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ABSTRACT

Soil moisture memory is a key aspect of land–atmosphere interaction and has major implications for
seasonal forecasting. Because of a severe lack of soil moisture observations on most continents, existing
analyses of global-scale soil moisture memory have relied previously on atmospheric general circulation
model (AGCM) experiments, with derived conclusions that are probably model dependent. The present
study is the first survey examining and contrasting global-scale (near) monthly soil moisture memory
characteristics across a broad range of AGCMs. The investigated simulations, performed with eight differ-
ent AGCMs, were generated as part of the Global Land–Atmosphere Coupling Experiment.

Overall, the AGCMs present relatively similar global patterns of soil moisture memory. Outliers are
generally characterized by anomalous water-holding capacity or biases in radiation forcing. Water-holding
capacity is highly variable among the analyzed AGCMs and is the main factor responsible for intermodel
differences in soil moisture memory. Therefore, further studies on this topic should focus on the accurate
characterization of this parameter for present AGCMs. Despite the range in the AGCMs’ behavior, the
average soil moisture memory characteristics of the models appear realistic when compared to available in
situ soil moisture observations. An analysis of the processes controlling soil moisture memory in the
AGCMs demonstrates that it is mostly controlled by two effects: evaporation’s sensitivity to soil moisture,
which increases with decreasing soil moisture content, and runoff’s sensitivity to soil moisture, which
increases with increasing soil moisture content. Soil moisture memory is highest in regions of medium soil
moisture content, where both effects are small.

1. Introduction

Soil moisture memory, in essence the fact that the
soil can “remember” a wet or dry anomaly long after

the conditions responsible for the anomaly are forgot-
ten by the atmosphere, is a key aspect of land–
atmosphere interactions and has major implications for
seasonal forecasting. Indeed, due to its inherent
memory, soil moisture is one of the major “slow” driv-
ers of the climate system and possibly the chief source
of forecast skill for summer precipitation over land in
the midlatitudes (Koster et al. 2000). A detailed under-
standing of the processes controlling soil moisture
memory is therefore necessary for assessing the predict-
ability associated with soil moisture on subseasonal to
seasonal time scales, and for characterizing important
mechanisms impacting land–atmosphere interactions
on these scales.
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Various studies have investigated soil moisture
memory characteristics either from observations (e.g.,
Vinnikov and Yeserkepova 1991; Vinnikov et al. 1996;
Entin et al. 2000; Wu et al. 2002) or from integrations
with land surface models (LSMs) or atmospheric gen-
eral circulation models (AGCMs; e.g., Delworth and
Manabe 1988; Liu and Avissar 1999a; Koster and
Suarez 2001; Schlosser and Milly 2002; Mahanama and
Koster 2003; Wu and Dickinson 2004). The observa-
tional studies, necessarily bound in scope by the limited
spatial and temporal availability of the soil moisture
measurements and by the lack of observations of
evaporation, have generally focused on the analysis of
anomaly decay time scales for local soil moisture ob-
servations, combined in some cases with inferences
from simple analytical models (e.g., Liu and Avissar
1999b; Albertson and Kiely 2001). The modeling stud-
ies, taking advantage of the extensive data available
from comprehensive model simulations, have focused
instead on a more global and detailed understanding of
the processes controlling soil moisture memory in the
framework of a given AGCM or LSM with the caveat
of the possible model dependency of the results ob-
tained. A way to address the issue of model depen-
dency is to analyze such properties for a number of
models in a common framework and to thereby estab-
lish the effects of specific model characteristics and bi-
ases on the simulated soil moisture memory. This is the
main purpose of the present study.

This investigation is the first survey examining and
contrasting soil moisture memory characteristics across
a broad range of AGCMs. The investigated simula-
tions—16-member ensembles spanning 1 June to 31
August for eight different AGCMs—were generated as
part of the Global Land–Atmosphere Coupling Experi-
ment (GLACE; Koster et al. 2004a, 2006; Guo et al.
2006). For the analysis of the simulations, we use an
approach proposed by Koster and Suarez (2001, here-
after referred to as KS01) that relates soil moisture
autocorrelation within a climate model to various cli-
matic and model characteristics. This allows us to relate
the simulated soil moisture memory within each
AGCM to its representation of specific physical pro-
cesses and feedback mechanisms.

The structure of the paper is as follows. Section 2
describes the analysis framework of this study (model
data and the KS01 soil moisture memory equation).
Section 3 gives a brief evaluation of the atmospheric
forcing generated in the analyzed simulations, as well as
a description of mean climatic and hydrological char-
acteristics of the AGCMs. Section 4 describes the over-
all soil moisture memory characteristics of the AGCMs,
and section 5 presents an analysis of the AGCMs’ soil

moisture memory using the KS01 framework. Then,
section 6 discusses the dependence of soil moisture
memory on the soil moisture regime, and section 7 pre-
sents a brief combined evaluation of soil moisture
memory and land–atmosphere coupling in the perspec-
tive of soil moisture initialization for seasonal forecast-
ing. Finally, the main conclusions are given in section 8.

2. Analysis framework

a. Employed data from GLACE

The analyzed simulations are taken from GLACE, a
recent project investigating the strength of land–
atmosphere coupling in AGCMs. As part of this experi-
ment, three ensembles of simulations spanning 1 June–
31 August were conducted by a number of different
AGCMs, using different specifications for the land–
atmosphere coupling (full coupling, partial coupling,
and no coupling). In the present study, we investigate
the soil moisture characteristics of the control experi-
ments (with full coupling, i.e., “ensemble W”) for eight
of the participating AGCMs: Community Atmospheric
Model version 3 (CAM3), Canadian Centre for Climate
Modelling and Analysis (CCCma), Commonwealth
Scientific and Industrial Research Organisation Con-
formal Cubic version 3 (CSIRO-CC3), Center for
Ocean–Land–Atmosphere (COLA), AGCM used in
the Climate and Radiation Branch at the National
Aeronautics and Space Administration Goddard Space
Flight Center (NASA GSFC) (GEOS-CRB), Hadley
Centre Atmospheric Model version 3 (HadAM3), Na-
tional Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS), and NASA Seasonal-
to-Interannual Prediction Project (NSIPP). The main
characteristics of these eight AGCMs are detailed in
Tables 1 and 2). Some GLACE models are excluded
from this study because they did not provide the full
complement of necessary data for our calculations.

