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ABSTRACT

The Global Energy and Water Cycle Experiment/Climate Variability and Predictability (GEWEX/
CLIVAR) Global Land–Atmosphere Coupling Experiment (GLACE) has provided an estimate of the
global distribution of land–atmosphere coupling strength during boreal summer based on the results from
a dozen weather and climate models. However, there is a great deal of variation among models, attributable
to a range of sensitivities in the simulation of both the terrestrial and atmospheric branches of the hydro-
logic cycle. It remains an open question whether any of the models, or the multimodel estimate, reflects the
actual pattern and strength of land–atmosphere coupling in the earth’s hydrologic cycle. The authors
attempt to diagnose this by examining the local covariability of key atmospheric and land surface variables
both in models and in those few locations where comparable, relatively complete, long-term measurements
exist. Most models do not encompass well the observed relationships between surface and atmospheric state
variables and fluxes, suggesting that these models do not represent land–atmosphere coupling correctly.
Specifically, there is evidence that systematic biases in near-surface temperature and humidity among all
models may contribute to incorrect surface flux sensitivities. However, the multimodel mean generally
validates better than most or all of the individual models. Regional precipitation behavior (lagged auto-
correlation and predisposition toward maintenance of extremes) between models and observations is also
compared. Again a great deal of variation is found among the participating models, but remarkably accurate
behavior of the multimodel mean.

1. Introduction

If robust interactions between the slowly varying
land surface state and the atmosphere on weather-to-
climate time scales could be demonstrated, predictions
of the climate system could be enhanced. Monitoring of
land surface states to initialize numerical models with
the proper coupling between terrestrial and atmo-
spheric processes should lead to improved forecasts.
There are many global and regional modeling studies
that suggest such interactions exist, especially involving
the land surface state variable of soil wetness. But these
modeling results have largely been based on long simu-

lations, ensemble simulations, or large area averages
that outstrip the coverage of current observational
datasets. Therefore, observational evidence to back up
the finding of the models is scarce. In addition, different
models have shown different character or degrees of
response, casting an additional shadow of uncertainty
over the prospect of exploiting land–atmosphere inter-
actions for enhanced predictability. Even in analytical
models with highly controlled parameters, varied and
conflicting results arise (e.g., Findell and Eltahir
2003a,b; D’Odorico and Porporato 2004; Kochendorfer
and Ramirez 2005; Teuling et al. 2005). Two questions
arise. Is there a model consensus regarding land–
atmosphere feedbacks? Are any models (or is the con-
sensus) close to being correct?

Recently, an international initiative was undertaken
by a dozen weather and climate modeling groups in-
cluding both operational and research centers to deter-
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mine the degree to which the atmospheric branch of the
hydrologic cycle is coupled to the land surface within
global coupled land–atmosphere models. The project,
called the Global Land–Atmosphere Coupling Experi-
ment (GLACE), is jointly sponsored by the Global En-
ergy and Water Cycle Experiment (GEWEX) Global
Land–Atmosphere System Study (GLASS) and the
Climate Variability and Predictability (CLIVAR)
Working Group on Seasonal–Interannual Prediction
(WGSIP). Participating GCMs include those from the
Bureau of Meteorology Research Centre (BMRC) and
Commonwealth Scientific and Industrial Research Or-
ganisation Conformal-Cubic 3 (CSIRO-CC3) in Aus-
tralia, the Canadian Climate Centre (CCCma), the
Center for Climate System Research (CCSR) at the
University of Tokyo, the Hadley Centre in the United
Kingdom (HadAM3), and seven from the following
centers in the United States: the Center for Ocean–
Land–Atmosphere Studies (COLA), the Geophysical
Fluid Dynamics Laboratory (GFDL), the National
Center for Atmospheric Research [NCAR; Community
Atmosphere Model 3 (CAM3)], the National Centers
for Environmental Prediction [NCEP; Global Forecast
System/Ohio State University (GFS/OSU)], the Uni-
versity of California at Los Angeles (UCLA), and two
from the National Aeronautics and Space Administra-
tion (NASA) Goddard Space Flight Center [Geosta-
tionary Earth-Orbiting Satellite–Climate Radiation
Branch (GEOS-CRB) and NASA Seasonal-To-
Interannual Prediction Project (NSIPP)].

As described in detail by Koster et al. (2006), each
modeling group in GLACE was asked to perform an
ensemble of 16 three-month simulations with its gen-
eral circulation model (GCM) beginning on 1 June and
using the same specified sea surface temperature for all
simulations (case W). The ensemble members vary only
in their initialization, preferably taken from 1 June
states of a multidecade, parallel integration, so that the
members would be as independent as possible. Each
group chose one member to be the basis of test case
ensembles, and saved all land surface state variables at
every model time step from that member. Two test
ensembles were made—one with all land surface state
variables specified (i.e., prescribed at each time step) to
match the chosen member from the control ensemble
(case R), and the other having only soil wetness speci-
fied for soil layers below the thin surface layer (case S).
Comparisons between the test ensembles and the con-
trol ensemble show to what degree elements of the land
surface affect seasonal climate.

Koster et al. (2004, 2006, hereafter referred to as K04
and K06, respectively) showed the global distribution

of the strength of land–atmosphere feedback, mani-
fested in precipitation, as calculated across the 12 mod-
els. “Hot spots” appeared for boreal summer over sev-
eral parts of the world, including the Great Plains of
North America, sub-Saharan Africa north of the equa-
tor, India, and parts of China. The signal was generally
weak over the Southern Hemisphere (austral winter),
high latitudes, and very arid or humid regions. K06 also
showed a great deal of variation among models, both in
terms of patterns and the overall strength of feedbacks.
The multimodel pattern of hot spots is not plainly evi-
dent in several of the individual models.

Guo et al. (2006, hereafter G06) showed that the
pathway for strong feedbacks in the models requires
both a robust coupling of surface fluxes to soil wetness
in the land surface component of the model, and a
strong link between precipitation and surface fluxes in
the atmospheric model through convection. G06 was
able to separately quantify these two segments of the
feedback loop in the models and show that weakness in
either branch hindered the overall link between soil
wetness and precipitation. Furthermore, the land sur-
face segment was found generally to be weak in humid
regions (due to a lack of evapotranspiration response to
changes in soil wetness) and arid regions (because of
low variability), while the atmospheric segment was
weak in arid zones. This leaves the transitional regions
between arid and humid as the only regions where both
segments can propagate information about soil wetness
anomalies to the convective parameterizations and ex-
ert some control on precipitation.

K06 and G06 use the metric of “coupling strength,”
denoted by the symbol �, in the multimodel assessment
of land–atmosphere feedbacks; � is a measure of the
coherence of a seasonal time series of a prognostic or
diagnostic model variable (e.g., precipitation or evapo-
ration) across a range of ensemble members that have
been initialized differently. In essence, it is the fraction
of the total variance of a variable that is “explained,” or
forced, by the prescription of all boundary conditions in
the model. The coupling strength between land and
atmosphere is quantified by the change in � (��) be-
tween an ensemble with differently initialized, freely
evolving land surface state variables, and an ensemble
where the land surface state variables (namely, subsur-
face soil wetness) are specified to match one case from
the control ensemble. The idea is that if the land surface
is exerting some controlling influence on surface fluxes
and atmospheric processes, the restriction in the time
evolution of the land surface state variables should re-
sult in an increase in the coherence among the time
series of surface fluxes and meteorological states. Feed-
backs are implied by a nonzero value of �� (which
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varies nominally from 0 to 1), with the degree of cou-
pling measured by the magnitude of ��.

