
Evaluation of MERRA land surface estimates in preparation 

for the Soil Moisture Active Passive mission

Yonghong Yi1,2**, John S. Kimball1,2, Lucas A. Jones1,2, Rolf H. Reichle3, Kyle C. McDonald4

 

1Flathead Lake Biological Station, The University of Montana

 32125 Biostation Lane, Polson MT, USA, 59860-9659

2 Numerical Terradynamic Simulation Group, The University of Montana

Missoula MT, USA, 59812

3Global Modeling and Assimilation Office, NASA Goddard Space

Flight Center, Greenbelt, MD, USA, 20771

4 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove 

Drive, Pasadena CA, USA

Submitted to Journal of Climate August 2010

**Corresponding Author Address: Yonghong Yi

Flathead Lake Biological Station, The University of Montana

32135 Biostation Lane, Polson MT, USA, 59860-9569

Email: yonghong.yi@ntsg.umt.edu 



1

 

Abstract

We evaluated several land surface variables from the Modern-Era Retrospective analysis for 

Research and Applications (MERRA) product that are important for global ecological and 

hydrological studies, including daily maximum (Tmax) and minimum (Tmin) surface air 

temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and 

surface soil moisture. The MERRA results were evaluated against in-situ measurements, similar 

global products derived from satellite microwave (AMSR-E) remote sensing and earlier 

generation atmospheric analysis (GEOS-4) products. Relative to GEOS-4, MERRA is generally 

warmer (~ 0.5°C for Tmin and Tmax) and drier (~ 50 Pa for VPD) for low and middle latitude 

regions (< 50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-

E temperatures show relative large differences (> 3°C) in mountainous areas, tropical forest and 

desert regions. Surface soil moisture estimates from MERRA (0-2 cm depth) and two AMSR-E 

products (~ 0-1 cm depth) are moderately correlated (R ~ 0.4) for middle latitude regions with 

low to moderate vegetation biomass. The MERRA derived surface soil moisture also 

corresponds favorably with in situ observations (R = 0.53±0.01, p < 0.001) in the mid-latitudes, 

where its accuracy is directly proportional to the quality of MERRA precipitation. In the high 

latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in-situ 

observations. Our results suggest that satellite microwave remote sensing may contribute to 

improved reanalysis accuracy where surface meteorological observations are sparse and in cold 

land regions subject to seasonal freeze/thaw transitions. The upcoming NASA Soil Moisture 

Active Passive (SMAP) mission is expected to improve MERRA type reanalysis accuracy by 

providing accurate global mapping of freeze/thaw state and surface soil moisture with 2-3 day 

temporal fidelity and enhanced (≤ 9 km) spatial resolution. 
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1.   Introduction 

Errors in surface meteorological forcing data account for a significant portion of the 

uncertainty in ecosystem and hydrologic model simulations, particularly in regions of the globe 

with sparse surface observation networks (Zhao et al. 2006; Mu et al. 2009; Zhang et al. 2009).

These modeling efforts commonly utilize surface meteorological drivers obtained from satellite 

remote sensing, global climate model outputs or hybrid products (e.g., global atmospheric data 

assimilation systems, including re-analysis products) to define biophysical attributes and water, 

mass and energy exchanges (e.g., Running et al. 2004; Randerson et al. 2009).

Although atmospheric (re-)analysis products combine numerical modeling of atmospheric 

processes with conventional and satellite observations through data assimilation, uncertainty 

remains in several variables of interest for application in ecosystem and hydrological models 

(Berg et al. 2003; Sheffield et al. 2006; Zhao et al. 2006). Incident solar radiation drives the 

surface energy budget, land surface evaporation and photosynthetic uptake of CO2, whereas 

temperature and moisture availability determine rates of evapotranspiration, photosynthesis and 

ecosystem respiration (Churkina et al. 1999; Running et al. 2004). The diurnal range of surface 

air temperature is closely related to surface energy partitioning, surface moisture status and 

atmospheric humidity (Kimball et al. 1997), while surface air humidity determines atmospheric 

evaporative demand and cues stomatal regulation of canopy evaporative resistance (Running et 

al. 2004; Jolly et al. 2005). Significant uncertainties have been reported in global reanalysis 

products of shortwave radiation that are connected to the various cloud modeling schemes used 

in the reanalysis systems (e.g., Betts et al. 2006). Due to the typically coarse spatial resolution, 

reanalysis temperature fields can also be significantly biased over complex and heterogeneous 

terrain and locations with persistent cloud cover. Reanalysis soil moisture is highly dependent on 
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the underlying model parameterization and can vary significantly for different model-based 

products (Dirmeyer et al. 2004; Li et al. 2005).