The analyzed ensemble, consisting of 16 members
differing only in their initialization, is essentially a stan-
dard set of AGCM simulations with prescribed sea sur-
face temperature (SST). The SST boundary conditions
for the integrations are the observed conditions in 1994,
a year not characterized by either El Niño or La Niña
conditions. Note then that the impact of interannually
varying SSTs on soil moisture memory, which can be
particularly strong in the Tropics (Koster et al. 2000), is
not analyzed in this study. For the initialization of the
ensemble simulations, GLACE participants were pro-
vided with various approaches that ensured that the
initial conditions would not be artificially similar be-
tween the ensemble members. The soil wetness fields
analyzed here were computed in a consistent way for all
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AGCMs, as the vertically integrated soil moisture
above the wilting point divided by the maximum allow-
able soil moisture above the wilting point. For a more
detailed description of the experimental design and the
analysis of AGCMs’ land–atmosphere coupling
strength, please refer to Koster et al. (2004a, 2006) and
Guo et al. (2006).

b. Soil moisture autocorrelation equation

Delworth and Manabe (1988) pioneered the study of
soil moisture memory in AGCMs, using a first-order
Markov process model to relate memory to potential
evaporation and soil water-holding capacity. KS01 pro-
vide a more comprehensive equation that relates soil
moisture autocorrelation to several features of the in-
vestigated model, including the sensitivity of runoff to
soil moisture, land–atmosphere feedbacks, and season-
ality. Note that under various simplifying assumptions
(e.g., assuming that soil moisture memory is mostly
controlled by evapotranspiration) the equation simpli-
fies to the result of Delworth and Manabe (1988). The
derivation of the KS01 soil moisture autocorrelation
equation is briefly presented in this subsection. Please
refer to KS01 for a more detailed description.

KS01 assume that the water balance for the soil col-
umn of a typical LSM, for the time period [n, n � 1]
(e.g., month) of year1 y, can be written (in the absence
of snow) as

Cswn�1,y � Cswn,y � Pn,y � En,y � Qn,y , �1�

where Cs is the column’s water-holding capacity, wn

(“soil wetness”) is the average degree of saturation in
the column as a whole [value at the beginning of time
period (n, n � 1)], P is precipitation, E is the total
evaporation (i.e., transpiration, bare soil evaporation,
and interception loss), and Q is the total runoff (includ-
ing both surface and subsurface runoff). Here Pn,y, En,y,
and Qn,y are accumulated fluxes during the time period
(n, n � 1).

Following the approach of Koster and Milly (1997),
KS01 approximate the dependence of scaled evapora-
tion and runoff on soil moisture with simple empirically
fitted linear functions:

Qn,y

Pn,y
� a�wn,y � wn�1,y

2 � � b, and �2�

En,y

Rn,y
� c�wn,y � wn�1,y

2 � � d. �3�

In the above equation, Rn,y is the accumulated net ra-
diation during the time period (n, n � 1) (normalized
by the latent heat of vaporization, to have the same
units as E); note that Rn,y is used instead of potential
evaporation for the normalization of actual evaporation
due to the lack of information about potential evapo-
ration from the models and even its proper definition
(KS01). The empirically derived, model-specific param-
eters a, b, c, and d are established for each AGCM and
at each grid point through analysis of the simulations.

Equations (2) and (3) are substituted into (1). Then,
by separating w, P, and R into their mean components

1 For the present study, y corresponds to each ensemble mem-
ber.

TABLE 1. AGCM–LSM combinations corresponding to the simulations analyzed in this paper.

Model Resolution General LSM characteristics

CAM3 (Collins et al. 2004; Bonan et al.
2002; Oleson et al. 2004)

T42, 2.8° � 2.8° Community Land Model version 3 (CLM3). Complete water
and energy budget. Impact of vegetation is explicitly
parameterized. Subgrid-scale processes are accounted.

CCCma (McFarlane et al. 1992; Boer et al.
1992; Verseghy 1991)

T32, 3.75° � 3.75° Canadian Land Surface Scheme (CLASS). Complete water and
energy budget. Impact of vegetation is explicitly parameterized.

COLA (Kinter et al. 1997; Xue et al. 1991;
Dirmeyer and Zeng 1999)

T63, 1.875° � 1.875° Simplified Simple Biosphere model (SSiB). Complete water and
energy budget. Impact of vegetation is explicitly parameterized.

CSIRO-CC3 (McGregor and Dix 2001;
McGregor 1996; Kowalczyk et al. 1994)

2° � 2° Soil-canopy scheme. Complete water and energy budget. Impact
of vegetation is explicitly parameterized. Subgrid-scale processes
are accounted.

GEOS-CRB (Conaty et al. 2001; Sud and
Walker 1999a,b; Mocko and Sud 2001)

2.5° � 2° HY-SSiB (a version of SSiB). Complete water and energy budget.
Impact of vegetation is explicitly parameterized.

HadAM3 (Pope et al. 2000; Cox et al. 1999;
Essery et al. 2003)

3.75° � 2.5° MOSES2. Complete water and energy budget. Impact of
vegetation is explicitly parameterized. Subgrid-scale processes
are accounted.

NCEP GFS (Kalnay et al. 1996; Moorthi
et al. 2001; Pan and Mahrt 1987)

T62, 1.875° � 1.875° Oregon State University (OSU) LSM. Complete water and energy
budget. Impact of vegetation is explicitly parameterized.

NSIPP (Bacmeister et al. 2000; Koster and
Suarez 1992, 1996)

2.5° � 2° Mosaic LSM. Complete water and energy budget. Impact of
vegetation is explicitly parameterized.
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for the given time of year and corresponding anomalies,
subtracting the equation mean, and ignoring higher-
order terms, the following (semi-implicit) equation for
the autocorrelation of soil moisture between the time
steps n and n � 1 can be derived:

� �
cov�wn, wn�1�

�wn
�wn�1

�
�wn

�wn�1 ��2 �
cRn

Cs
�

aPn

Cs

2 �
cRn

Cs
�

aPn

Cs

� �
cov�wn, Fn�

�wn

2 � ,

�4�

where F is a combination of forcing terms and model
parameters, depending linearly on P and R. For discus-
sion purposes, we also present here the explicit form of
Eq. (4), since it can be more easily interpreted:

� �
�wn

�wn�1
��1 �

cRn

Cs
�

aPn

Cs
� �

cov�wn, Fn�

�wn

2 �. �5�

Equation (4), and its explicit form (5), thus break down
soil moisture memory into contributions from four
separate terms: (�wn

/�wn�1
), (cRn /Cs), (aPn /Cs), and

[cov(wn, Fn) /�2
wn

]. The term (�wn
/�wn�1

) represents the
seasonality of soil moisture (changes in soil moisture
variance from one month to the next), the terms (cRn /
Cs) and (aPn /Cs) represent the sensitivity of evapora-
tion and runoff on soil moisture content, and the term
[cov(wn, Fn) /�2

wn
] is a function of the covariance of soil

moisture and subsequent forcing, thus reflecting both
the memory of external forcing and land–atmosphere
feedbacks.

