ¼ UdðHdLÞTR−1
d ðyod−Hd

Px f Þ; ð16Þ

U−1
d ¼ qdG

−1 þ ðHdLÞTR−1
d HdL: ð17Þ

Hδ is the observation operator which projects a (global)
state vector onto the local observation domain. ρδ
denotes the local forgetting factor, which can vary for
different local analysis domains.

The localization of the re-initialization phase can be
performed analogously to the analysis step. The local
state ensemble is transformed according to

Xa
r ¼ P

Xa þ
ffiffiffiffiffiffiffiffiffi
N−1

p
LrðCdÞTWT ð18Þ

where Cδ
−1(Cδ

−1)T=Uδ
−1. Here, it is important that the

same transformation matrix Ω is used for each local
analysis domain to ensure consistent transformations
throughout all local domains. The rows of the ensemble
matrix which correspond to a single analysis domain are
transformed at once using the information from the
matrix Uδ

−1 for the particular domain. This matrix
corresponds to the local error subspace for the local
domain and is determined by both the local state
ensemble and the error covariance matrix of the local
observations (Eq. (17)).

Mathematically, the localization amounts to the
neglect of long-range correlations in the state covariance
matrix during the analysis step, see Nerger et al. (2006).
Viewed globally, the neglect of long-range correlations
increases the rank of the covariance matrix and hence
leads to a larger dimension of the error-subspace in
which the update of the state estimate is computed. This
larger dimension is only considered implicitly during
the independent analysis updates in the local domains,
because the state covariance matrix is never computed
explicitly. The rank of the covariance matrix represented
by the global state ensemble does not increase, since this
rank depends on the ensemble size N and can be at most
N−1. The re-initialization transforms each local state
S data into a global ocean-biogeochemical model using a local SEIK
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Fig. 4. Availability of SeaWiFS chlorophyll data in days during June
2001. No Data is available south of about 58° N due to the polar night.
Noticeable is the region in the North Pacific where only very few data
is available due to clouds as well as the small data availability in the
Arabian Sea and offshore Mauritania.
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ensemble using the same matrix Ω. This consistent re-
initialization results in an ensemble which represents a
covariance matrix with the same rank as the covariance
matrix of the forecast ensemble.

The localization by neglecting observations beyond
the cut-off distance can be combined by a localizing
weighting of the observations. For this, the inverse
variance estimates in the inverse local observation error
covariance matrix Rδ

−1 for each local domain are
reduced by a factor depending on the distance of the
observation from the local analysis domain. A possibi-
lity is an exponential decrease, which reduces the
influence of observations with growing distance from
the local analysis domain. This weighting method is
similar, and under some circumstances equivalent, to the
method of “covariance localization” which involves the
element-wise product of the state error covariance
matrix by a correlation matrix holding correlations of
compact support (Houtekamer and Mitchell, 2001).

4. SeaWiFS ocean chlorophyll data

The experiments assimilate global chlorophyll data
from SeaWiFS. Daily fields, of data set version 5.1, at
9 km resolution have been obtained from the NASA
Ocean Color Web site. The data fields have been
remapped to the model grid for the assimilation.

The assimilation is performed daily at model mid-
night to reduce sampling errors. Clouds, sun glint, inter-
orbit gaps, and high-aerosol concentrations obscure
remote observations, producing prominent and some-
times persistent gaps in satellite data, especially at daily
Fig. 3. SeaWiFS chlorophyll data for June 1, 2001. Grey indicates land
and coast while black indicates missing data. Visible are the inter-orbit
gaps as well as gaps resulting from sun glint, clouds and the austral
polar night.

Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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time scales. Thus, the underlying complete fields
provided by the model, adjusted by the assimilation of
observations where and when available on a daily time
scale, alleviates the sampling problems incurred using
remote-sensing data alone. A typical daily data set is
shown in Fig. 3. The inter-orbit gaps as well as the gaps
resulting from sun glint and the austral polar night are
clearly visible. In addition, clouds obscure several
regions like wide areas of the North Pacific. Typically,
there are between 13,000 to 18,000 observed grid points
daily. Due to clouds, the sampling frequency of the data
is irregular, as is visible from Fig. 4 which shows the
amount of data per grid point available during June
2001. Caused by longer persistent clouds, the amount of
data is strongly reduced in several regions. This is most
noticeable in the Arabian Sea, where for most grid
points no data was available at all during June 2001. In
addition, a wide region of the North Pacific north of
40° N was obscured by clouds during almost all of this
month. Due to this irregular temporal sampling, there
will be regions which are not influenced by the data
assimilation for significantly longer periods than the
daily assimilation interval. This presents a challenge to
the assimilation process, with larger errors of the model
state being estimated.

For the assimilation all daily SeaWiFS chlorophyll
data with concentrations larger than twice the monthly
mean are considered as outliers and excluded. In
addition, data are excluded which occur within a
model grid point containing ice. These exclusions are
motivated by the fact the remote sensing errors are
S data into a global ocean-biogeochemical model using a local SEIK
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typically expressed as overestimates as the most
dominant error sources, absorbing aerosols, CDOM,
sub-pixel scale clouds and ice most often lead to
overestimates of chlorophyll. These overestimates can
have a very deleterious effect on the quality and stability
of the assimilation process.

The analysis equations of the Kalman filter assume a
normal distribution of the state vector. The distribution
of chlorophyll and errors in chlorophyll are assumed to
be log-normal (Campbell, 1995). Accordingly, the
assimilation is performed on the logarithm of the
observed and modeled chlorophyll concentrations.