The NASA GMAO’s (Global Modeling and Assimilation Office) most recent reanalysis

product, MERRA (Modern-Era Retrospective analysis for Research and Applications), is based 

on an updated modeling and assimilation system that ingests data from many modern observing 

systems and is expected to show advances in representing meteorological and hydrological 

processes over existing reanalyses (Rienecker et al. 2008). MERRA is currently being used as a 

surrogate for the development of future Level 4 soil moisture and carbon products to be 

generated by the NASA Soil Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010).

The SMAP mission will provide global measurements of surface soil moisture and freeze/thaw 

status, with improved (<10km) resolution over current satellite microwave remote sensing 

products available from the Special Sensor Microwave/Imager (SSM/I), Earth Observing System 

(EOS) Advanced Microwave Scanning Radiometer (AMSR-E), and the Soil Moisture and Ocean 

Salinity (SMOS) mission. In the Level 4 soil moisture algorithm, SMAP observations will be 

assimilated within a land surface data assimilation system that is being developed in the GEOS-5 

framework and thus shares many components with MERRA, including the basic structure of the 

land surface model. After launch, the GEOS system will provide major meteorological inputs for 

the generation of SMAP Level 4 soil moisture and carbon products, including surface air 

temperatures, incident solar radiation, humidity, and land surface parameters. Prior to launch, the 

SMAP Level 4 soil moisture and carbon algorithms are being developed and tested under the 

GEOS system to determine the additional value provided by SMAP observations over existing 

systems for understanding ecosystem and hydrological processes (Kimball et al. 2010; Reichle et 

al. 2010b). 
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As a first step towards the development of the SMAP Level 4 products, this study compares 

selected daily land surface parameters important for hydro-ecological modeling from MERRA 

with similar variables from the earlier generation GEOS-4 analysis, satellite passive microwave 

(AMSR-E) remote sensing retrievals and in situ measurements distributed around the globe. The 

objectives of this study were to 1) evaluate the uncertainty and relative accuracy of MERRA 

against in situ observations and the previous GEOS-4 analysis for selected land surface 

meteorological variables, and 2) examine relationships and accuracy differences between 

MERRA estimates and independent satellite microwave remote sensing products to clarify the 

potential value of the satellite observations for model assimilation and improvement of the 

analysis products. The variables examined in this study include daily incident solar radiation

(SWrad), maximum (Tmax) and minimum (Tmin) air temperatures, and vapor pressure deficit (VPD)

at ~2 m screen-level height, and surface soil moisture (0-2 cm depth). Precipitation, although one 

of the most important drivers of hydrological processes, is addressed by Reichle et al. (2010a) 

and Bosilovich et al. (2010), and is not explicitly addressed in this paper. This study focuses on 

global land areas with additional emphasis on northern high latitude regions (> 45°N), where 

terrestrial carbon, water and energy fluxes provide potentially important climate feedbacks and 

modeling efforts rely heavily on global reanalysis data. 

2.  Data 

The datasets and in-situ observations used for evaluation and validation of the MERRA land 

parameters in this study are summarized in Table 1. We evaluated GEOS-4 and MERRA surface 

meteorological data against AMSR-E (UM) daily air temperature retrievals and daily 

observations from the global WMO weather station network (Figure 1a); the WMO observations 

were also used to evaluate the accuracy of VPD from GEOS-4 and MERRA. The GEWEX-SRB 
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dataset and daily observations from a variety of in-situ stations (Figure 1b) were employed to 

evaluate solar radiation from GEOS-4 and MERRA. Surface soil moisture observations from 

AmeriFlux tower network sites (Figure 1b) were used to evaluate MERRA and two AMSR-E 

(UM and VU) surface soil moisture products. A brief introduction of the GEOS-4 and MERRA 

modeling system, and the AMSR-E land parameter retrieval algorithms is presented in this 

section. The Appendix provides additional descriptions of the datasets listed in Table 1 and 

further data processing information. 

a. GEOS-4 and MERRA 

In this section we provide a brief overview of the GEOS-4 and MERRA modeling and 

assimilation systems, while detailed descriptions of these systems are provided elsewhere 

(Bloom et al. 2005; Rienecker et al. 2008). GEOS-4 was the quasi-operational analysis system of 

the NASA GMAO (formerly Data Assimilation Office) from 2003 to 2006 (Bloom et al. 2005)

and has been widely used for global assessment of climate trends and inputs for hydrological and 

ecological studies (Betts et al. 2003; Zhao et al. 2006; Mu et al. 2009). Up until 2006, the GEOS-

4 analysis was used as the primary meteorological forcing for the NASA EOS MODIS 

(Moderate Resolution Imaging Spectroradiometer) MOD17 vegetation productivity algorithms 

(Zhao et al. 2006). The MOD17 algorithms are also being used with MERRA surface 

meteorology for development and testing of the SMAP L4 carbon algorithms (Kimball et al.