From Eq. (5), soil moisture memory is seen to de-
crease with increasing values of (cRn /Cs) and (aPn /Cs):
indeed, in cases of high values of these two terms, posi-
tive anomalies in soil moisture will be associated with
subsequent positive anomalies of evaporation or runoff
(with same forcing), which will in turn reduce the origi-
nal soil moisture anomaly and thus induce a reduction
of soil moisture memory for this given time period.
Conversely, the term [cov(wn, Fn) /�2

wn
] induces an in-

crease in soil moisture memory, since it is associated
with land–atmosphere feedbacks and/or memory in the
forcing. Finally the term (�wn

/�wn�1
) acts to increase or

decrease the impact of the three other terms, thus ei-
ther enhancing or damping their effects. In section 5,
we will examine the magnitude of these four terms in
the investigated AGCMs for (near) monthly time lags
and show how they explain the geographical and inter-

model variations in simulated soil moisture memory.
Variations of these terms with soil moisture regime and
consequent impacts on soil moisture memory will be
discussed in section 6.

As a final note, the linearizations underlying (2) and
(3) necessarily imply simplifications in the analysis. Soil
moisture has distinct upper and lower bounds, and the
complex control of these bounds on memory are effec-
tively captured here in a simple way by the evaporation
and runoff sensitivity terms, which become very large
as the lower or upper bound, respectively, is ap-
proached. A more complex framework—one that more
explicitly treats these bounds and other nonlinearities
and thresholds in the soil moisture problem—could be
desirable for some regions, as results with stochastic–
dynamical models suggest (e.g., Laio et al. 2001; Por-
porato and D’Odorico 2004). Nonetheless, the frame-
work of (4) does allow its own complex elements of
analysis. For example, it explicitly distinguishes several
factors contributing to soil moisture memory, and be-
cause the linear regressions in (2) and (3) are per-
formed independently at each grid point, it does not
presuppose the same dependency of evapotranspiration
and runoff on soil moisture at each location. Previous
studies (KS01; Mahanama and Koster 2003) have dem-
onstrated that (4) is generally a good approximation of
soil moisture autocorrelation in a LSM or AGCM
framework, despite the complexity of the problem.

3. Mean climate and biases of the AGCMs

In this section, we present the mean climatic and
hydrological characteristics of the analyzed simulations
as well as a brief evaluation of the precipitation and net
surface radiation fields for the AGCMs’ mean. (A more
detailed validation of individual model biases will be
provided in section 5c). This examination will be useful
for interpreting the results of the soil moisture memory
analysis. Note that for all calculations involving evapo-
ration in this study, we use a water-balance estimate of
E [derived as Pn,y � Qn,y � Cs(wn�1,y � wn,y)], as the
evaporation outputed by some models did not always
correspond to soil areas (e.g., due to lakes in the NSIPP
model). Note as well that for all computations, the first
8 days of each simulation are disregarded in order to
avoid spinup problems in the atmospheric part of the
simulations (the spinup of soil moisture is not an issue
given the design of the GLACE experiments). For the
computation of the AGCMs’ average, the NCEP grid
(highest resolution so as not to lose information; see
Table 1) was chosen as the common grid and the values
of the other AGCMs were interpolated to this common
grid.
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Figure 1 shows observed [June–August (JJA)] pre-
cipitation and net surface radiation (left) and the cor-
responding simulated fields averaged over the eight
analyzed AGCMs (right), for the whole analysis period.
The radiation observations correspond to a 7-yr (1984–
90) climatology from the Surface Radiation Budget
(SRB) dataset; the precipitation observations are taken
from the Global Soil Wetness Project (GSWP) forcing
data (climatology for 1983–95) and thus reflect a com-
bination of Global Precipitation Climatology Centre
(GPCC; Rudolf et al. 1994) and Global Precipitation
Climatology Project (GPCP; Huffman et al. 1997) esti-
mates (see Zhao and Dirmeyer 2003 for details). Note
that the AGCMs’ precipitation fields are generated for
a single set of prescribed SSTs, while the observations
cover many years and thus reflect many different sets of
SSTs. Thus, some portion of the biases shown may sim-
ply reflect SST-induced rainfall variations and not nec-
essarily model error. This is particularly true in the

Tropics, where SSTs have a significant impact on inter-
annual rainfall variations.

Precipitation is on average well simulated in the
models, with a proper placement of high- (Southeast
Asia, equatorial Africa, northern tip of South America)
and low- (deserts) precipitation areas. Some bias is
found in the northern high latitudes (Alaska, Siberia),
where the AGCMs tend on average to overestimate
precipitation. Net surface radiation is also relatively
well captured, but there are clear positive biases, par-
ticularly in the eastern United States, as well as across
Eurasia. Thus, in the mean, precipitation and radiation
appear to be fairly well simulated in the models. A
discussion of individual model biases will be provided
in section 5c.

Figure 2 displays further average climatic and hydro-
logical characteristics of the AGCMs over the analysis
period. As expected, the mean AGCMs’ soil moisture
in the midlatitudes and the Tropics is generally high in

FIG. 1. (top left) Observed rainfall (GSWP forcing data; JJA) (mm day�1); (top right) AGCMs’ average simulated rainfall (mm
day�1); (bottom left) observed net radiation (ISLSCP SRB data; JJA) (W m�2); and (bottom right) AGCMs’ average simulated net
radiation (W m�2).
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FIG. 2. (top left) AGCMs’ average simulated soil moisture; (top right) AGCMs’ average simulated monthly changes in soil moisture;
(middle left) AGCMs’ average simulated evaporation (mm day�1); (middle right) AGCMs’ average simulated runoff (mm day�1);
(bottom left) AGCMs’ average simulated air temperature (°C); and (bottom right) AGCMs’ average water-holding capacity Cs.
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the regions of high precipitation. The relatively high
values found in the northern high latitudes are likely
linked with snowmelt. Regions experiencing large in-
creases in soil moisture over the 3-month simulation
period are found in the Tropics and monsoon regions of
Asia, Africa, and North America, whereas those expe-
riencing large reductions in soil moisture are generally
in the midlatitudes. Evaporation is generally high in
regions of high soil moisture content and warm air tem-
perature, and also appears correlated with water-
holding capacity. Note that evaporation is high even in
regions experiencing an increase in soil moisture over
the simulated three-month period (e.g., Southeast Asia,
equatorial Africa). Runoff, for its part, is high mostly in
Southeast Asia, particularly in the Ganges region.