The observation errors are assumed to be indepen-
dent. Thus the observation error covariance matrix Rk is
diagonal. Frequently a global error estimate of 35% is
used for SeaWiFS chlorophyll data (see e.g., Natvik and
Evensen, 2003), because this accuracy was a major
objective of the SeaWiFS project (Hooker et al., 1992).
However, the comparison of SeaWiFS chlorophyll data
with independent in situ data shows significant varia-
tions around this estimate (Gregg and Casey, 2004)
which ranged between 13% and 56% with a global mean
error of 31%. Motivated by this study, the experiments
here use regionally varying errors for the observations,
similar to the weighting approach applied by Gregg (in
press). For June 1, 2001 the errors are shown in Fig. 5.
These error estimates are not identical with those
reported by Gregg and Casey (2004), but are chosen
to minimize the estimation errors in the assimilation.
The error in the North and Equatorial Indian Oceans is
chosen to be larger motivated by the prevalence of light-
absorbing dust (Wang et al., 2005). This problem also
Fig. 5. Observation errors assumed for the assimilation of chlorophyll
data on June 1, 2001. The regions A to C follow special conditions
based on the value of the satellite data. Here a larger error is assumed
for particularly large concentrations.
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occurs in the tropical Atlantic. Here, a special condition
is assumed for the Mauritanian offshore region (region
B in Fig. 5) where the error estimate is increased for
larger satellite chlorophyll concentrations. Namely, the
error is set to 0.8 for grid points with C(sat) between
1 mg m−3 and 2 mg m−3, and to 5.0 for grid points with
C(sat) >2 mg m− 3. This approach has also been
followed for the Amazon and Congo river outflow
regions (regions A and C in Fig. 5, respectively). These
regions are dominated by CDOM which produce
erroneous chlorophyll values in the satellite data. Here
an error of 0.8 is set for grid points with C(sat) between
1 mg m−3 and 2 mg m−3 and an error of 1.2 is specified
when C(sat)>2 mg m−3. Using these special conditions
also avoids the occurrence of negative concentrations,
e.g. in nutrients, during the model integration which
could occur as a reaction of the model dynamics on too
large changes in the surface chlorophyll.

5. Data assimilation experiments

The SeaWiFS ocean chlorophyll data is assimilated
daily into the NOBM over the period of seven years
from 1998 to 2004. We will first compare the estimated
total chlorophyll fields from the assimilation with the
SeaWiFS data. Subsequently, we discuss the influence
of the assimilation on primary production and on the
nitrate fields which are not directly affected by the
assimilation. Finally, we compare the assimilation
results to independent in situ data.

5.1. Experimental setup

In the experiments global daily chlorophyll observa-
tions from SeaWiFS are assimilated into the NOBM at
model midnight. Only the 4 phytoplankton groups in the
surface layer are updated by the filter algorithm. Since
only total chlorophyll is observed, the sum of the
chlorophyll concentrations of the four phytoplankton
groups is used as total chlorophyll of the model state.
After adjusting the total chlorophyll concentration by
the filter algorithm, the phytoplankton groups are
updated under the constraint that their relative abun-
dances remain unchanged.

The data assimilation process is initialized by a state
estimate for January 1998 obtained from a spin-up run
over 20 years with monthly climatological forcing. The
initial state error covariance matrix P0

a for the logarithm
of the total chlorophyll concentration is estimated from a
free model run over 8 years 1997 to 2004 with monthly
forcing data. One time slice per month is retained
resulting in 96 state vectors. The decomposition
S data into a global ocean-biogeochemical model using a local SEIK
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according to Eq. (4) is then obtained by the singular
value decomposition of the perturbation matrix which
holds in its columns the deviations of each single state
vector from the 7-year mean state. This procedure
directly yields the eigenvector matrix V0 and the square-
roots of the eigenvalues which build the diagonal of the
matrix C0 in Eq. (5). For the data assimilation
experiment the leading 10 eigenvectors and eigenvalues
are used to generate the state ensemble. This initializa-
tion of the covariance matrix is similar to that used by
Carmillet et al. (2001) and other assimilation studies
which applied the SEEK or SEIK filters.

The simplified variant of the local SEIK filter is
implemented within the parallel data assimilation
framework PDAF (Nerger et al., 2005b) which provides
fully-implemented filter algorithms which can be
connected to existing models to generate a data
assimilation system. In the experiments, only the
ensemble mean state is propagated by the model without
Fig. 6. Total surface chlorophyll for June 15, 2001 from the free-run model (
White indicates sea ice. The assimilation significantly improves the chloroph
SeaWiFS data.
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applying any stochastic forcing to the integration. The
forgetting factor is set to one. For the localization, a
small cut-off distance of 5 grid points in zonal and
meridional directions is used to define rectangular local
observation domains. The localizing weighting of the
observation is performed by an exponential decrease
with a length scale of 1 grid point to reduce the variance
estimate by a factor of 1/e.

5.2. Estimated total chlorophyll concentrations

Daily snapshots for June 15, 2001 of the total
surface chlorophyll field from the free-run model and
the assimilation are shown in Fig. 6. In addition, the
SeaWiFS chlorophyll field for this day is shown. The
free-run model shows a broad agreement with the
satellite data. The agreement is significantly improved
by the assimilation. In particular, the chlorophyll
concentration is reduced in the Equatorial and South
upper left), the assimilation (upper right), and SeaWiFS (lower panel).
yll estimate of the free-run model which shows broad agreement with

S data into a global ocean-biogeochemical model using a local SEIK
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Pacific oceans. The concentrations of the blooms in the
North Atlantic and North Pacific are increased, while
the spatial extent of the bloom region in the North
Pacific is reduced. These changes are in agreement with
the SeaWiFS data. In addition, the assimilation
provides a complete daily coverage of total chlorophyll
which is obtained by a combination of extrapolating the
satellite data within the local analysis domains into the
data gaps and by propagating previous information by
the model dynamics.

