Monthly Difference in the Boreal Winter El Nino Precipitation Response Over North America:
Insights into Why January Is More Difficult to Predict than February
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Introduction Is the GPH/SLP anomaly over the west NA a response to the tropical ENSO What significantly drives the Jan. climatology over the North Pacific/America?
The boreal winter precipitation during El Nifio are not constant but vary during the course of the season heating? Answer by stationary wave model (SW|V|) Exp. Focus on the observed stationary wave propagating to the Pacific. Examine the response of the SWM to the
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Strong negative anomalies | _ [cd- ' &sw : Canada (S. Alaska). i S T Ao 1. The Jan. predictions of precipitation over North America during El Nino are significantly less skillful.
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