4. Overall soil moisture memory characteristics of
the AGCMs

Soil moisture autocorrelations are computed for each
AGCM (from the 16 ensemble simulations) for three
27-day periods delimited at the following time steps: 9,
36, 63, and 90 (the GLACE data being available as
daily output). They are then averaged over these three
periods. Again, the first 8 days of each simulation are
disregarded. The autocorrelations are computed in two
ways: (a) directly from the models’ soil moisture values
on the four indicated days, and (b) using (4). In this
section, we will first analyze the overall soil moisture
memory characteristics of the AGCMs [point (a)] and
present a brief validation of these results with soil mois-
ture observations. A more detailed analysis using the
KS01 framework [point (b)] follows in section 5.

a. Geographical variations in soil moisture memory

The 27-day autocorrelation fields �27 computed di-
rectly from the soil moisture fields for each model
[point (a) above] are averaged to produce the multimo-
del estimate of memory shown in Fig. 3 (top). Given the
lack of ground observations of soil moisture and the
potential for biases associated with the analysis of any
individual model alone, this represents to a large extent
the “best” present global estimate of this quantity, as
simulated in current AGCMs. On average, the models
are characterized by high soil moisture memory in mid-
latitude regions and by low soil moisture memory in
tropical regions. Interestingly, almost all regions of low
soil moisture memory are also characterized by high
precipitation (Fig. 1) and high mean soil moisture (Fig.
2), and are therefore typically humid regions. Note the
asymmetric distribution of low soil moisture memory

regions around the equator, due to the 3-month period
under consideration (boreal summer). Regions of low
soil moisture memory extend far to the north in East
Asia, linked with the monsoon climate of this region.
Similarly, the North American monsoon system
(NAMS) region (Mexico, southern United States) dis-
plays lower soil moisture memory than the rest of
North America.

An indication of the intermodel differences in soil
moisture memory (and thus of the uncertainty of the
multimodel average presented in the top plot of Fig. 3)
is the standard deviation of �27 among the models (Fig.
3, bottom). Strikingly, the largest spread appears in re-
gions displaying low soil moisture memory. This sug-
gests that there is less agreement on soil moisture
memory characteristics in humid climates among the
models. A more detailed discussion of intermodel dif-
ferences in soil moisture memory will be provided in
section 5c.

FIG. 3. (top) AGCMs’ average values of �27; (bottom) std dev
of �27 among AGCMs.
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b. Comparisons with soil moisture observations

As mentioned earlier, there are only few ground ob-
servations of soil moisture available for the analysis of
regional soil moisture memory characteristics. It is
nonetheless interesting to evaluate to which extent the
multimodel estimate of Fig. 3 (top) agrees with the
available observations. We compare here regional or
basinwide averages of soil moisture observations with
the AGCMs’ results. The observations are taken from
Hollinger and Isard (1994) for Illinois and from the
Global Soil Moisture Data Bank (Robock et al. 2000)
for the Amur, Dnepr, Don, Ob, and Volga River ba-
sins. The regional and basinwide average values were
compiled for use in previous studies (Seneviratne et al.
2004; Hirschi et al. 2006). Note that we compare here
values for 27-day periods (simulations) and 30-/31-day

periods (observations). One should therefore expect
the simulation values to be slightly biased high com-
pared to the monthly observations. Moreover, the ob-
servations are taken for a fixed soil depth (down to 1 m
for the measurements in the former Soviet Union, and
down to 2 m in Illinois), while we consider the total
column of available soil water (as defined in section 2)
in the AGCMs.

The top part of Fig. 4 displays the boxes used for the
analysis, while the bottom part displays histograms of
�27 for each AGCM (light gray bars), together with the
multimodel AGCM estimate (black bar) and the ob-
served monthly autocorrelation value (dark gray bar).
In general, the models are close to the observations and
are able to distinguish between regions of low or high
soil moisture memory. Note that the models’ average
value agrees generally well with the observations, par-

FIG. 4. (top) Regional boxes used for comparison with soil moisture observations: Illinois (USILL), Dnepr
(DNE), Don, Volga (VLG), Ob, and Amur (AMU); (bottom) histograms of soil moisture autocorrelation for all
AGCMs (�27; light gray bars), the AGCMs’ average (black bar), and the observations (�monthly; dark gray bar) in
the regional boxes defined above.
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ticularly in the Amur, Dnepr, Don, and Volga River
basins.

This comparison also pinpoints a few outliers among
the analyzed AGCMs. The CAM3 AGCM clearly un-
derestimates soil moisture memory in Illinois. In gen-
eral the COLA and NSIPP AGCMs tend to have low
soil moisture memory in many regions, likely due to
their comparatively low values of Cs (see section 5d).
The CSIRO-CC3 AGCM, which has relatively high val-
ues of Cs, tends for its part to have a positive bias in soil
moisture memory. These intermodel differences and
the relevance of model biases for the simulated soil
moisture memory will be discussed in more detail in
sections 5c and 5d, respectively.

Despite the presence of outliers, the comparisons
with the available observations are encouraging, in par-
ticular given the scale discrepancy between the AGCM
simulations and the point-scale observations used for
the basin averages. These results suggest that in the
mean the analyzed AGCMs correctly capture the pro-
cesses controlling soil moisture memory in the consid-
ered regions.