Fig. 7 shows the monthly mean of daily differences
between the logarithms of the chlorophyll fields from
the assimilation and SeaWiFS data during June 2001.
The difference between the assimilation estimate and the
satellite data is generally small (below 0.05). There are
regions with larger deviations which correspond to the
regions in which an increased error of the SeaWiFS data
was assumed. These regions are the North and
Equatorial Indian Oceans, as well as near the Congo
mouth, offshore Mauritania and north of mouth of the
Amazon.

Noticeable differences are also visible in the North
Pacific and the North Atlantic Oceans. These differ-
ences with values up to about ±0.2 lie in bloom regions
with high chlorophyll concentrations. These misfits
between the assimilation and the satellite data have
several reasons. For the North Pacific near the Bering
strait, there is only a very limited amount of satellite data
available during June 2001 as is visible in Fig. 4. Over a
wide region, data is available on less than 4 days during
this month. Accordingly, the model is less constrained
by the data which results in larger misfits between the
assimilation estimate and the SeaWiFS data. Over the
North Atlantic, the availability of SeaWiFS data is
Fig. 7. Monthly mean of daily differences between the logarithms of
chlorophyll concentration from the assimilation and SeaWiFS data.
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generally higher and the model is more constrained by
the data. However, in this region we assumed an error of
the observations of 0.33 north of 50° N and 0.2
otherwise. Thus, the mean differences visible in the
North Atlantic are smaller than the assumed errors in the
observations.

Near the coast of California a band is visible in which
the assimilation overestimates the total chlorophyll
concentration from SeaWiFS. This deviation is due to
the choice of the state error covariance matrix described
in Section 5.1. The logarithmic variance estimate of this
matrix exhibits a small variance between 0.01 and 0.05
near the coast of California. Accordingly, the assimila-
tion method considers the model to be very accurate in
this region. This leads to a smaller influence of the
satellite data here which results in a larger misfit
between assimilation estimate and satellite data.

5.3. Primary production and nutrients

The univariate assimilation leads only to a direct
update of the concentrations of phytoplankton groups at
the surface. However, variables that are directly related
to chlorophyll, such as primary production (PP), export,
carbon:chlorophyll ratios, growth rates, and irradiance
in the water column are affected as well in a positive
manner by the univariate assimilation. Other state
variables and processes are not directly affected, but
will react on the changed chlorophyll fields. To examine
the effects of the univariate assimilation we focus here
on the primary production and the nutrients at the
surface exemplified by nitrate.

PP is a flux quantity which is computed in the model
as the depth-integrated growth rate multiplied by the
carbon:chlorophyll ratio. Here, we focus on the annual
total PP. We compare the PP estimated by the model
with PP estimated directly from satellite data. A
common algorithm to compute PP from satellite data
is the Vertically Generalized Production Model (VGPM,
Behrenfeld and Falkowski, 1997). Next to chlorophyll,
sea surface temperature (SST) and photosynthetically
available radiation (PAR) are required as inputs by the
VGPM. For the comparison, SeaWiFS chlorophyll is
used. In addition, SST is used from the same source as
used for model forcing. The atmospheric component of
OASIM in the wavelength region 350–700 nm provides
PAR. Fig. 8 shows annual PP estimated by the free-run
model, the assimilation, and the VGPM for the years
1998 to 2004. The estimate from the free-run model is
on average 11.2% higher that the estimate from VGPM.
This deviation is larger than that reported by Gregg and
Casey (in press) because of their use of climatological
S data into a global ocean-biogeochemical model using a local SEIK
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Generalized Production Model (VGPM, . . . .).
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forcing while transient monthly forcing is used here.
The assimilation succeeds in providing an estimate of
PP which is consistent with that from the VGPM.
However, the assimilation estimate still shows the same
variability signature as the free-run model. On average,
the PP estimate from the assimilation is 0.5% lower than
the VGPM estimate.

The nutrient concentrations in the model are not
directly modified by the univariate assimilation, but they
react on the changed surface chlorophyll concentrations
during the model integration. Thus, no systematic
improvement of the nutrients can be expected and the
reaction of the nutrients can lead to regional improve-
Fig. 9. Surface nitrate for June 15, 2001 from the free-run model (left) and the
the assimilation with increased concentrations in several regions.
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ment or deterioration of the fields. For the stability of the
assimilation process, it is important that possible
negative influences on the nutrients do not destroy the
stability of the model integration, e.g. by negative
nutrient concentrations as discussed in Section 4. The
nitrate field at the surface is shown in Fig. 9 for the free-
run model and the assimilation for June 15, 2001. The
assimilation resulted only in small changes in the nitrate
concentrations compared to the free-run model. Most
noticeable, the nitrate concentration is increased in the
South Pacific between 35° S and 20° S. Overall, the
assimilation leads to a small degradation of the nitrate
field compared, e.g., to climatology. The effects of the
assimilation on the other nutrients are similar and thus
not shown here.

5.4. Comparison with independent data

The comparison of the assimilation estimate with the
assimilated SeaWiFS data shows that the assimilation
method works as expected. However, a real test of the
efficiency of the assimilation relies in the comparison to
independent data. This will be performed here by
comparing the assimilation estimate with independent in
situ data of total surface chlorophyll concentrations. The
in situ chlorophyll data has been obtained from the
SeaWiFS Bio-Optical archive and Storage Systems
(SeaBASS, Werdell and Bailey, 2002) and the NOAA/
National Oceanographic Data Center (NODC)/Ocean
Climate Laboratory (OCL) archives (Conkright et al.,
2002) which provides chlorophyll data from fluori-
metric measurements. For the comparison, daily in situ
data was mapped to the model grid by computing the
average of measurements within each single grid cell.
assimilation (right). White indicates sea ice. The nitrate field reacts to