The parameter � is a handy construct for model com-
parisons and analysis, but it is not a physical quantity. It
is an artifact of ensemble simulations. The real world
does not present us with an ensemble of parallel histo-
ries, but only one realization. Therefore, there is no
direct way to calculate a field of �, much less ��, from
observations. This is but one of the impediments to
quantifying the land–atmosphere coupling strength in
the environment.

Another difficulty is the lack of global measurements
of soil moisture and surface fluxes, which are key ele-
ments of the coupling pathway. There have been efforts
to infer feedbacks from the observational record. Betts
et al. (1996) show from field data collected at middle
and high latitudes that the interaction of the land sur-
face and the atmosphere is primarily through its influ-
ence on the character of the planetary boundary layer
(its depth, moisture content, rate of entrainment of air
from above, and its ability to trigger convection) as a
result of surface properties such as soil wetness, veg-
etation, and the diffusivity of heat in the soil column.
Findell and Eltahir (1997) showed a positive correlation
between variations in the observed soil moisture
records in the Illinois Climate Network and rainfall in
the subsequent three weeks, which they claimed was
observational evidence of a positive hydrologic feed-
back between land and atmosphere. Salvucci et al.
(2002) subsequently showed that the formulation of the
calculation by Findell and Eltahir (1997) biased the re-
sults by allowing some future soil wetness information
to affect the correlation. Koster and Suarez (2004)
showed that there is a statistically significant separation
in the probability density functions of monthly rainfall
during summer over midlatitude land, conditioned on
the rainfall anomaly during the previous month. Paral-
lel analyses of GCM simulations suggest that other fac-
tors (e.g., alteration of the circulation due to remote
SST anomalies) are not responsible for the separation,
and thus the separation implies a positive feedback be-
tween land and atmosphere.

We have in the GLACE results, a multimodel-based
estimate of the strength and spatial variation of land–
atmosphere coupling, and its relationship to state vari-
ables and fluxes within global models. Can we confirm
or refute the GLACE results using the observational
record? Where thorough surface flux and land state
observations exist, we attempt to validate the GLACE
models and to establish relationships among measured
and unmeasured (purely model-derived) variables that
may allow us to infer more about the veracity of the
GLACE results. The recent paper by Betts (2004; here-

after B04) provides a framework, based on a series of
relationships found in an independent global model,
which can be followed to quantify underlying elements
of land–atmosphere coupling strength from measurable
quantities at the surface and in the boundary layer.

Section 2 describes the observational datasets that we
used. In section 3, we attempt to link the models’ �
parameter for evapotranspiration to observable quan-
tities and validate the performance of the model simu-
lations. The model validation to other relationships is
expanded in section 4. In section 5 we include the at-
mospheric segment of coupling by comparing the mod-
els’ behavior to observational evidence of persistence in
precipitation anomalies. Conclusions are given in sec-
tion 6.

2. Observational data

To compare the model representation of land–
atmosphere coupling strength to that in the real world,
complete observations of land surface state variables,
near-surface atmospheric states, and fluxes between
land and atmosphere are needed. These observations
must span a long enough period of time to provide a
large sample covering the range of variability of these
variables and to provide adequate statistical signifi-
cance for the results. Finally, we are interested in the
same season as the GLACE experiments, spanning
June, July, and August. There are very few sources of
observational data that can meet all these require-
ments. Two are identified for this study.

The U.S. Department of Energy operates the Atmo-
spheric Radiation Measurement (ARM) Program
(Ackerman and Stokes 2003). In particular, the south-
ern Great Plains site consists of a Central Facility and a
number of Extended Facilities across a large area of
Oklahoma and southern Kansas, each having instru-
ment clusters to measure radiation, near-surface me-
teorology, surface fluxes, soil moisture, and tempera-
ture. For our application, data from the Energy Balance
Bowen Ratio (EBBR; Cook 2005) system is appropri-
ate. The EBBR is a ground-based sensor system in-
stalled over grass that uses observations of net radia-
tion, soil heat flow (25 mm below the surface), surface
soil moisture (top 50 mm layer), and the vertical gradi-
ents of temperature and relative humidity to estimate
the vertical heat fluxes at the local surface by a Bowen
ratio energy balance technique. The complete set of
near-surface meteorological variables is measured as
well. Data archives exist for 14 stations.

We use the B1-level 30-min-average data and aver-
age them further to daily time scales for consistency
with the model output from GLACE. The summer data

DECEMBER 2006 D I R M E Y E R E T A L . 1179



for the years 2001–04 are used. Applying a rather strict
quality filter to the data, we reject any day’s data for a
variable if there is not at least 21 h of data with no
quality control issues flagged. Then stations that have
excessive missing data are screened out. We have two
criteria; one is that the station must have at least 75%
of the days with all terms of the surface heat fluxes
(latent, sensible, and ground heat fluxes) available. The
second is that 75% of the days must have soil moisture
measurements. These criteria eliminate five stations
from consideration. Earlsboro (E27) only came online
in late 2003, and has intermittent measurements in the
archive. Plevna (E4) has intermittent data throughout
the 4-yr period. Cement (E26) is missing significant
amounts of data during 2001 and 2002. Ashton (E9) has
no flux data for 2001 and about half of 2002. Ringwood
(E15) is missing most of the soil wetness measurements
for 2002–04. This leaves nine stations with sufficient
data for comparison with the models. These stations are

shown with their station codes in the lower-left panel of
Fig. 1, along with land-cover type (indicated by the
symbols). The station data are examined individually
and combined to represent averages over scales similar
to a GCM grid box.

The second source of data comes from the FLUXNET
network of micrometeorological tower sites (Baldocchi
et al. 2001). Though designed primarily to measure the
exchanges of carbon dioxide, water vapor, and energy
between the biosphere and atmosphere, they also in-
clude standard meteorological measurements, and in
some cases subsurface water and temperature data. In a
quest for data that are quality controlled, we have
drawn upon the long-term archive at the Oak Ridge
National Laboratory Distributed Active Archive Cen-
ter. Daily gap-filled data (Falge et al. 2003) from the
AmeriFlux and EUROFLUX regional networks are
available for a number of years. Two AmeriFlux sites
[Bondville, Illinois (Meyers and Hollinger 2004), and

FIG. 1. Location of ARM Extended Facilities (lower left beside station codes starting with “E”) and FLUXNET sites used in this
study. Symbols indicate the type of vegetation cover.
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Little Washita, Oklahoma (Meyers 2001)] have multi-
year records of fluxes and soil moisture (averaged over
top 100 mm). None of the EUROFLUX sites in the
gap-filled dataset record soil moisture, but four sites
(Bayreuth, Tharandt, Loobos, and Hyytiala) have 12 or
more summer months of other relevant observations in
the archive. Data used from the EUROFLUX sites
cover the summers of 1996–2000 except for Bayreuth,
which covers 1996–99. The locations and vegetation
cover of these sites are also given in Fig. 1.