5. Analysis of soil moisture memory with KS01
autocorrelation equation

In this section, we investigate the soil moisture
memory characteristics of the simulations using the
KS01 soil moisture memory Eq. (4). Again, we analyze
soil moisture memory characteristics averaged over
three 27-day periods (see section 4). Hence, the 27-day
average fluxes and the daily soil moistures at the be-
ginning and end of each 27-day period were used to
compute the terms in Eq. (4). We will first compare the
equation estimates of soil moisture memory with the
actual soil moisture memory of the models, in order to
validate the chosen framework. Then, the AGCMs’
mean soil moisture characteristics as well as intermodel
differences and geographical variations in soil moisture
memory will be investigated.

a. Agreement of autocorrelation equation with
simulated soil moisture memory

Figure 5 displays maps of the AGCMs’ 27-day-lagged
soil moisture autocorrelation, of the corresponding
values of soil moisture autocorrelation computed with
Eq. (4), and of their difference. The white areas on the
plots correspond to regions covered with snow or per-
manent ice, or to grid points characterized with soil
moisture variance of zero due to peculiarities of the
individual models. The limited sample size (48 points)
used in the calculation of autocorrelations in this paper

necessarily leads to some error in the autocorrelation
estimates [in addition to the errors associated with the
approach itself, and in particular the linearization as-
sumptions made in (2) and (3)]. Monte Carlo analysis
shows that the root-mean-square error (RMSE) of an
autocorrelation estimate based on a sample size of 48
ranges from 0.15 for low autocorrelations (0.1–0.2) to
0.13 for high autocorrelations (0.8–0.9). The areas
shaded in gray in the plots correspond to errors of be-
low 0.15.

For most regions and models, Eq. (4) represents a
very good approximation of the AGCMs’ soil moisture
memory. The intermodel and intramodel variations in
soil moisture memory are both clearly captured. There
are only a few discrepancies, mostly in Southeast Asia
(CCCma, CSIRO-CC3, and HadAM3) and in the
northwestern part of South America (CCCma, CSIRO-
CC3, GEOS-CRB, and HadAM3). The very good
agreement between the AGCMs’ simulated soil mois-
ture memory and the autocorrelation values derived
with Eq. (4) confirms previous results with the NSIPP
AGCM and uncoupled land surface models (KS01; Ma-
hanama and Koster 2003) showing that (4) is an appro-
priate framework for analyzing model and regional dif-
ferences in simulated memory.

b. Equation terms: Average across models

To assess the relative impact of the four terms of Eq.
(4), Fig. 6 displays maps of (�wn

/�wn�1
), [cov(wn, Fn) /

�2
wn

], (cRn /Cs), and (aPn /Cs), averaged across the mod-
els. For the analysis and intercomparison of these
terms, it is helpful to keep in mind the explicit form of
(4), that is, (5). In the top two plots, values contributing
to an increase in soil moisture memory are shaded in
warm colors and values contributing to a decrease in
soil moisture memory are shaded in cold colors; the
opposite is true for the two bottom plots. One should
note that due to all the nonlinearities involved, these
AGCMs’ average equation terms provide only a rough,
flawed estimate of the AGCMs’ average autocorrela-
tions when recombined in (4) (not shown). Nonethe-
less, the averages of the terms are still of interest, since
they provide a first-order look at what controls the
global distribution of soil moisture memory.

A comparison of Fig. 6 (top) with Fig. 3 reveals that,
except for the NAMS region, areas of low soil moisture
memory are generally associated with high values of
(aPn /Cs). This is consistent with the aforementioned
fact that low soil moisture memory values are generally
found in humid areas (equatorial and tropical regions,
monsoon regions), where one expects the runoff’s sen-
sitivity on soil moisture to be the highest. Note, none-
theless, that in these areas the evaporation sensitivity
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FIG. 5. (left) Maps of simulated 27-day-lagged autocorrelation of total profile soil moisture �27 in the eight
AGCMs. (middle) Corresponding maps of �27(comp) as estimated with Eq. (4). (right) Differences, i.e., estimated
autocorrelations minus simulated autocorrelations.
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term (cRn /Cs) can often be almost as large as (aPn /Cs)
and therefore also contributes to lowering soil moisture
memory. Interestingly, areas characterized by high val-
ues of (cRn /Cs) are generally not systematically charac-
terized by low soil moisture memory, which may seem
surprising given the magnitude of this term across the
globe in Fig. 6. This is generally due to a compensation
by the seasonality term (western part of northern
United States and Canada, southern Europe, and cen-
tral Asia). Explanations for this behavior will be dis-
cussed in section 6b. Reductions of soil moisture
memory due to (cRn /Cs) are nonetheless clear in south-
central North America (more or less coincident with
the NAMS region), in the Sahel, and in India. The sea-
sonality term (�wn

/�wn�1
) reduces memory only in the

Sahel region, western Mexico, central India, and Sibe-
ria. It is high during boreal summer over Northern
Hemisphere areas with Mediterranean climates (winter
wet, summer dry) and in some cases semiarid climate
(central Asia), and in Southern Hemisphere monsoon
regions that are in their dry season. Finally, this analysis
shows that the values of the [cov(wn, Fn) /�2

wn
] term for

the AGCMs’ mean are generally small (which might be

due in part to the nonaccounting of interannual varia-
tions of SST in the experimental design; see section 2a)
and that the geographical distribution of this term is
similar to that of the 	 factor representative of the
coupling strength of the models (Koster et al. 2004a,
2006; see also section 7); this latter point highlights the
importance of land–atmosphere feedbacks as opposed
to externally induced memory in the forcing for this
term. Note that, because of its link with evapotranspi-
ration (e.g., Guo et al. 2006), this term often impacts a
slight compensation of the evaporation sensitivity term
(cRn /Cs) in regions of high land–atmosphere coupling.

c. Equation terms: Intermodel differences

Figure 7 displays maps of the standard deviation
among the AGCMs of the terms (�wn

/�wn�1
), [cov(wn,

Fn) /�2
wn

], (cRn /Cs), and (aPn /Cs). These maps can be
seen as the uncertainty of the multimodel estimates dis-
played in Fig. 6.

The standard deviation of the equation terms is in
general highest for higher values of the terms. Note that
high deviations in the equation terms can sometimes be
caused by only one anomalous AGCM. This is for in-

FIG. 6. Maps of mean AGCMs’ values of (top left) (�wn
/�wn�1

); (top right) [cov(wn, Fn) /�2
wn

]; (bottom left)
(cRn /Cs); and (bottom right) (aPn /Cs).
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stance the case for (�wn
/�wn�1

): The high values and
high standard deviation of this term in North America
and central Asia are mostly caused by very high values
of this term for the GEOS-CRB AGCM (not shown).
Also, most of the high values in the standard deviation
of the [cov(wn, Fn) /�2

wn
] term are due to very high val-

ues in the CAM3 model, which reflect low variance of
the soil wetness term rather than land–atmosphere
feedbacks (not shown). In the case of the (cRn /Cs) and
(aPn /Cs) terms, high standard deviations generally re-
flect a discrepancy between a larger number of models
(not shown).