S data into a global ocean-biogeochemical model using a local SEIK
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In the following we discuss RMS log errors and bias
of log quantities for the comparison with in situ data
globally and separated over the 12 ocean basins. The
basins are defined as follows: The Antarctic basin is
considered to be south of 40° S. The southern basins lie
between the Antarctic basin and the equatorial basins
which extend from 10° S to 10° N. The North Indian as
well as the North Central Pacific and Atlantic basins are
located north of 10° N. The latter two basins have a
northern boundary at 40° N. The North Pacific and
North Atlantic basins are located north of this latitude.
We show RMS and bias of the logarithmic value
because of the log-normal distribution of the chlorophyll
concentrations. Due to this, the errors show a normal
distribution on log quantities and the distribution can be
quantified consistently by a state estimate and an
additive error which is symmetric with respect to the
state estimate. However, to visualize the actual devia-
tions from the in situ data, Fig. 10 shows the actual error
of the assimilation estimate with respect to in situ data in
the Pacific north of 30° S averaged over the years 1998–
2004. Note, that the temporal averaging of errors of
actual values which are log-normally distributed can
lead to misleading results, if the values vary strongly.
However, the majority of the grid points is only
observed once. In this case the actual difference is
shown. The Equatorial Pacific region exhibits a
systematic large-scale sampling which follows the
Tropical Ocean-Global Atmosphere program/Tropical
Atmosphere Ocean (TOGA/TAO) array. Here up to 10
measurements at the same model grid point are available
over the 7-year period of the comparison. The error of
the assimilation in this region is very small with some
overestimation of the concentrations in the eastern part
Fig. 10. Mean errors over seven years between the assimilation and in
situ data.
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and underestimation in the western part. In the other
basins the large-scale sampling is quite irregular and
only a single observation is available for most locations
during the comparison period. A large amount of data is
available in the North Central Pacific. However, the data
is dominated by data from the CalCOFI (California
Cooperative Oceanic Fisheries Investigations) project
near the coast of California which accounts for about
69% of the data in the North Central Pacific. Significant
mean errors are visible in the region of CalCOFI. Near
the coast, the assimilation underestimates the in situ data
up to about 3 mg/m3. Distant from the coast the
assimilation overestimates the in situ data by up to
0.3 mg/m3. The reason for these larger errors in the
assimilation estimate are the small estimated variances
in this region as has been discussed in Section 5.2. In the
remaining North Central Pacific, the errors are rather
small and both overestimates and underestimates occur.
In the North Pacific the in situ data is mostly
underestimated by the assimilation with largest errors
near the coast. This effect results from the fact that only
regions with bottom depth >200 m are included in the
model. In the South Pacific, in situ data is under-
estimated in the eastern part of Melanesia (between
10° S–30° S and 160° E–170° W). The reason for this is
discussed in conjunction with the RMS log errors below.

Fig. 11 shows the RMS log errors and the bias of the
log quantities for the comparison with in situ data
globally and separated over the 12 ocean basins. Shown
are the errors for the chlorophyll estimate from the
assimilation, the free-run model, and SeaWiFS chlor-
ophyll. The number of comparison points is listed for
each basin for the model-in situ data and satellite-in situ
data comparisons. For the comparison of the model
fields – from the free-run and the assimilation – with
the in situ data more than twice the number of
comparison points were available than for the compar-
ison between satellite and in situ data. This is due to the
gaps in the daily satellite data in contrast to the
complete coverage of the model output. The availability
of in situ data varies strongly between different basins.
The basins with the largest amount of data are the
Equatorial Pacific and the North Central Pacific basins.
However, only the Equatorial Pacific shows a systema-
tic large-scale sampling.

Globally, the improvement of the surface chlorophyll
field by assimilation of SeaWiFS data is well visible.
The RMS log error is reduced from 0.43 for the
unconstrained model to 0.32 with assimilation. How-
ever, the RMS log error of SeaWiFS data is smaller at
0.28. Thus, the assimilation reduces the global RMS log
error from 53% above the error of SeaWiFS to 13%.
S data into a global ocean-biogeochemical model using a local SEIK
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Fig. 11. Upper panel: RMS log error between model or SeaWiFS data and in situ data separated over the 12 major ocean basins and globally. Lower
panel: bias of the log quantities for the comparison with in situ data. Shown are values for the free-run model (blue), the assimilation estimate (green),
and SeaWiFS data (red). At the bottom the number of comparison points for the model and SeaWiFS data are listed.
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When we consider only in situ data points collocated
with the satellite data, the free-run model error is about
51% and the assimilation error about 8% larger than the
error of SeaWiFS data. The larger assimilation error for
the comparison involving all in situ data points shows
that the information transfer into data gaps is not free of
errors.

Regionally, the assimilation estimate shows smaller
RMS log errors than SeaWiFS data in several basins. In
particular the Atlantic basins, except for the North
Atlantic (north of 40° N), are better represented by the
assimilation estimate than by the SeaWiFS data. In
addition, the Equatorial Indian Ocean and the South
Pacific show lower RMS log errors for the assimilation
than for SeaWiFS data. The errors are generally smaller
in the equatorial regions than for the northern basins for
both the model and SeaWiFS. An exception for this is
the North Indian Ocean. The very small error for the
SeaWiFS data in this basin is due to sampling error
caused by the very small amount of in situ data. As
described in Section 4, it is known that light-absorbing
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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dust in the North Indian Ocean can result in over-
estimates of the chlorophyll concentration by the
satellite (Wang et al., 2005). Apparently, in situ data
was only available at times or locations when and where
this problem did not exist.

Over the whole North Central Pacific the assimilation
estimate has an error which is about 20% larger than the
error of SeaWiFS. As noted before, the data in this basin
is dominated by the CalCOFI project. If we separate the
basin into the region containing the data from CalCOFI
and the remaining North Central Pacific, we obtain
errors which are about 23.4% and 7.9% larger than the
SeaWiFS error, respectively. Thus, while the assimila-
tion performs quite well in most part of the North
Central Pacific, its performance is inferior in the small
CalCOFI region. This is also reflected by the actual
mean errors shown in Fig. 10.