2009, 2010). Meteorological data from the GEOS-4.0.2 version were used for the current study. 

MERRA is a 30-yr reanalysis product generated by the GEOS-5.2.0 system (Rienecker et al. 

2008; http://gmao.gsfc.nasa.gov/research/merra/), and covering the modern satellite era from 

1979 to the present. The GEOS-5 Atmospheric General Circulation Model (AGCM) maintains 

the finite-volume dynamics from GEOS-4 but is also integrated with new packages, including 
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the Catchment Land surface model designed to improve hydrological cycle studies (see below). 

The GEOS-5 system was run at a horizontal resolution of 1/2° × 2/3° (latitude × longitude) and 

72 hybrid-sigma coordinate vertical levels to produce an observational analysis at 6-hour 

intervals, while the GEOS-4 system employs a 1° × 1.25° horizontal resolution (latitude × 

longitude) with 55 vertical levels. The new GEOS-5 system incorporates information from many 

modern Earth observations including SSM/I radiances, Atmospheric Infrared Sounder (AIRS) 

radiances and scatterometer-based wind retrievals, and is expected to improve over existing 

reanalysis products. Moreover, GEOS-5 primarily assimilates satellite raw radiance values using 

the Community Radiative Transfer Model (CRTM) rather than satellite retrievals employed by 

GEOS-4, except for single level cloud motion vector winds, precipitation and surface wind speed 

and column ozone estimates.

In GEOS-4, the data assimilation system was based on the Physical-space Statistical Analysis 

System (PSAS) and an interactive system (iRET) was used for assimilating TIROS Operational 

Vertical Sounder (TOVS) radiance data (Bloom et al. 2005). The new GEOS-5 system 

introduced the NCEP (National Centers for Environmental Prediction) Gridpoint Statistical 

Interpolation (GSI) scheme for the atmospheric assimilation to quantify differences between 

initial 6-hourly analysis fields and the background forecast model state. An Increment Analysis 

Update (IAU) was also used to reduce periodic perturbations of the analysis at the forecast 

initialization. 

The Community Land Model (CLM version 2) used in GEOS-4 is a traditional, layer-based 

model.  The GEOS-5 Catchment land surface model used in MERRA is designed to improve the 

treatment of land surface hydrological processes through explicit modeling of sub-grid scale soil 

moisture variability and its effect on runoff and evaporation (Koster et al. 2000). The basic 
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computational unit of the model is the hydrological catchment (or watershed), with boundaries 

defined by topography. Within each element, the vertical profile of soil moisture is given by the 

equilibrium soil moisture profile and deviations from the equilibrium profile in a 0-2 cm surface 

layer and 0-100 cm “root zone” layer; the spatial variability of soil moisture is diagnosed from 

the bulk water prognostic variables and statistics of the catchment topography. The Catchment 

model also includes a three-layer snow model that describes snow accumulation, melting, 

refreezing and compaction in response to surface meteorological conditions (Stieglitz et al. 2001).

b. Satellite microwave remote sensing algorithms

Satellite passive microwave remote sensing provides an effective method for large-scale 

mapping of surface temperature and soil moisture patterns, and is relatively insensitive to solar 

illumination, clouds and atmospheric aerosol effects. The AMSR-E sensor onboard the polar 

orbiting NASA EOS Aqua satellite has 1:30 AM/PM (descending/ascending orbit) equatorial 

crossings and has been providing global, multi-frequency microwave radiometric brightness 

temperature (Tb) measurements every 1-3 days since June of 2002. The AMSR-E sensor 

measures H and V polarization Tb at six frequencies spanning 6.9 GHz to 89.0 GHz. The two 

lower frequency channels (6.9 and 10.7 GHz) are sensitive to changes in surface soil moisture 

(within ~1 cm soil depth), whereas higher frequency (18.7, 23.8 and 36.5 GHz) channels are 

more suitable for surface temperature derivation owing to favorable Tb correlation with surface 

temperature (Njoku et al. 2003; Jones et al. 2007). 