To investigate such intermodel differences in more
detail, we now focus on the analysis of five selected
regions with location displayed in Fig. 8: south-central
North America (SCNA), equatorial Africa (EQAF),
northern India (NIND), Southeast Asia (SEA), and the
Volga River basin (VLG). These regions were chosen
in order to sample a wide range of soil moisture memory
characteristics. Figures 9 and 10 display for each AGCM
and the AGCMs’ mean the average values in these five
regions of �27, �27(comp), (�wn

/�wn�1
), An [see Eq. (4)],

[cov(wn, Fn) /�2
wn

], (cRn /Cs), (aPn /Cs), (Cs /1000) (water-
holding capacity in meters), and the r2 values of the

FIG. 8. Boxes used for the regional analysis: south-central North America (SCNA), equatorial
Africa (EQAF), northern India (NIND), Southeast Asia (SEA), and Volga (VLG).

FIG. 7. Maps of standard deviation among the AGCMs of (top left) (�wn
/�wn�1

); (top right) [cov(wn, Fn)/�2
wn

];
(bottom left) (cRn /Cs); and (bottom right) (aPn /Cs).
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FIG. 9. Regional analyses in the boxes defined in Fig. 8 (SCNA, EQAF, and NIND).
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linear regressions performed in order to determine a
and c [Eqs. (2) and (3)].

For all five regions, �27(comp) is a good estimate of �27.
Despite slight overestimations in the SEA and NIND
regions, �27(comp) is seen to capture both intermodel and
regional differences in �27, as previously discussed in
section 5a. Note that this is the case despite the fact that
the r2 values of the linear regressions are not extremely
high in most regions. Concerning the r2 values, Monte

Carlo simulations show that estimates of a and c
(slopes) with an r2 exceeding 0.08 are significantly dif-
ferent from zero at the 95% level (not shown). This
significance test is satisfied for both a and c in all five
regions (and indeed across most of the globe; not
shown).

Interestingly, intermodel differences in soil moisture
memory can be as large as regional differences in this
quantity. Water-holding capacity is seen to be an im-

FIG. 10. Regional analyses in the boxes defined in Fig. 8 (SEA and VLG).
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portant factor for such intermodel differences, in par-
ticular for the NSIPP AGCM, which has low values of
Cs and corresponding low values of soil moisture
memory in many of the considered regions. Note that
the effect of Cs on intermodel variations in soil mois-
ture memory is particularly clear in the SCNA, NIND,
and VLG regions.

As previously analyzed for the AGCMs’ mean be-
havior, the terms (cRn /Cs) and (aPn /Cs) are the most
important of the four terms of Eq. (4) in controlling soil
moisture memory for the various models and regions.
The An term, which approximately corresponds to [1 �
(cRn /Cs) � (aPn /Cs)] [see (5)] is seen indeed to be
closely correlated with the �27 and �27(comp) values. The
term [cov(wn, Fn) /�2

wn
] is generally small (possibly due

in part to the nonaccounting of interannual SST varia-
tions; see section 2a), while the term (�wn

/�wn�1
) is gen-

erally close to 1. Thus, these two terms have only a
small impact on overall soil moisture memory.

d. Importance of AGCMs’ biases for simulated soil
moisture memory

An important question is the extent to which the
simulated soil moisture memory of the AGCMs is dis-
torted by model biases (e.g., Mahanama and Koster
2005). Here we focus on biases in atmospheric forcing
(precipitation, radiation), as well as on water-holding
capacity (for which no globally complete observations
exist). The AGCMs’ biases in atmospheric forcing are
displayed in the left and middle columns of Fig. 11, and
the water-holding capacity of the AGCMs is displayed
in the right column of Fig. 11. The observational
datasets described in section 3 are used for the assess-
ment of the biases in atmospheric forcing.

As for the AGCMs’ mean (section 3), precipitation is
generally well represented in the individual models.
One should note, however, that the GEOS-CRB
AGCM presents a negative precipitation bias in North
America, and that various models display positive pre-
cipitation biases in Southeast Asia (CCCma, COLA,
CSIRO-CC3, GEOS-CRB, and NCEP). Biases in net
surface radiation are significant, particularly for certain
models: The COLA AGCM exhibits a high positive
bias globally, while the GEOS-CRB AGCM has a large
positive bias in Eurasia and in the eastern part of North
America. At least in the case of the COLA AGCM, this
radiation bias appears to be possibly linked with an
underestimation of soil moisture memory (Fig. 5).

Water-holding capacity is highly variable among the
AGCMs. For the same regions, differences can be as
large as 1000 mm for some pairs of models. This is of
course of major relevance for simulated soil moisture
memory, as previously seen for selected regions (Figs. 9

and 10). Note that for the COLA and NSIPP AGCMs
the distribution of �27 across the globe (Fig. 5) is highly
correlated with variations in water-holding capacity.
The importance of water-holding capacity can be easily
understood if one considers Eqs. (4) and (5) and the
impact of Cs on the terms (cRn /Cs) and (aPn /Cs). A
comparison of the original soil moisture autocorrela-
tion values with estimates derived using (4) with ob-
served precipitation and radiation fields as well as the
AGCMs’ mean water-holding capacity for each model
shows that, for the set of models analyzed here, inter-
model differences in Cs contribute more to intermodel
differences in memory than do intermodel differences
in forcing biases or land surface sensitivity (not shown).
This is particularly true for the COLA and NSIPP
AGCMs (see above).

6. Dependence of soil moisture memory on
climate regime

In this section, we address in more detail the depen-
dency of the simulated soil moisture memory on the
regional climate regime as characterized by the average
soil moisture content.

a. Simulated and computed soil moisture memory

Figure 12 displays plots of �27 and �27(comp) as func-
tions of soil wetness for each AGCM. (A simple bin-
ning procedure produced the curve shown for each
model.) As expected, a sharp decrease in soil moisture
memory is seen at high soil wetness values. Similar
though more muted behavior is also seen for the soil
moisture memory estimates derived with (4), as the
right panel demonstrates. Interestingly, more than half
of the models (CCCma, CSIRO, GEOS-CRB,
HadAM3, and NCEP) exhibit a small decrease in soil
moisture memory at low soil wetness, in addition to the
decrease at high soil wetness. This thus results in a
bell-shaped relationship between soil moisture memory
and soil moisture content, with highest soil moisture
memory values at intermediate soil wetness.