The South Pacific exhibits the largest errors of all
basins, both for the SeaWiFS data and the free-run and
assimilation models. These errors are mainly caused by
a large bias as is evident from the lower panel of Fig. 11.
S data into a global ocean-biogeochemical model using a local SEIK
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The chlorophyll concentrations in the eastern part of
Melanesia are strongly underestimated by both the
model and SeaWiFS. Just to the north of this region,
Messié et al. (2006) found very high chlorophyll values
near the Kiribati Islands (170° E, 0° N). This also
occurred at the same time as the observations in our data
set, May 1998, corresponding to the switch from El
Niño to La Niña. Messié et al. (2006) suggested the
blooms were caused by the topographic effects of the
islands on the circulation patterns, and thus the nutrient
fields, associated with the shift in the El Niño Southern
Oscillation. These dynamics are similar to the eastern
Melanesia observations, at the same time. However, our
model resolution was unable to capture the dynamics.
The re-gridded SeaWiFS data to the model grid shows
some elevated chlorophyll concentrations up to about
0.4 mg/m3 at single grid points next to islands.
However, these high-value points were too sparse to
Fig. 12. Histograms of the logarithmic differ
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have a significant effect in the assimilation and were not
collocating with data in the used in situ data set. If the in
situ data in this region is removed from the comparison,
9 collocation points for the model and 2 for the SeaWiFS
data remain. In this case the log bias is reduced to −0.21
for SeaWiFS, −0.13 for the assimilation, and −0.05 for
the free-run model. The RMS log error is reduced to
0.51 for the free-run model, 0.21 for SeaWiFS, and 0.16
for the assimilation. While this comparison only
included very limited collocation points, it indicates
that the assimilation strongly improves the model
estimate also in the South Pacific.

The global log bias is very small for the free model
(−0.030) and the assimilation (−0.032), and even
smaller for SeaWiFS data (−0.012). In most basins,
the assimilation effectively reduces the bias of the free
model. A noticeable exception from this is the Antarctic
Ocean where the bias is amplified from about −0.12 to
ences between model and in situ data.

S data into a global ocean-biogeochemical model using a local SEIK
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−0.25. For the comparison with in situ data, this region
is rather problematic. This is due to the fact that the sea
ice coverages considered in the model and by SeaWiFS
can be distinct from the real coverage which limits the in
situ measurements. Accordingly, in situ measurements
are available also at grid points at which the model
assumes a non-vanishing ice concentration or at
excluded SeaWiFS data points. The RMS log error
and log bias shown in Fig. 11 in the Antarctic Ocean is
based on neglecting the presence of sea ice. If we
consider only grid points at which the sea ice
concentration in the model is zero, we obtain for the
free-run model an RMS log error of 0.44 with a log bias
of 0.02. For the assimilation the RMS log error is 0.38
with a log bias of −0.16. The SeaWiFS data shows an
RMS log error of 0.4 with a log bias of −0.23 taking into
consideration all collocation points of satellite and in
situ data. Thus, the assimilation reduces the error of the
free model to a level slightly below the error of
SeaWiFS at points without sea ice. In addition, the
bias of the assimilation estimate lies in between the
biases of the free model and the satellite data.

To obtain a better insight in the distribution of the
errors, Fig. 12 shows histograms of the frequency
distribution of log errors. The histograms show a nearly
normal distribution of the log errors. This supports our
assumption of a log-normal distribution of chlorophyll
errors. However, for the free-run model the distribution
is skewed with a larger extent of underestimated than
overestimated chlorophyll concentrations. In addition,
next to the maximum at zero, a second relative
maximum is visible for values around 0.3. The
assimilation strongly reduces the spread such that it is
only slightly higher than the spread for the SeaWiFS
data. Some skewness in the distribution remains. The
second maximum at positive values for the free run and
maximum the assimilation at positive values is mainly
caused by the errors in the North Central Pacific. Here,
the error distribution exhibits the maximum at positive
values while the skewness of the distribution toward
negative values leads to an overall negligible bias as is
visible in Fig. 11.

6. Discussion

The assimilation of daily SeaWiFS chlorophyll data
using the local SEIK filter in the simplified univariate
form applied here, resulted in a significant improvement
of the surface chlorophyll fields estimated by the
NOBM. The assimilation provides daily full global
chlorophyll fields. The comparison with in situ data has
shown that these fields have similar errors as the
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
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SeaWiFS data. However, globally the fields estimated
by the assimilation have a log error which is 13% higher
than the error of the SeaWiFS data.

The regional comparison showed that there are
regions in which the assimilation provides an estimate
of smaller error than the satellite data and those in which
the assimilation estimate is inferior. In particular these
are the North Central Pacific, but also the Antarctic
basin and the North Atlantic. In the North Central
Pacific, the dominating data from the CalCOFI project
results in a larger error. The small estimated variances in
this region point to limitations of the use of a static
covariance matrix and the dependence of the assimila-
tion result on the particular choice of the covariance
matrix. In the experiments, the covariance matrix has
been computed from the monthly variability of model
surface chlorophyll with respect to the 7-year mean of
the model. This choice has certain limitations. The
temporal coverage of the covariance matrix results in
small variances for areas with small annual variability
while large variances are obtained, e.g. for the areas in
high latitudes which show strong spring blooms.
Further, the initialization of the covariance matrix
assumes that the model is perfect. This results in a
general underestimation of error estimates. These
particularities of the covariance matrix are addressed
in the assimilation system by adjusting the error
estimates of the observations to values which minimize
the estimation error over the 7-year period, as has been
discussed in Section 4. There are obvious variations of
the covariance matrix. The covariance matrix could be
computed from state vectors with a higher temporal
resolution. In addition, a running mean over weeks to
months could be used instead of a long-time mean.
Finally, the state vectors could be generated from
ensemble runs which consider the possible model errors.
These runs could include variations the model para-
meters or a stochastic component, for example in the
atmospheric forcing. While these variations likely lead
to more realistic variance estimates of the model, it is
unknown whether they would lead to smaller estimation
errors in the assimilation process.