In addition to sample size and the list of variables, the
data must also represent a reasonably closed surface
water and energy balance in order to be useful for
model validation. Figures 2 and 3 show the surface en-
ergy balances (measured net radiation versus the sum
of measured surface latent, sensible, and ground heat
fluxes) for the ARM and FLUXNET sites, respectively.
The bold line is the least squares linear regression of
the surface heat fluxes on the net radiation. Also shown
are the RMSE, explained variance (r2), and bias with
respect to the perfect fit line. The ARM sites show very
tight closure in most cases, with a tendency toward
slight positive biases (heat fluxes exceed net radiation).
These are Bowen ratio stations, so the good fit is not
surprising. As might be expected, the average across
the ARM sites has the highest r2 and the lowest of
RMSE. The fit for the FLUXNET sites is not as good,
with a tendency for negative biases and greater scatter.
Only Tharandt has a bias as low as the ARM sites. Days
with greater than 50% gap filling in surface flux terms
or radiation are not included in Fig. 3 or the calcula-
tions. Note that at the Hyytiala site there are no ground
heat flux measurements, so the terms of the surface
energy balance are not completely specified, possibly
contributing to the appearance of a strong negative bias
there. At the other stations in Fig. 3, removal of the
ground heat flux term would contribute an average ad-
ditional bias of �8.0 W m�2 to the relationships.

It is worth reminding the reader that the ARM fa-
cilities and the Little Washita AmeriFlux site lie near
the center of the North American “hot spot” for land–
atmosphere coupling identified by GLACE (K04).
Thus, we begin with an expectation that the observa-
tions from these sites may provide the strongest avail-
able evidence for land surface feedbacks on weather
and climate. However, there is also evidence that
GCMs often do a poor job of simulating climate in this
area (e.g., Fennessy and Xue 1997; Koster and Suarez
2003; Sud et al. 2003; GFDL Global Atmospheric
Model Development Team 2004) The European sites
are in a more quiescent region for land–atmosphere
coupling, according to the GLACE models, providing

an opportunity to compare and contrast among the
models and observations.

All of the scatter diagrams and other comparisons
use 6-day averages as in K06 and G06, similar to B04.
The analysis in section 5 utilizes two observed precipi-

FIG. 2. Validation of the energy balance from 6-day means at
selected ARM Extended Facility sites for June–August 2001–04,
and the average across all sites (upper left). Units: W m�2. The
diagonal dashed gray line shows exact balance; the black solid line
is the best-fit linear regression through the data points.
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tation datasets. The first is the multidecadal (1948–97),
1/4° daily precipitation reanalysis of Higgins et al.
(2000), which is based on rain gauge reports from over
10 000 sources in the United States. The second dataset
consists of global monthly precipitation fields gener-
ated by Global Precipitation Climatology Project
(GPCP; version 2; see Huffman et al. 1997). This global
dataset, which combines in situ (gauge) and satellite
measurements, covers the period 1979–2001 at a spatial
resolution of 2.5° � 2.5°.

3. Observable analogs to “coupling strength”

In this study we use only data from cases W and S, as
described in the introduction. The definition of the
change in intraensemble coherence of model evapo-
transpiration (ET) from the control case to the case
where subsurface soil wetness (SWet; wilting point � 0,
saturation � 1) is specified, referred to as �E(S) �
�E(W) in G06 but here simply called ��E, carries clear
implications. It suggests that increased coherence must
be the result of a strong functional dependence of ET
on SWet. If there is no relationship between ET and

SWet, the specification of a particular time series of
SWet as a boundary condition common to all ensemble
members should have no statistically detectable effect
on the ET time series. Of course, the land surface pa-
rameterizations in every one of the 12 GLACE models
specify SWet as a term on the rhs of their respective
equations for evapotranspiration [or more likely, for
latent heat flux (LHF)]. LHF is not a univariate func-
tion, but also depends on other state variables (and
parameters that are functions of state variables). The
degree to which SWet specifically and uniquely deter-
mines LHF likely varies among models, geographically
within a model, and even temporally at any grid box
within a model, depending on the impacts of the other
predictors in the equation.

In fact, one would expect to determine most strongly
not the absolute LHF, but rather the partitioning of
available energy between LHF and sensible heat flux
(SHF). We may examine this effect through the nor-
malized latent heat (NLH) defined as the ratio of LHF
to net surface radiation. We can compare the functional
dependence of NLHF on SWet among models and to
observations, as well as calculate values of �NLH and
��NLH.

Figure 4 shows scatter diagrams of NLH as a function
of SWet for all members of the control ensemble from
nine of the GLACE GCMs at the grid cell containing
the center of the ARM region (some of the models did
not provide the complete set of output or had other
problems that precluded computing all of the necessary
quantities for this part of the study). Six-day means are
shown beginning at day 8 of the 92-day integrations
(like those used in the calculations by K06 and G06).
However, we display the 6-day means beginning every
day through day 87—a total of 80 points per ensemble
member instead of 14. This helps to show the evolution
of the two terms in time for some of the models, but
significance tests use the degrees of freedom for the
smaller set of consecutive 6-day means. A few models
show a very smooth and tight relationship between
NLH and SWet (e.g., NSIPP) while others appear to
have little relationship at all (e.g., CSIRO-CC3). Other
contrasts exist. Some models span the entire range of
SWet (e.g., GFDL) while others have a very limited
range (e.g., CAM3) or a very uneven distribution (e.g.,
GFS/OSU). There is also a great deal of discrepancy in
the ranges of SWet among models, although they all
span most of the range of NLH.

The blue lines in the panels of Fig. 4 are a best fit to
the scatter of points, based on 20 bins of equal popu-
lation of points along the SWet axis spanning the range
of SWet for that model and location. For each bin, the

FIG. 3. As in Fig. 2 but for selected FLUXNET sites. Note
Hyytiala lacks ground heat flux measurements.
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average value of NLH is calculated. The line connects
those values. The limited sample size contributes to the
zigzag nature of this line for some models. The advan-
tage of this approach is that no a priori assumption is
made regarding the functional relationship between
NLH and SWet.

To match ��NLH to the degree of dependence of
NLH on SWet, we need to quantify the strength of the
functional relationship between the two quantities with
a single value at each grid box. It is fairly easy to discern
by eye from Fig. 4 which models exhibit a strong de-
pendence of NLH on SWet and which do not, but we
need an objective, quantitative means to do so. We
estimate the strength of the functional relationship as a
ratio. The numerator is the standard deviation of the
LHF values in each bin i about the bin average, totaled
over all bins:

s � ��
i
�
ni

�NLHni
� NLHi�

2

�
i

ni �
1�2

. �1�

The denominator is the total range of the 20 bin-
averaged NLH values:

R � max�NLHi� � min�NLHi�. �2�

The result is an estimate of “goodness of fit”:

g �
s

R
, �3�

where g is a positive number whose value decreases as
the fit improves. We have conducted Monte Carlo
simulations showing that for data distributed in a Gauss-
ian-random fashion on both x and y axes, g also has a

FIG. 4. Relationship of NLH to SWet in the 16 ensemble members of nine GCMs at the grid box encompassing the ARM Central
Facility. Solid blue line is fit through the means of 20 bins of equal number of points. Red points show the ensemble member used as
basis for fixed SWet integrations. Here g is a goodness-of-fit metric.
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Gaussian distribution, and values of g below 0.36 are
significant at the 99% level. The values of g for each
model at the grid box encompassing the core of the
ARM network are also shown in Fig. 4. Only CSIRO-
CC3 fails to achieve statistical significance at this level.

