Implementation of the University of Miami Wave model (UMWM) into the NASA/GMAO Goddard Earth Observing System Model (GEOS)

Anton Darmenov1, Shuyi Chen2, Atanas Trayanov3, Milan Curcic2, Aishwarya Raman3 and Ravi Govindaraju1,3

1. Abstract
Wind generated waves are integral element in air-sea interactions and affect exchange of momentum, heat, water, gases and production of marine aerosol. Motivated by the need to resolve the air-sea interface we have implemented the University of Miami Wave model (UMWM) into the NASA/GMAO Goddard Earth Observing System Model (GEOS). The implementation of the wave model in GEOS aimed to facilitate coupling with the atmosphere and ocean model components with minimal changes to the existing system, while at the same time ensure correctness of the predicted wave energy spectrum and wave diagnostics. Here we describe the implementation of the GEOS/UMWM system and show results from model experiments and verifications. This work is a step toward development of a coupled atmosphere-wave-ocean GEOS system.

2. Implementation of the UMWM wave model in GEOS
The wave model physics (wind input, wave dissipation and non-linear wave interactions) was wrapped into an ESMF gridded component that operates over salt-water tiles and contains the wave model state. The wave model dynamics (propagation and refraction of waves) was wrapped into an ESMF gridded component that operates on the ocean grid. This approach allows the wave model to run on different types of grids and effectively enables 2D decomposition of the global domain and should scale better than the 1D decomposition used in the stand-alone UMWM.

3. Development of a coupled atmosphere-waves-ocean system
• The wave model can be run in a one-way or two-way coupled component in GEOS.
• Preliminary results suggest that in the two-way coupled configuration near-surface winds increase globally by 0.3-0.4 m/s and significant wave height increase by 0.25 m when compared to results from the one-way system.
• We have also implemented and tested two sea-state based parameterizations of sea-salt emissions and coupled them with the GOCART aerosol model in GEOS enabling higher order interactions between the waves and atmospheric aerosols and clouds.

4. GEOS/UMWM modeling experiments
The GEOS/UMWM was run at horizontal resolutions from 50km up to 13km, and with 36 directional bins and 37 wave frequency bins (0.0313Hz - 2Hz). Significant wave height (SWH) in hindcast experiments was found to be in a good agreement with observations from the National Data Buoy Center (NDBC).

Significant wave height at fixed buoy locations from the NDBC network. Shown are SWH from the GEOS/UMWM system, standalone UMWM forced with MERRA2 winds, and reported NDBC values.

The implementation of a wave model in GEOS enables the use of physically based parameterizations of marine aerosol emissions and gas exchange between atmosphere and ocean. We have implemented two sea-state based emissions of sea salt particles:
1. O14 emission scheme - based on Odavnevaite et al. (2014) and Partanen et al. (2014)
2. D17 emission scheme - based on Deike et al. (2017) and Anguelova and Hwang (2012, 2016)

Monthly sea salt aerosol optical depth (AOD) in February, 2017 simulated with GOCART using the default/nominal (control) emission scheme in GEOS and the O14 and O17 sea-state based emissions. Also shown is sea salt AOD from the MERRA2 reanalysis.