The decision to use a static covariance matrix can
also be expected to have a significant influence on a data
assimilation application. A static covariance matrix
neglects dynamical changes in the variances and of
correlations between the model variables caused by the
evolution of the pelagic system. An example for this are
correlations between the chlorophyll at the surface and
in lower model layers. The vertical distributions of
ocean chlorophyll are typically either decreasing with
depth from the surface, or increasing to a maximum near
S data into a global ocean-biogeochemical model using a local SEIK
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the bottom of the mixed layer. These two distributions
can change regionally and seasonally. Accordingly, the
vertical correlations are expected to change seasonally.
To estimate the changing correlations, the dynamic
propagation of the covariance matrix is required. In the
case of the univariate assimilation performed here, these
issues have only a limited influence, as the assimilation
is governed by the estimated variances and spatial
covariances within each analysis domain.

The experiments only updated the surface chloro-
phyll field. We note, that it is desirable to also update the
deeper model layers, at least in the euphotic layer, to
preserve the consistency of the chlorophyll profiles.
However, as was outlined above, this is hardly possible
when a static covariance matrix is used, because the
multi-layer updates involve the problem of estimating
dynamically changing correlations between chlorophyll
at the surface and in deeper layers.

While the assimilation was only performed univari-
ately, variables that are directly related to chlorophyll
are affected in a positive manner by the univariate
assimilation. Other state variables and processes are
only indirectly affected. They will react on the changed
chlorophyll concentrations during the model integration
and will tend to push the model results in the same
direction as the free-run model. In the assimilation, the
frequent assimilation updates lead to a balance between
improvements by the assimilation and the dynamical
tendency toward the free-run model result. To improve
the estimation, other state variables could be updated
using a multivariate assimilation which uses estimated
covariances between the surface chlorophyll and other
variables. The ability of a multivariate assimilation will
depend on the possibility to obtain meaningful covar-
iances between the different model fields. The results by
Carmillet et al. (2001) showed that this is possible, at
least for synthetic data which is fully consistent with the
model formulation.

For a comparison of our assimilation results with
previous studies only that by Gregg (in press) allows for
a meaningful comparison. Gregg (in press) applied the
CRAM method to a previous version of the NOBM.
This method provides slightly better results in the
comparison to in situ data. This is mainly due to an
inferior performance of the CRAM method in the
CalCOFI region. Natvik and Evensen (2003) assimi-
lated SeaWiFS chlorophyll data into a 3-dimensional
model in the North Atlantic over a period of two months
using a multivariate implementation of the EnKF. Their
method was able to reduce the difference between the
free-run model and the satellite data at the times of the
analysis update of the filter. However, the short period of
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
filter. Journal of Marine Systems (2007), doi:10.1016/j.jmarsys.2006.11.0
their experiment does not allow for a comparison with
our results.

7. Conclusion

A local SEIK filter has been applied to assimilate
real SeaWiFS ocean chlorophyll data univariately into
the surface layer of the NASA Ocean Biogeochemical
Model. The filter has been simplified by using a
constant error estimate for the state, thus avoiding the
need of a costly ensemble integration. The assimilation
is performed on the logarithm of the total chlorophyll
field because of the log-normal distribution of
chlorophyll. While the satellite provides only a
measurement of total chlorophyll, the model simulates
four phytoplankton groups. Because direct information
about the relative abundances of the phytoplankton
groups is not available from the satellite data, the
assimilation was performed under the constraint that
the relative abundances of the phytoplankton groups
remain unchanged during each assimilation update of
the model state.

The assimilation of SeaWiFS ocean chlorophyll data
into the NASA Ocean Biogeochemical Model over the
7-year period from 1998 to 2004 resulted in a significant
improvement of the surface chlorophyll estimate com-
pared to the free-run model. Realistic complete daily
chlorophyll fields were provided by the assimilation.

Compared to in situ data over the assimilation period,
the global logarithmic error was 0.32 for the assimila-
tion with a bias of −0.032. The free-run model error was
larger with 0.43 while the bias was almost the same with
−0.030. The SeaWiFS data showed slightly smaller
error than the assimilation with 0.28 and a bias of
−0.012. However, regionally the assimilation provided
in several basins estimates of total chlorophyll with a
smaller deviation from in situ data than SeaWiFS data
did.

This study is the initial step of work which is
intended to lead to a full-featured implementation of a
SEIK filter with dynamic error evolution. Here only the
total surface chlorophyll concentration was directly
modified by the assimilation. The ultimate goal of a
comprehensive data assimilation system would involve
multivariate assimilation, in which also variables like
nutrients are updated during the analysis step of the filter
algorithm. Also, the inclusion of lower model layers in
the analysis update is required. In addition, the dynamic
error estimation in terms of an ensemble integration is
expected to improve the assimilation. However, this
technique will increase the computing requirements
significantly. In the experiments with the simplified
S data into a global ocean-biogeochemical model using a local SEIK
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SEIK filter the error estimates of the observations are
chosen for good performance of the filter. However,
with more realistic estimates of the estimation error in
the model, the error estimates of the observations need
to be revised for better realism.