The ensemble member chosen as the source for the
fixed SWet runs is shown in the scatterplots of Fig. 4 by
red symbols. This illuminates another shortcoming of
the design of the GLACE experiment. The resulting
value of ��E, ��NLH, and potentially ��P at any lo-
cation for a given model may be a result of the random
choice made in selecting the basis for specified SWet,
especially for the majority of models that do not appear
to span the entire range of possible SWet values during
one seasonal integration. We can see from Fig. 4 that
for this location the chosen SWet time series in the
CAM3 model happened to be the wettest of all en-
semble members. This may have depressed the esti-
mate of ��NLH at this location. On the other hand,
CCCma chose an anomalously dry case where the slope
of the fitted curve is large and sensitivity is unusually
high.

Ideally, to avoid this problem, the sensitivity experi-
ments in GLACE would have been carried out 16
times, once with each control ensemble member as the
source of specified SWet. This was an impractical de-
mand to make on the modeling groups. Of course,
through the averaging of ��E across the globe, this
effect is averaged out, allowing the GLACE design to
provide an accurate overall assessment of an individual
model’s coupling strength (see Fig. 6 in K06). In addi-
tion, at a given location, averaging across the models
should filter out much of this source of error.

We also see from Fig. 4 that some models appear not
to have a strict dependence of NLH on SWet, but a
strong codependence on other factors. The CCCma,
CSIRO-CC3, HadAM3, and GFS/OSU models (and
COLA and CAM3 to a lesser extent) show evidence of
this as oscillations or deviations in the track of points
from the “best fit” envelope. We checked whether
these models had a high incidence of drizzle that might
drive a large proportion of evaporation to come from
interception loss (which would occur independently of
SWet), but that was not the case. Other factors must
exert significant control on NLH (and LHF, not shown)
in these models.

Figure 5 shows global maps of ��NLH for each
model. There is a fairly strong agreement between
��NLH and ��E for each model (not shown), but gen-
erally ��E is larger. Shown in each panel is the global
mean (land only, north of 60°S) value of ��NLH. Con-
sistent with the findings of G06, the GFDL model has
the strongest ��NLH and the GFS/OSU model is the

weakest. Figure 6 shows the global distribution of the
goodness-of-fit parameter g for each model. The shad-
ing is chosen so that statistically significant functional
relationships of NLH on SWet are shown in shades of
blue where they exceed the 99% confidence level, or-
ange for confidence between 90% and 99%, and yellow
for values below 90%. Shown in each panel are the
fraction of the nonblank land area where confidence
exceeds 99%, as well as the global mean of g and its
spatial correlation with ��NLH. Field significance is
high for all models, and every model except CCCma
has a statistically significant spatial correlation between
g and ��NLH, implying that the goodness-of-fit diag-
nostic is indeed relevant to coupling strength. Blank
areas over land are either very dry (low soil wetness or
low variance of soil wetness) or have no valid value of
��NLH.

There exists a resemblance between the spatial pat-
terns of the multimodel values of ��NLH and g, shown
in Fig. 7. The global mean of g is 0.467 for the nine-
model mean, and the spatial correlation between the
two fields is �0.57. It seems clear that once the noise
from the original limited set of GLACE integrations is
filtered out by aggregation, a firmer relationship is es-
tablished between the lower branch of the land–
atmosphere feedback loop and locally observable quan-
tities. However, when we consider calculations of g and
�� based on LHF instead of NLH, the multimodel
average shows a much higher spatial correlation be-
tween the global fields of �0.73, explaining over half of
the variance. The stronger connection for LHF than for
NLH in the models is counter to what is suggested in
the observations, as we will show later.

This exercise suggests that within the realm of
weather and climate models we may relate the unmea-
surable coupling indices ��NLH and ��LHF to an index
that is not dependent on ensembling. This opens the
possibility that we can quantify aspects of coupling
strength between land and atmosphere in the real
world, given a sufficiently large and high quality set of
measurements over several seasons at locations of in-
terest. Additionally, this relationship gives us a means
to validate the coupling characteristics of these models,
given the caveats mentioned earlier. At the very least,
we can test whether these models simulate the correct
ranges and sensitivities of surface fluxes and state vari-
ables.

Table 1 shows how the individual models compare to
the observations of SWet, LHF, and g calculated for
both NLH and LHF at Bondville, Little Washita, and
the average of the ARM sites. Averaging over the
ARM domain helps scale these observations to GCM
grid scales, and avoid errors from local surface variabil-
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ity and nonlinearities (Crow and Wood 2002). Al-
though the HadAM3 and CCCma are consistently
among the best models in terms of error for all the
quantities shown, none of the models is especially im-
pressive. The type of variability among models shown
in Fig. 4 is typical for all of the locations examined, and
none of the models is comfortably accurate in its rep-
resentation of the observed relationships between
SWet and NLH or LHF. As can be seen in Table 1 and
Fig. 4, the models struggle to represent the correct dis-
tribution of soil wetness, and rarely come within 20% of
the observed mean values of any quantity. It is also
worth noting that in most cases the models have a bet-
ter fit for the functional relationship of LHF on SWet
than of NLH on SWet. The station data suggest the
opposite is true. It seems that most of the models favor
a stronger dependence of ET on SWet than for the
partitioning of net radiation on SWet. The GFDL
model bucks the trend in this regard but shows much
too strong a relationship between SWet and surface

fluxes at all locations. CAM3 has the correct stratifica-
tion of g at two of three locations, and has a much
better goodness of fit than GFDL and most other mod-
els. The multimodel average (last column) ranks in the
top four in 12 of 15 rows, giving further credence to its
use as the best model-based representation of the real
world.

In Fig. 8 we show how the observations behave over
the ARM domain in terms of the relationship between
NLH and SWet. Comparison to Fig. 4 shows just how
different the models are from the observations. Note
that only four years of measurements have gone into
Fig. 8—no more than one-quarter the amount of data in
the model plots. Thus Fig. 8 may underrepresent the
observed range of SWet due to the small sample size
and the possible lack of measurements at very low
SWet. Nevertheless, the “best” models are NSIPP,
which has the right goodness of fit but appears to put
too much energy toward ET, and HadAM3, which
overlaps the range of SWet and NLH rather well but

FIG. 5. The ��NLH for boreal summer in each model. Global mean (land only) value is shown in the bottom left corner of each
panel.
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exhibits a slow mode of variability (the trains of points
arcing up and down on a slight tilt) that increases
spread and is not evident in the observations. The
ARM data do show a positive correlation between
NLH and SWet. The observed fit is much weaker in the
observations than in the models. Because of the lack of
observational data in very dry conditions, we cannot
say whether that tail of the relationship follows an ex-
ponential curve like the GFDL or GEOS-CRB models,
or an S-shaped curve like NSIPP and COLA. Overall,
comparisons at the individual ARM sites, Bondville
and Little Washita, portray a similar picture.