Note that the sharp decrease in �27 with increasing
soil moisture, as well as the anomalous behavior of the
CAM3 AGCM, explains the high variability in �27

found in humid regions, as identified in Fig. 3 (bottom).
One should remark, however, that there are fewer grid
points at high soil moisture than at low and intermedi-
ate soil moisture, which is responsible for some of the
erratic behaviors in the tails; this is particularly relevant
for the models with low resolution (see Table 1), as well
as for CAM3, which is characterized by dry conditions
over most of the globe. Given the parameterization
specificities of CAM3, the soil wetness index used here
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FIG. 11. (left) Biases in net surface radiation, (middle) biases in precipitation, and (right) water-holding capacity
of the AGCMs (Cs).
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(section 2a) might not be the best estimate of prevailing
soil moisture conditions for this model. A better esti-
mate might likely be the “BTRAN” (
t) parameter,
which ranges from one when the soil is wet to near zero
when the soil is dry and depends on the root distribu-
tion of the plant functional type and the soil water po-
tential of each soil layer (Oleson et al. 2004). A recom-
putation of the soil moisture memory values for CAM3
using the 
t parameter yields qualitatively similar re-
sults as the ones found for the other AGCMs (not
shown).

b. Equation terms

Figure 13 displays the dependency of the equation
terms (cRn /Cs), (aPn /Cs), (�wn

/�wn�1
), and [cov(wn, Fn) /

�2
wn

] on soil moisture. The most striking features of
these plots are the exponential increase of (cRn /Cs) at
low soil moisture values and the exponential increase of
(aPn /Cs) at high soil moisture values. Thus, considering
Eqs. (4) and (5), one can conclude that the decrease of
soil moisture memory in humid regions can be linked
with increases in the runoff sensitivity term (aPn /Cs),
while the decrease of soil moisture memory at low soil
wetness for the five AGCMs identified above is linked
with increases in the evaporation sensitivity term (cRn /
Cs). The remaining three AGCMs (CAM3, COLA, and

NSIPP) present somewhat different characteristics. As
previously mentioned, the CAM3 AGCM’s behavior is
presumably affected by the use of soil wetness instead
of BTRAN for this analysis. The COLA and NSIPP
AGCMs, while similar to the other five models at high
soil moisture, differ from the others at low soil mois-
ture, and also present a different dependency of (cRn /
Cs) on soil moisture. This might be due in part to their
relatively low values of Cs, or (in the case of COLA) to
a bias in radiation forcing (see section 5d).

With regards to (�wn
/�wn�1

) and [cov(wn, Fn) /�2
wn

],
though these terms were generally found to be less im-
portant than (aPn /Cs) and (cRn /Cs) in defining the geo-
graphical distribution of soil moisture memory, Fig. 13
shows that they can be important for some soil moisture
regimes and models. One particularly striking aspect is
the behavior of the seasonality term (�wn

/�wn�1
), which

in general increases at low and high soil moisture values
and thus impacts a partial compensation of the evapo-
ration and runoff sensitivity terms [see Eq. (5)]. This
effect was also identified—mostly for the evaporation
sensitivity term—in the analysis of the average model
values of the equation terms in section 5b. Therefore,
the seasonality term is not proportional to soil moisture
memory, despite being a multiplying factor in (4) and
(5); instead, its main impact appears to be a compen-

FIG. 12. Distribution of �27 and �27(comp) as functions of soil moisture (computed as bins for given soil moisture
ranges).
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sation of the effects of the other terms. Note that these
compensating mechanisms at the low and high ends of
soil wetness can be well understood if one considers the
effects of the evaporation’s and runoff’s sensitivity

terms at those extremes. As discussed in section 2b,
both terms induce reductions of initial soil moisture
anomalies (thereby reducing soil moisture memory).
Therefore, whenever these terms are large, they will

FIG. 13. Distribution of (cRn /Cs), (aPn /Cs), (�wn
/�wn�1

), and [cov(wn, Fn) /�2
wn

] as functions of soil moisture
(computed as bins for given soil moisture ranges).
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induce a reduction of variance during the time period
(n, n � 1) and hence high values of (�wn

/�wn�1
). Figure

13 suggests that this effect is more important in deter-
mining the value of the seasonality term than possible
reductions linked with increased forcing variance dur-
ing the time period (n, n � 1) [e.g., (�wn

/�wn�1
) � 1; see

Fig. 5 in KS01].
In summary, despite the spread among the AGCMs,

this analysis shows that common features can be iden-
tified in the relationship between soil moisture memory
and soil moisture regime. Soil moisture memory is low-
est in humid areas, and also decreases at low soil mois-
ture values. Its variations are mostly determined by the
evaporation (dry regimes) and runoff (wet regimes)
sensitivity terms, with some compensation effects by
the seasonality and covariance terms. Overall, soil
moisture memory is highest in regions of intermediate
soil moisture, where both the evaporation and runoff
sensitivity terms are small. Finally, the compensation
mechanisms identified between the seasonality and the
evaporation and runoff sensitivity terms are found to be
important for extreme low and high values of soil wet-
ness and suggest that soil moisture memory cannot be
understood simply as a sum of the effects of the four
terms of Eq. (4), but that interrelations between these
terms also need to be taken into account.

7. Soil moisture memory and land–atmosphere
coupling

A main motivation for investigating soil moisture
memory characteristics across the globe is the possible
use of soil moisture initialization for seasonal forecast-
ing. The potential of soil moisture for seasonal forecast-
ing is likely to be highest in regions where both soil
moisture memory and land–atmosphere coupling are
important. In this section, we very briefly investigate
where such regions are likely to be located.