Acknowledgements

We would like to acknowledge Orbimage Corp. for
collecting SeaWiFS data and the NASA Ocean Biology
Processing Group for processing and distribution. We
would thank NODC for acquisition and distribution of
in situ chlorophyll data. Nancy Casey, SSAI, acquired
and provided model forcing and validation data sets
from a wide variety of sources and formats. We are also
thankful for the helpful comments of two anonymous
reviewers. This work was supported by NASA RTOP
(grant) 621-30-39.
References

Armstrong, R.A., Sarmiento, J.L., Slater, R.D., 1995. Monitoring
ocean productivity by assimilating satellite chlorophyll into
ecosystem models. In: Powell, Steele (Eds.), Ecological Time
Series. Chapman and Hall, London, pp. 371–390.

Behrenfeld, M.J., Falkowski, P.G., 1997. Photosynthetic rates derived
from satellite-based chlorophyll concentration. Limnol. Oceanogr.
42, 1–20.

Brusdal, K., Brankart, J.M., Halberstadt, G., Evensen, G., Brasseur, P.,
van Leeuwen, P.J., Dombrowsky, E., Verron, J., 2003. A
demonstration of ensemble based assimilation methods with a
layered OGCM from the perspective of operational ocean
forecasting systems. J. Mar. Syst. 40–41, 253–289.

Burgers, G., van Leeuwen, P.J., Evensen, G., 1998. On the analysis
scheme in the Ensemble Kalman Filter. Mon. Weather Rev. 126,
1719–1724.

Campbell, J.W., 1995. The lognormal distribution as a model for bio-
optical variability in the sea. J. Geophys. Res. 100 (C7),
13237–13254.

Carmillet, V., Brankart, J.-M., Brasseur, P., Drange, H., Evensen, G.,
Verron, J., 2001. A singular evolutive extended Kalman filter to
assimilate ocean color data in a coupled physical–biochemical
model of the North Atlantic ocean. Ocean Model. 3, 167–192.

Conkright, M.E., Antonov, J.I., Baranova, O., Boyer, T.P., Garcia, H.
E., Gelfeld, R., Johnson, D., O'Brien, T.D., Smolyar, I., Stephens,
C., 2002. World Ocean Database 2001, Introduction. NOAA Atlas
NESDIS 42, vol. 1. US Govt. Printing Office, Washington, DC.

Enting, I.G., Wigley, T.M.L., Heimann, M., 1994. Future Emissions
and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/
Land Analyses. Technical Paper, vol. 31. CSIROAust. Div. Atmos.
Res.

Evensen, G., 1994. Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast
error statistics. J. Geophys. Res. 990 (C5), 10143–10162.

Fennel, K., Losch, M., Schröter, J., Wenzel, M., 2001. Testing a marine
ecosystem model: sensitivity analysis and parameter optimization.
J. Mar. Syst. 28, 45–63.
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
filter. Journal of Marine Systems (2007), doi:10.1016/j.jmarsys.2006.11.0
Friedrichs, M.A.M., 2002. Assimilation of JGOFS EqPac and
SeaWiFS data into a marine ecosystem model of the central
equatorial Pacific Ocean. Deep-Sea Res., Part II 49, 289–320.

Garcia-Gorriz, E., Hoepffner, N., Ouberdous, M., 2003. Assimilation
of SeaWiFS data in a coupled physical–biological model of the
Adriatic Sea. J. Mar. Syst. 40–41, 233–252.

Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik,
O., Lin, S.-J., 2001. Sources and distributions of dust aerosols
simulated with the GOCART model. J. Geophys. Res. 106,
20255–20273.

Gregg, W.W., 2002. A Coupled Ocean–Atmosphere Radiative Model
for Global Ocean Biogeochemical Models. Technical Report 2002-
104606, vol. 22. NASA.

Gregg, W.W., in press. Assimilation of SeaWiFS ocean chlorophyll
data into a three-dimensional global ocean model. J. Mar. Syst.

Gregg, W.W., Carder, K.L., 1990. A simple spectral solar irradiance
model for cloudless maritime atmospheres. Limnol. Oceanogr. 35,
1657–1675.

Gregg, W.W., Casey, N.W., 2004. Global and regional evaluation of
the SeaWiFS chlorophyll data set. Remote Sens. Environ. 93,
463–479.

Gregg, W.W., Casey, N.W., in press. Modeling coccolithophores in the
global oceans. Deep-Sea Res., Part II.

Hemmings, J.C.P., Srokosz, M.A., Challenor, P., Fasham, M.J.R.,
2003. Assimilating satellite ocean-colour observations into oceanic
ecosystem models. Philos. Trans. R. Soc. Lond., A 361, 33–39.

Hemmings, J.C.P., Srokosz, M.A., Challenor, P., Fasham, M.J.R.,
2004. Split-domain calibration of an ecosystem model using
satellite ocean colour data. J. Mar. Syst. 50, 141–179.

Hooker, S.B., Esaias, W.E., Feldmann, G.C., Gregg, W.W., McClain,
C.R., 1992. An overview of seawifs and ocean color. In: Hooker, S.
B., Firestone, E.R. (Eds.), NASATechnical Memorandum 104566,
Volume 1 of SeaWiFS Technical Report Series. NASA Goddard
Space Flight Center, Greenbelt, Maryland.

Houtekamer, P.L., Mitchell, H.L., 2001. A sequential Ensemble
Kalman Filter for atmospheric data assimilation. Mon. Weather
Rev. 129, 123–137.

Ishizaka, J., 1990. Coupling of Coastal Zone Color Scanner data to a
physical–biological model of the southeastern United-States
continental-shelf ecosystem.3. Nutrient and phytoplankton fluxes
and CZCS data assimilation. J. Geophys. Res. 95, 20201–20212.

Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory.
Academic Press, New York.

Kalman, R.E., 1960. A new approach to linear filtering and prediction
problems. Trans. ASME, J. Basic Eng. 82, 35–45.