4. Other relationships with surface variables

Our comparison with observational sites is greatly
restricted by the need for long time series of soil wet-
ness measurements. However, there may be relation-
ships between other more commonly measured surface

variables that we can use for validation and compari-
son. B04 found a number of striking associations
among surface and lower-atmospheric quantities in the
ECMWF reanalyses that can be used as a guide for this
investigation. For instance, the relationship between
surface SHF and SWet was found by B04 to be stronger
than between LHF and SWet across several domains
from the deep Tropics to boreal forests. This charac-
teristic is largely borne out in the observations (Table
2). Only Elk Falls in the ARM network and Bondville
show a significantly lower value of g for the relationship
between SWet and LHF than between SWet and SHF.
However, when we normalize by net surface radiation,
the relationship reverses. Only at Elk Falls and Little
Washita is the value of g appreciably lower for normal-
ized sensible heat (NSH) than for NLH. At the same
time, the goodness of fit increases going from LHF to
NLH at every station, while it decreases going from
SHF to NSH at all but three stations.

FIG. 6. As in Fig. 4 but for g. Also shown at the bottom center of each panel is the global spatial correlation between ��NLH and g
for each model.
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The GLACE models have a very different behavior.
Table 3 shows that there is a stronger functional rela-
tionship between LHF and SWet than for SHF and
SWet for every model over the ARM region, with the
exception of CSIRO-CC3, which has a very weak rela-
tionship to either. The same is nearly always true at
individual sites. Values of g for the average of the ARM
sites are also shown for comparison to the model grid
box values. Every model except GFS/OSU shows a
stronger relationship between NLH and SWet than for
NSH and SWet, consistent with observations, but five
of nine models show a degradation in goodness of fit
going from LHF to NLH, and every model except

CCCma and CSIRO-CC3 has a tighter relationship be-
tween NSH and SWet than between SHF and SWet,
contrary to the observed data. The model values of g
for NLH are the same as in Fig. 4. The implication is
that the GLACE models all have a fundamentally dif-
ferent (and perhaps wrong) interplay between soil wet-
ness and surface fluxes, at least in this region.

One possible explanation for this behavior is that the
GCMs emphasize a different factor controlling surface
heat flux than does the real world. For example the
Penman–Monteith equation and similar relationships
that are widely used to parameterize evapotranspira-
tion in land surface parameterizations has two main

FIG. 7. The multimodel mean of (a) g and (b) ��NLH.
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terms: one based on potential evapotranspiration (ef-
fectively net radiation) and the other on the humidity
gradient between the land surface and near-surface air.
There is a lack complete information (namely, aerody-
namic resistance) that would allow us to directly com-
pare the relative magnitudes of each term for each
model and for observations. However, the main com-

ponents of each term among the models and observa-
tions can be compared.

Figure 9 shows the frequency distribution of net ra-
diation (top), the difference between actual and satu-
ration specific humidity (middle), and the temperature
(bottom) for the ARM region. Observed distributions
are shown by bars. The vertical lines show the range
among the GCMs in each bin, with the marker indicat-
ing the nine-model mean frequency. Note that the
GCMs have a reasonable distribution of net radiation
(only one GCM has a distinct high bias, which princi-
pally affects the ranges in the panel). However, all
GCMs have a propensity for unrealistically large spe-

FIG. 8. As in Fig. 3 but for observed average over ARM
Extended Facility sites.

TABLE 2. Observed goodness of fit between various surface flux
variables and SWet at individual sites in North America.

g(LHF,
SWet)

g(SHF,
SWet)

g(NLH,
SWet)

g(NSH,
SWet)

E8—Coldwater 0.313 0.283 0.247 0.448
E22—Cordell 0.350 0.282 0.284 0.310
E7—Elk Falls 0.330 0.368 0.316 0.298
E19—El Reno 0.763 0.523 0.640 0.652
E2—Hillsboro 0.508 0.514 0.353 0.848
E13—Lamont 0.496 0.472 0.438 0.476
E20—Meeker 0.330 0.199 0.197 0.193
E18—Morris 1.057 0.631 0.563 0.844
E12—Pawhuska 0.339 0.173 0.215 0.451
Bondville 0.354 0.419 0.285 0.705
Little Washita 0.294 0.199 0.214 0.170

TABLE 1. Comparison of observations, models, and multimodel average estimates of SWet (dimensionless), LHF (W m�2), and
goodness of fit of NLH and LHF to SWet for two North American FLUXNET locations and the average over ARM Extended Facility
sites.
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cific humidity depressions (and thus low relative hu-
midity). In fact, nearly a third of the days in the typical
model have values above the observed range. This ap-
pears to be a result of excessively high temperatures in
the GCMs (bottom panel). Whereas there are no oc-
currences of surface air temperatures warmer than
33°C in the observational data (a mean over the ARM
stations), individual models simulate anywhere from
10% to 55% of their days with mean temperatures
above this level. Given the highly nonlinear increase of
saturation specific humidity with temperature at these
high values, it appears likely that the GCMs’ evapo-
transpiration is too strongly driven by humidity gradi-
ents (e.g., by the vapor pressure deficit term in the
Penman equation), and thus responds relatively weakly
to variations in net radiation.

This result, though striking, is for only one location.
Do the models show this apparent overdependence on
vapor pressure deficit globally? Figure 10 shows the
ratio of g calculated for LHF versus g for NLH. Blue
areas show where the models overall have a stronger
dependence on SWet by LHF than NLH. This includes
most of the midlatitudes, including the areas in Europe
and North America where this study has observational
data. Table 4 compares the global mean values of g and
the area where LHF has a stronger dependence on
SWet than does NLH for the GLACE models. No
model shows a dominance for NLH in the global mean,
and only the GFDL and CSIRO-CC3 models show
g(NLH, SWet) dominating over a majority of the land
area. Similar comparisons between g(LHF, SWet) and
g(SHF, SWet) show that most models have a stronger
dependence of LHF on SWet than SHF on SWet.

So overall, most models do not show the relative
dependencies of surface fluxes on soil wetness that are
suggested by B04 or the limited observational data
available This may result, at least in part, from biases in
simulated vapor pressure deficit. These flaws, however,

do not necessarily invalidate the pattern and degree of
land–atmosphere coupling found by K04. B04 contends
that the strong relationship between SHF and SWet is
not necessarily direct, but through the strong interac-
tions each have with the height above ground (in pres-
sure coordinates) of the lifting condensation level
(PLCL). The proposed mechanism is that SWet exerts a
strong control on PLCL through its effect on the near-
surface dewpoint depression, which then determines

FIG. 9. (top) Categorical frequency of occurrence of net radia-
tion, and (middle) the difference between actual and saturation
specific humidity and (bottom) temperature over the ARM region
for observations (bars), and the mean of the GCMs (markers).
Vertical lines span the range of models for each bin.