The yield of an estimate of land–atmosphere cou-
pling across the globe was one of the main aims of the
GLACE project (Koster et al. 2004a). Since these esti-
mates are available for the simulations analyzed in this
study, we can easily compare them with the average soil
moisture memory of the AGCMs. Figure 14 displays in
the top panel the average values of 	(P, S) � 	(P, W)
for the eight models investigated here. For a detailed
description of the 	 parameter and the land–
atmosphere coupling analysis of the GLACE simula-
tions, please refer to Koster et al. (2004a, 2006) and
Guo et al. (2006). For our present analysis, it suffices to
see 	(P, S) � 	(P, W) as an estimate of the strength of
land–atmosphere coupling in the AGCMs and how pre-
cipitation is impacted by this coupling. Note that the

average 	(P, S) � 	(P, W) obtained for the eight
AGCMs analyzed here is very close to the values ob-
tained for the whole set of GLACE simulations (12 in
total; see Koster et al. 2006). This gives us thus some
confidence that the subset of simulations considered in
the present paper is representative of the whole
GLACE ensemble. As discussed in Koster et al. (2004a,
2006), some regions of high land–atmosphere coupling
(or “hot spots”) are easily recognizable from the aver-
age 	(P, S) � 	(P, W) values: the central Great Plains
of North America (also NAMS region), northern India,
the Sahel region, as well as equatorial Africa.

The bottom plot of Fig. 14 displays the quantity [	(P,
S) � 	(P, W)]*�27. This can be considered as an esti-
mate of the “seasonal forecasting potential,” or a com-
bination of strong soil moisture memory and strong
land–atmosphere coupling. Interestingly, though this
picture is very similar to the one for 	(P, S) � 	(P, W)
only, there are a few differences. In particular, while the
formerly identified hot spots of land–atmosphere cou-
pling are naturally again clearly highlighted, other re-
gions appear to have both a combination of high soil

FIG. 14. (top) Mean 	(P, S) � 	(P, W) of the eight AGCMs
investigated. (bottom) Mean 	(P, S) � 	(P, W) of the eight
AGCMs multiplied by the average �27 values of the models.
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moisture memory and high land–atmosphere coupling:
for instance the Mediterranean and Danube regions in
Europe, which are known for a propension to extended
drought periods. Note as well that the hot spot regions
do not all present the same soil moisture memory and
thus potential for seasonal forecasting: [	(P, S) � 	(P,
W)]*�27 in the Sahel and equatorial Africa regions is
about as high as in the Great Plains, while 	(P, S) �
	(P, W) was much higher in the former than in the
latter. This thus confirms that the Great Plains of North
America is a region with particularly high potential for
using soil moisture initialization in seasonal forecasting
(e.g., Koster et al. 2004b).

8. Summary and conclusions

In this study, we have investigated the (near)
monthly soil moisture memory characteristics of eight
AGCMs, utilizing simulations from the GLACE ex-
periment. This survey is the first of its kind, in that it
investigates global soil moisture memory for a range of
AGCMs instead of focusing on a single-model analysis.
The main value of such a multimodel analysis is that 1)
it allows us to determine the extent to which previous
results obtained in single-model analyses might apply to
a larger number of models; 2) it can help identify causes
for intermodel differences in memory behavior; and 3)
averaging the memory results across a number of mod-
els provides an estimate of the global memory distribu-
tion (something that cannot be obtained from observa-
tions) that is much less affected by the model-
dependent deficiencies or biases that weaken single-
model analyses.

The results of this investigation show that the
AGCMs present relatively similar global patterns of
soil moisture memory. Outliers are generally character-
ized by anomalous water-holding capacity or biases in
radiation forcing. Despite the range in the AGCMs’
behavior, the average soil moisture memory character-
istics of the models appear realistic when compared to
available in situ soil moisture observations.

We use here the analysis framework proposed by
KS01 for analyzing and identifying the main processes
controlling soil moisture memory in the models. Equa-
tion (4) is obtained through a linearization of the de-
pendency of the evaporation and runoff fractions on
soil moisture. While this is of course an important sim-
plification, the results of this multimodel analysis con-
firm previous results from KS01 and Mahanama and
Koster (2003) demonstrating that (4) is a good approxi-
mation of simulated soil moisture memory. More de-
tailed analyses comparing these results with, for ex-
ample, stochastic–dynamical models (e.g., Laio et al.

2001; Porporato and D’Odorico 2004) lie outside the
scope of the present study, but could offer useful per-
spectives for future studies.

The analysis of the four terms of (4) reveals that soil
moisture memory in the models is mostly controlled by
the evaporation (cRn /Cs) and runoff (aPn /Cs) sensitiv-
ity terms. For a majority of the AGCMs, soil moisture
memory is controlled by (aPn /Cs) in humid areas and
by (cRn /Cs) in dry areas. It is highest in regions of in-
termediate soil moisture content, where both terms are
small. The seasonality term has less impact on the over-
all soil moisture memory, but is seen to partly compen-
sate for the effects of these two terms, particularly in
extreme dry and wet regimes. Land–atmosphere feed-
back is rarely large enough to affect overall soil mois-
ture memory, except in regions with strong land–
atmosphere coupling.

One should of course note a few caveats of our study.
First, these results are derived for boreal summer only.
The relative importance of the four terms is likely to
vary over the course of the year. Second, the GLACE
experiments analyzed here use a relatively quiescent
(i.e., neither El Niño nor La Niña conditions) year for
the prescription of global SSTs (see section 2a). In the
Tropics, the impact of interannually varying SSTs on
soil moisture memory can be particularly strong (Ko-
ster et al. 2000), and thus could also impact the values
of the four terms, particularly the covariance term. Im-
pacts in other regions cannot be excluded either. A
third point is the fact that we focused on (near) monthly
soil moisture autocorrelation, while it is possible that
the relative strength of the controls described with (4)
could be dependent upon the lag chosen. Such aspects
could be the focus of future, more detailed studies on
this issue.

Finally, our analysis shows that water-holding capac-
ity is highly variable among the analyzed AGCMs and
is the main factor responsible for intermodel differ-
ences in soil moisture memory. While the importance
of the water-holding capacity for simulated soil mois-
ture memory is not per se a surprising result (e.g., Del-
worth and Manabe 1988; Milly and Dunne 1994), of
interest is the fact that the AGCMs utilize a wide va-
riety of values for this parameter, with correspondingly
strong impacts on simulated memory. This suggests that
further research on this topic should first focus on the
accurate determination of this parameter before com-
plex process analyses can be performed with confi-
dence, a fortiori when based on single-model experi-
ments. Eventually, an improvement of the soil moisture
and evaporation measurements’ networks might help
reduce the uncertainty still remaining among present
AGCMs.
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