Keppenne, C.L., Rienecker, M.M., Kurkowski, N.P., Adamec, D.A.,
2005. Ensemble Kalman filter assimilation of temperature and
altimeter data with bias correction and application to seasonal
prediction. Nonlinear Process. Geophys. 12, 491–503.

Losa, S.N., Kivman, G.A., Schröter, J., Wenzel, M., 2001. Sequential
weak constraint parameter estimation in an ecosystem model. J.
Mar. Syst. 43, 31–49.

Losa, S.N., Kivman, G.A., Ryabchenko, V.A., 2004. Weak constraint
parameter estimation for a simple ocean ecosystem model: What
can we learn about the model and data? J. Mar. Syst. 45, 1–20.

Messié, M., Radenac, M.-H., Lefèvre, J., Marchesiello, P., 2006.
Chlorophyll bloom in the western Pacific at the end of the 1997–
1998 El Niño: the role of the Kiribati Islands. Geophys. Res. Lett.
33, L14601. doi: 10.1029/2006GL026033.

Natvik, L.-J., Evensen, G., 2003. Assimilation of ocean colour data
into a biochemical model of the North Atlantic. Part 1. Data
assimilation experiments. J. Mar. Syst. 40–41, 127–153.
S data into a global ocean-biogeochemical model using a local SEIK
09

http://dx.doi.org/10.1016/j.jmarsys.2006.11.009
http://dx.doi.org/doi:10.1029/2006GL026033


18 L. Nerger, W.W. Gregg / Journal of Marine Systems xx (2007) xxx–xxx

ARTICLE IN PRESS
Nerger, L., Hiller, W., Schröter, J., 2005a. A comparison of error
subspace Kalman filters. Tellus 57A, 715–735.

Nerger, L., Hiller, W., Schröter, J., 2005b. PDAF — the parallel data
assimilation framework: experiences with Kalman filtering. In:
Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of High Performance
Computing in Meteorology — Proceedings of the 11. ECMWF
Workshop. World Scientific, pp. 63–83.

Nerger, L., Danilov, S., Hiller, W., Schröter, J., 2006. Using sea level
data to constrain a finite-element primitive-equation ocean model
with a local SEIK filter. Ocean Dynamics 56, 634–649.

Nerger, L., Danilov, S., Kivman, G., Hiller, W., Schröter, J., in press.
Data assimilation with the ensemble Kalman filter and the SEIK
filter applied to a finite element model of the North Atlantic.J. Mar.
Syst. doi:10.1016/j.jmarsys.2005.06.009.

Pham, D.T., Verron, J., Gourdeau, L., 1998a. Singular evolutive
Kalman filters for data assimilation in oceanography. C.R. Acad.
Sci., Ser. II 326 (4), 255–260.

Pham, D.T., Verron, J., Roubaud, M.C., 1998b. A singular evolutive
extended Kalman filter for data assimilation in oceanography.
J. Mar. Syst. 16, 323–340.

Schartau,M.,Oschlies,A., 2003. Simultaneous data-based optimization of
a 2D-ecosystemmodel at three locations in the northAtlantic: Part I—
method and parameter estimates. J. Mar. Res. 61, 765–793.

Schlitzer, R., 2002. Carbon export fluxes in the Southern Ocean:
results from inverse modeling and comparison with satellite-based
estimates. Deep-Sea Res. 49, 1623–1644.
Please cite this article as: Nerger, L., Gregg, W.W. Assimilation of SeaWiF
filter. Journal of Marine Systems (2007), doi:10.1016/j.jmarsys.2006.11.0
Schopf, P.S., Loughe, A., 1995. A reduced gravity isopycnal ocean
model: hindcasts of El Niño. Mon. Weather Rev. 123, 2839–2863.

Spitz, Y.H., Moisan, J.R., Abbott, M.R., Richman, J.G., 1998. Data
assimilation and a pelagic ecosystem model: parameterization
using time series observations. J. Mar. Syst. 16, 51–68.

Spitz, Y.H., Moisan, J.R., Abbott, M.R., 2001. Configuring an
ecosystem model using data from the Bermuda Atlantic Time
Series (BATS). Deep-Sea Res., Part II 48, 1733–1768.

Stammer, D., Wunsch, C., Giering, R., Eckerts, C., Heimbach, P.,
Marortzke, J., Adcroft, A., Hill, C., Marshall, J., 2002. The global
ocean circulation during 1992–1997, estimated from ocean
observations and a general circulation model. J. Geophys. Res.
107 (C9), 3001. doi: 10.1029/2001JC000888.

Wang, M., Knobelspiesse, K.D., McClain, C.R., 2005. Study of the
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol
optical property data over ocean in combination with the ocean
color products. J. Geophys. Res. 110, 10S06. doi: 10.1029/
2004JD004950.

Werdell, P.J., Bailey, S.W., 2002. The SeaWiFS Bio-optical Archive
and Storage System (SeaBASS): Current Architecture and
Implementation. NASA Technical Memorandum 2002-211617.
NASA Goddard Space Flight Center, Greenbelt, MD.
S data into a global ocean-biogeochemical model using a local SEIK
09

http://dx.doi.org/doi:10.1016/j.jmarsys.2005.06.009
http://dx.doi.org/10.1016/j.jmarsys.2006.11.009
http://dx.doi.org/doi:10.1029/2001JC000888
http://dx.doi.org/doi:10.1029/2004JD004950

	Assimilation of SeaWiFS data into a global ocean-biogeochemical model using a local SEIK filter
	Introduction
	The NASA Ocean Biogeochemical Model
	Local SEIK filter
	The (global) SEIK filter
	Localized analyses and re-initializations in SEIK

	SeaWiFS ocean chlorophyll data
	Data assimilation experiments
	Experimental setup
	Estimated total chlorophyll concentrations
	Primary production and nutrients
	Comparison with independent data

	Discussion
	Conclusion
	Acknowledgements
	References