TABLE 3. As in Table 2, but for models and observations for the
average over ARM Extended Facility sites.

g(LHF,
SWet)

g(SHF,
SWet)

g(NLH,
SWet)

g(NSH,
SWet)

Observations 0.427 0.232 0.201 0.248
CCCma 0.253 0.337 0.319 0.342
COLA 0.186 0.260 0.194 0.204
CSIRO-CC3 0.988 0.743 0.855 1.045
GEOS-CRB 0.085 0.176 0.102 0.118
GFDL 0.103 0.151 0.058 0.126
HadAM3 0.284 0.371 0.280 0.308
CAM3 0.291 0.335 0.221 0.228
GFS/OSU 0.223 0.295 0.247 0.245
NSIPP 0.146 0.219 0.151 0.153
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the size of the available heat reservoir in the mixed
layer, and thus the rate of SHF that can be sustained. A
nearly uniform heating rate of the boundary layer of 3.8
K day�1 was found by B04 for SHF in the ECMWF
model forecasts, yielding a linear relationship between
the mass of air in the boundary layer and the sensible
heat flux rate when averaged over 5-day intervals. So
SWet may impact cloud processes, and thus precipita-
tion, via both LHF and SHF.

We calculate the observed and model relationships
between PLCL and SWet following the approximation
for PLCL based on near-surface temperature and hu-

midity from Bolton (1980). The average of the obser-
vations over the ARM region (Fig. 11) shows a fairly
strong relationship similar to B04. The range of soil
wetness is limited in this area, so the tails of the distri-
bution for very wet and dry soil conditions cannot be
seen. The models (Fig. 12) exhibit an assortment of
behaviors, but all GCMs except GFDL have a high bias
in PLCL and most have a clear negative correlation be-
tween SWet and PLCL. The variety is striking. GFDL,
for example, has a very tight connection between PLCL

and SWet, while some other models show a rather weak
relationship between these variables (e.g., HadAM3 or
GFS/OSU) or no relationship at all (e.g., CCCma or
CSIRO-CC3). The models stratify just as they did for
the other goodness-of-fit relationships. It appears that
many of these GCMs do not simulate the proper cou-
pling between surface moisture and the cloud base. The
positive biases in cloud-base height are consistent with
biases toward low relative humidity shown in Fig. 9,
suggesting a connection between these errors in the
models.

What about the relationship between PLCL and SHF?
We can now introduce the data from the EUROFLUX
sites into the validation exercise. The models in
GLACE did not report SHF, but we can deduce the
term SHF 	 GHF (ground heat flux) from LHF and
net radiation. In Table 5 the observations are shown for
the implied heating rates and the r2 with PLCL using
both SHF and SHF 	 GHF where available to provide

TABLE 4. Global mean values from models and the multimodel
mean of goodness of fit, the ratio of the global means of goodness
of fit, and the fraction of global land surface grid points where the
dependence of LHF on SWet is stronger than for NLH on SWet.

g(LHF,
SWet)

g(NLH,
SWet) Ratio

Area
g(LHF, SWet) 

g(NLH, SWet)

CCCma 0.483 1.248 0.39 85%
COLA 0.443 0.493 0.88 62%
CSIRO-CC3 0.413 0.429 0.96 42%
GEOS-CRB 0.357 0.442 0.81 67%
GFDL 0.229 0.275 0.83 27%
HadAM3 0.496 0.548 0.91 55%
CAM3 0.556 0.654 0.85 59%
GFS/OSU 0.377 0.458 0.82 70%
NSIPP 0.383 0.439 0.87 54%
MM 0.400 0.447 0.89 69%

FIG. 10. Ratio of the multimodel mean of g(LHF, SWet) to g(NLH, SWet).
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a means of translation to the results of B04. Over the
ARM sites the heating rate deduced in B04 appears
quite appropriate, but for the other FLUXNET sites a
range of heating rates from 2.9 to 6.0 K day�1 is appar-
ent. Inclusion of GHF in the calculation tends to in-
crease the slope, and thus the derived heating rate, and
curiously also improves the fit of the linear regression
in most cases.

Large differences in the value of r2 between models
and observations suggest that those models do not rep-
resent the relative importance of SHF as a source of
boundary layer heating (or cooling) compared to other
thermodynamic processes such as radiative cooling,
thermal advection, diffusion, and dry and moist convec-
tive processes. However, a high value of r2 does not
guarantee a correct heating rate, because even if a par-
ticular model is producing a good simulation of SHF,
the other heating terms in the boundary layer may be
amiss. Table 5 suggests that while some models clearly

FIG. 11. As in Fig. 7 but for the relationship between height of
cloud base (hPa) and SWet.

FIG. 12. As in Fig. 3 but for the relationship between height of cloud base (hPa) and SWet.
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do better than others, none is without problems. Yet
again, the multimodel average gives the most reason-
able overall representation of variations in heating
rates and correlations among the stations, although
there are still biases in evidence.

Comparison of the observed relationships between
surface and near-surface state variables, fluxes, and at-
mospheric parameters to those presented in B04 with
forecasts from the ECMWF model, which did not par-
ticipate in GLACE, shows that the ECMWF model has
too little spread in many of the scatter diagrams. This
resembles the GFDL model, which has the strongest
coupling between SWet and surface fluxes in GLACE.
The implication is that the ECMWF model might have

a similarly strong coupling between land and atmo-
sphere. Another interesting aspect of the GFDL model
is that over the ARM area it is the only model to show
a clearly bimodal distribution of soil wetness (evident in
Fig. 4). D’Odorico and Porporato (2004) argued that
this can be a result of feedbacks between soil wetness
and precipitation, which G06 showed to be strongest in
the GFDL simulations.

5. Land–atmosphere coupling and precipitation
memory

As discussed in the introduction, validation of the
coupling strengths quantified in GLACE is difficult be-

TABLE 5. Comparison of the percentage of explained variance between SHF and PLCL, and the derived boundary layer heating rates
(K day�1) for observations and models for the ARM region average as well as all available FLUXNET sites. The right column shows
the results for the multimodel mean. The bottom rows show the average across all locations.
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cause direct large-scale observations of land–atmo-
sphere feedback do not exist. We can, however, derive
certain diagnostic quantities from large-scale observa-
tions that are tied indirectly to the feedback. These
quantities, if examined with caution, allow an indirect
evaluation of modeled coupling strength.

The two diagnostic quantities examined in this sec-
tion are those described in detail by Koster et al. (2003)
and Koster and Suarez (2004, hereafter referred to as
K03 and KS04, respectively). Both K03 and KS04 fol-
lowed the same analysis strategy: (a) a feature of inter-
est—hypothesized as being related to land–atmosphere
feedback—is identified in the observational data rec-
ord; (b) the feature is then sought and identified in a
full GCM simulation; (c) the GCM simulation is re-
peated with all land–atmosphere feedback artificially
removed, and the absence of the feature is noted. The
final two steps unequivocally identify land–atmosphere
feedback as the source of the feature of interest within
the GCM. Given the feature’s presence in the observa-
tions, we are left with two possible conclusions: either
land–atmosphere feedback does indeed occur in na-
ture, or the presence of the feature in both the obser-
vations and the model is coincidental.

The features identified by K03 and KS04 involve the
spatial patterns of precipitation autocorrelation over
the conterminous United States and the area-averaged
conditional expected value of monthly precipitation fol-
lowing extreme precipitation months. Each feature is
discussed here in the context of the GLACE results.

a. Patterns in the temporal correlations of
precipitation

K03 speculated that land–atmosphere feedback, if it
exists, should be reflected in the temporal correlations
of precipitation. The idea is simple. If feedback oper-
ates in nature, an anomalously high precipitation event
during one week should lead to high evaporation rates
and thus high precipitation rates in subsequent weeks,
strengthening the temporal correlation. K03 focused
their analysis of the correlations on the continental
United States, for which a precipitation dataset of ac-
ceptable length and quality is available (Higgins et al.
2000). Fifty years of daily July precipitation data, both
from the observations and from the NSIPP-1 GCM
(with or without enabled feedback), were aggregated to
5-day, or pentad, precipitation totals. Correlations were
then computed between twice-removed pentads—that
is, between the precipitation anomalies for 1–5 July and
10–15 July, between those for 6–10 July and 16–20 July,
and so on. Correlations between consecutive pentads
were not considered because these are overly influ-
enced by storms that straddle the time divisions. A

statistically significant signal appeared in the observa-
tions for July and August. The NASA Seasonal-to-
Interannual Prediction Project (NSIPP-1) GCM cap-
tured the overall shape of this signal, but significantly
overestimated its magnitude. When feedback was dis-
abled the correlations in the GCM essentially disap-
peared. Thus, feedback was responsible for the corre-
lation signal in the GCM.

Using the pentad precipitation rates from the 16 Ju-
lys in experiment W (the free-running GLACE experi-
ment, with no specification of surface states), we com-
puted the correlations between twice-removed pentads
for each GLACE model. (As in K03, the observational
and model data fields were aggregated to the same 2° �
2.5° resolution and treated with a 3-point filter prior to
the calculation of the statistics.) The correlation fields
are very noisy—not necessarily because the models are
poor, but because the number of truly independent
data pairs contributing to the correlation calculation for
each model is small, of order 30. Still, several models
show a rough indication of positive correlation in the
center of the continent. For presentation here (Fig. 13),
we filter out some of the sampling error by averaging
the correlations across the continental United States
and presenting the averaged results, for each of the
three simulation months (June, July, and August), in
histogram form. Individual models vary the exact loca-
tion of the North American hotspot, so we use a large
averaging area at the expense of reducing the values in
the histograms.

In each panel of Fig. 13, the means for the observa-
tions are shown as dotted histogram bars. The obser-
vations show a maximum of correlation in July, a
smaller amount in August, and a correlation in June
that is close to zero. The models, as expected, show a
range of behavior, with some models strongly overesti-
mating the correlation (e.g., GFDL, CCCma) and oth-
ers strongly underestimating it (e.g., GFS/OSU). In
general, the models do not capture the observed sea-
sonal cycle of the correlation.

Of course, given the pervasive sampling error, these
results are hard to interpret, even with the spatial av-
eraging. For reliable estimates of precipitation autocor-
relation—particularly regarding nuances in seasonal
and geographical distribution—hundreds of seasons
should be examined, not just the 16 examined here.
Still, the multimodel results shown at the bottom of the
figure are encouraging. When sampling error and even
model error is smoothed out further by averaging the
spatially integrated values across the 12 models, the
results for July and August are remarkably close to the
observed results. The models still strongly overestimate

DECEMBER 2006 D I R M E Y E R E T A L . 1193



correlations in June, though they correctly identify
June as the weakest month for the correlations.

b. Conditional expected values of rainfall across
midlatitude land

In KS04, observed monthly data were analyzed to
determine the conditional expected value of a monthly
precipitation anomaly given that the anomaly in a pre-
ceding month (one, two, or three months beforehand)
was of a certain sign and magnitude. To increase the
sample space and thereby allow meaningful distinctions
between computed probability density functions

(PDFs), ergodicity was assumed: monthly precipitation
totals in all grid cells covering midlatitude land (30°–
60°N) were standardized and included in the construc-
tion of conditional probability distributions. To stan-
dardize the data, each monthly rainfall had the local
mean subtracted from it, and the resulting anomaly was
divided by the local standard deviation. The observed
conditional expected values are statistically distinct.
When the observed rainfall at a given location is in the
lowest 20% (i.e., the lowest quintile) of all rainfalls at
that location, the rainfall there in the following months
also tends, on average, to be reduced. Similarly,

FIG. 13. Correlations between twice-removed 5-day precipitation totals averaged across the continental United States, as estimated
from GLACE control ensemble output for each model (solid lines) and for observations (dashed lines).
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monthly rainfalls in the highest quintile tend to lead
to higher-than-average rainfall rates in subsequent
months.

KS04 then examined the precipitation rates gener-
ated in GCM simulations. The observed conditional ex-
pectations are reproduced by the GCM when land–
atmosphere feedback is enabled, but they are destroyed
when the feedback is artificially disabled. The effect of
ocean variability on the signal is relatively small (see
below). Thus, the GCM suggests that the observed con-
ditional expectations are a signature of feedback.

The GLACE data allow the quantification of condi-
tional expectations across a number of GCMs for com-
parison with the observations. Precipitation rates from
the 16 Junes, Julys, and Augusts of the control en-
semble (case W) were processed onto the same hori-
zontal grid and then used to generate conditional PDFs
following the strategy of KS04, with two slight modifi-
cations: (a) instead of binning the monthly rates into
quintiles, which is difficult with 16 values, we binned

them into quartiles instead, and (b) rather than aver-
aging the one-month-lagged results across the months
studied, we separately examine July rainfall condi-
tioned on June rainfall and August rainfall conditioned
on July rainfall. Results are shown in Fig. 14. The ob-
servations (Huffmann et al. 1997) show that if June
rainfall is in the top quartile, the standardized July rain-
fall will have an expected value of 0.2 (the unshaded,
positive histogram bar). If, on the other hand, June
rainfall is in the bottom quartile, the expected value of
standardized July rainfall will be about �0.13 (the
crosshatched negative bar). The results from the vari-
ous models are generally similar in magnitude, but they
still vary, with some models (notably GFDL) producing
larger values and some others (BMRC, GFS/OSU,
CSIRO-CC3) producing lower values. Results for Au-
gust conditioned on July are similar. The averages of
the conditional expectations across the models (the fi-
nal bars in each panel) are close to, but slightly lower
than, the observed values. For August conditioned on

FIG. 14. Conditional expected mean of standardized precipitation anomaly given an antecedent monthly anomaly in the topmost
quartile (clear bars) and in the bottommost quartile (striped bars). Results are shown for observations, the individual models, and the
multimodel average. Results from KS04 are also shown: ALO refers to an AGCM run with atmospheric, land, and ocean variability
acting; AL to a run with only atmospheric and land variability acting; AO to a run with only atmospheric and ocean variability acting;
and A to a run with only atmospheric variability acting.
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June, the conditional expectations are greatly reduced,
especially for the models. The multimodel averages of
the conditional expectation for the two-month-lagged
case are considerably less than the observed values.

The proper interpretation of the comparison be-
tween observations and models in Fig. 14 requires the
careful consideration of ocean impacts. The conditional
expectations for the observations may partially reflect
an influence of sea surface temperature (SST) anoma-
lies that span the summer season and that are different
from year to year. Rainfall in the models cannot be
similarly influenced, since all ensemble members utilize
the same SST distribution. Again, the KS04 study sug-
gests that land feedbacks dominate the signal. This is
shown graphically in Fig. 14 by the histogram bars la-
beled ALO (for a control simulation, in which the at-
mosphere, land, and ocean all contribute to precipita-
tion variability), AL (for a simulation in which the
ocean’s contribution is artificially suppressed), AO (for
a simulation in which the land’s contribution is artifi-
cially suppressed), and A (for a simulation in which the
contributions of both the land and the ocean are sup-
pressed). These are the original KS04 results: they are
based on quintiles, and they are averaged across the
five months that KS04 studied. KS04 concluded that
land feedback dominates the diagnostic because with-
out it (simulations AO and A), the conditional expec-
tations are close to zero. Nevertheless, the histograms
indicate that the ocean does have a nonnegligible im-
pact. A comparison of the results for simulations ALO
and AL (for the one-month-lagged cases) suggests that
if the conditional expectations for the observations
were not influenced by SSTs, the observational results
might be reduced to about 90% of their plotted values.
Considered in that light, the multimodel conditional
expectations—at least for the one-month-lagged case—
are seen to be very close to those from the observa-
tional data.

6. Discussion

We have revisited the output from the participating
models of the GLACE experiment, which quantified
the strength and distribution of land–atmosphere cou-
pling within 12 GCMs and estimated a model-
independent global distribution of land–atmosphere
coupling. The results of K04, K06, and G06 are based
on properties of the individual model ensembles. The
present study attempts to validate to the fullest extent
possible the behavior of the GLACE models with in
situ observations. We look separately at the relation-
ship between local surface properties and fluxes, and at
the memory signal evident regionally in precipitation.

The g parameter (the goodness of fit of the empiri-
cally fitted dependence of NLH on SWet) correlates
well with ��NLH and is thus considered an observable
metric for a critical element of land–atmosphere cou-
pling—the link between the soil moisture variations
and surface fluxes. (The g parameter can be derived
from observations wherever soil moisture measure-
ments and flux towers are collocated, whereas ��NLH is
a property of the ensembling of model integrations and
is thus intrinsically unobservable.) Unfortunately, there
are very few locations where contemporaneous mea-
surements of surface fluxes and SWet have been col-
lected over a sufficiently long period to provide statis-
tically stable relationships. The ARM Extended Facili-
ties and a subset of FLUXNET sites do provide
sufficient data. At these locations, we find that indi-
vidual models often poorly validate with regard to
simulations of SWet, NLH, and the relationship be-
tween the two, but the multimodel average validates
better. We also find that the models show a stronger
relationship between LHF and SWet than between
NLH and SWet, whereas observations show the re-
verse, suggesting at first glance that there may be some
problems with the flux parameterizations in today’s
land surface schemes. Further investigation shows,
however, that in the region studied (the ARM region),
all of the models simulate excessively warm tempera-
tures and unrealistically low daytime relative humidity,
thereby reducing the relative impact of net radiation
variations on the surface fluxes.

B04 provides a set of relationships, found within the
ECMWF model, that allow us to extend the analysis to
other variables such as SHF and PLCL—variables that
are measured or can be estimated at FLUXNET sites
where SWet is not recorded. B04 and field data suggest
that the relationship between SHF and SWet is usually
stronger than that for LHF and SWet, but the GLACE
models do not exhibit that characteristic. (The models
do agree with observations that NLH and NSH have
similar relationships with SWet, with NLH being
slightly stronger.) Likewise, the relationship between
SWet and PLCL and between SHF and PLCL found by
B04 is generally borne out in the observations, but
poorly represented by many of the GLACE models.
Most models simulate too high a PLCL, which is consis-
tent with the excessive simulated surface temperatures.
Most GCMs appear not to simulate properly the cou-
pling between the land surface and atmospheric bound-
ary layer in midlatitude summer. Several GLACE mod-
els show too weak a relationship, and the ECMWF
model of B04 along with a few of the GLACE models
appear to be too strongly coupled. Thus, perhaps, the
multimodel estimate of land surface coupling strength

1196 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 7



is not an unreasonable approximation of reality. It
should be noted that the results of B04 were based on
data from the 40-yr European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis
(ERA-40), whereas the GLACE models were not con-
strained by data assimilation. Nudging of the state vari-
ables would not affect the calculation of fluxes, but
could limit the range of SWet or alter the apparent
relationship between SHF and PLCL, since PLCL is a
function of near-surface temperature and dewpoint. It
is unclear what affect this might have on the apparent
coupling strength of the ECMWF model. Stated an-
other way, the GLACE models may appear poor in this
comparison not because the parameterizations under-
lying land–atmosphere coupling are poor, but because
biases in the climate model shift the model climates into
unrealistic regimes at the validation sites.

Large-scale relationships for precipitation over the
conterminous United States also show that the multi-
model mean represents quite well the observed behav-
ior of lagged autocorrelations of pentad rainfall. Per-
sistence of categorical anomalies in monthly rainfall
during boreal summer across Northern Hemisphere
midlatitudes is also well represented by the multimodel
mean. There is again a large degree of variation among
models in the strength of these metrics for precipitation
memory, but the results of K03 and KS04 suggest that
the land surface is a likely culprit in supplying this per-
sistence to the precipitation signal.

Overall, it appears that there is still much that can be
done to improve the behavior (i.e., the parameteriza-
tions) related to land–atmosphere interactions in the
GCMs widely used for weather and climate prediction
and research. Variations among models can arise for
many, often subtle reasons having to do with details of
the parameterizations and the interplay of components
and tunings of the models (Teuling and Troch 2005).
Liu et al. (2005) have shown what can be accomplished
toward improved model performance simply by consid-
ering the land and atmosphere parameters together in
existing parameterizations when calibrating coupled
models. The multimodel approach like that of GLACE
is not an antidote but does alleviate the symptoms of
individual model errors and biases.

We cannot disprove the results of GLACE over the
limited areas where there are sufficient data to estimate
locally the land–atmosphere coupling strength. Rather,
we can argue that we still do not have sufficient data to
quantify the actual strength of coupling between land
and atmosphere. Long-term collocated measurements
of SWet, surface fluxes, and near-surface meteorology
should be distributed around the globe in order to aid
model development and assess the potential for SWet

as a predictor for climate via land–atmosphere feed-
back. In the mean time, land–atmosphere model devel-
opment efforts could benefit by paying more attention
to local validation of land surface and boundary layer
parameterizations with available in situ data.
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