Two AMSR-E land parameter products generated by the University of Montana (UM) and 

Vrijie Universiteit (VU) Amsterdam in collaboration with NASA were evaluated in this study.

The UM products (available from the National Snow and Ice Data Center, NSIDC, at 

http://nsidc.org/data/nsidc-0451.html) use a simple radiative transfer model to derive daily Tmin
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and Tmax and surface soil moisture retrievals based on gridded AMSR-E Tb data (Jones et al.

2009, 2010). The 18.7 GHz and 23.8 GHz frequencies are used to derive air temperatures, while 

surface soil moisture is derived separately using Tb at 6.9 GHz and 10.7 GHz. The radiative 

transfer model accounts for surface emissivity variations caused by vegetation roughness and 

inland and coastal open water bodies, and also for vertically integrated atmospheric water vapor, 

except for cloud liquid water effects. Differences in local timing of AMSR-E air temperature 

retrievals at ascending and descending overpasses and the timing of Tmax and Tmin are also 

accounted for (Jones et al. 2010). The UM AMSR-E retrievals are provided over land under non-

precipitating and snow- and ice-free conditions.

The VU soil moisture products (http://geoservices.falw.vu.nl/) use the Land Surface 

Parameter Model radiative transfer scheme to simultaneously determine surface soil moisture 

and vegetation water content from AMSR-E brightness temperatures (Owe et al. 2008). The VU 

soil moisture algorithms use AMSR-E L2A swath Tb inputs and surface soil moisture is derived

from the 6.9 and 10.7 GHz frequencies. The UM and VU AMSR-E soil moisture algorithms

differ in their solution for vegetation opacity, input temperature data, treatment of open water 

body effects, and detecting and screening of snow, frozen soils and radio frequency inference 

(RFI). The UM algorithms consider the effects of sub-grid scale open water variability on 

microwave emissivity and corresponding soil moisture retrievals, whereas the VU algorithms do 

not account for open water effects. The temperature retrievals are used to screen out frozen soil 

conditions in both algorithms (Owe et al. 2001; Jones et al. 2010), while an additional mask 

based on AMSR-E derived land surface freeze/thaw state is also used in the UM algorithms. 

Over dense vegetation, the ability of microwave remote sensing to detect surface soil moisture 

is limited. For both datasets (UM and VU), grid cells with 10.7 GHz frequency slant path 
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vegetation optical depth (VOD) values greater than 1.2 were excluded from the analysis. The 

UM algorithm produces overall larger VOD values than the VU algorithm, with more stringent 

screening of frozen conditions, which results in fewer available retrievals in the UM product for 

most vegetated land areas, especially in boreal regions. Previous research has highlighted 

differences in soil moisture retrievals between AMSR-E descending and ascending overpasses in 

the VU product (Owe et al. 2008; Draper et al. 2009). However, mean diurnal differences in soil 

moisture retrievals between ascending and descending overpasses for the VU and UM products 

are relatively small compared to soil moisture variability over longer (e.g. monthly to seasonal) 

time scales. Therefore, retrievals from ascending and descending overpasses were combined on a 

grid cell-by-cell basis for each product to improve global daily coverage. Soil moisture retrievals

at 6.9 GHz frequency were used exclusively except where strong 6.9 GHz RFI was detected

(Njoku et al. 2005); these areas included the contiguous USA, Japan and some areas in Middle 

East and India, whereby soil moisture retrievals at 10.7 GHz frequency were used instead.

3.  Results 

 In this section we summarize our results by variable type. Within each subsection, we first 

compare the relevant global data products (i.e. MERRA, GEOS-4, and AMSR-E), followed by

the validation against in situ observations. 

a. Incident solar radiation

The latitudinal distributions of mean difference and RMSD values between MERRA/GEOS-4 

and GEWEX-SRB SWrad daily estimates are presented in Figure 2, while the global patterns of 

these differences are shown in Figure 3a - b. MERRA generally overestimates SWrad relative to

the GEWEX-SRB, especially in the middle latitudes of both global hemispheres, with the largest 



10

differences occurring in South America and the Tibetan Plateau (> 3 MJ m-2 d-1). MERRA SWrad

estimates also show a small negative discrepancy in the tropics, mainly over northeastern 

Amazonia, portions of northern Africa and tropical western Pacific regions. In contrast, the 

GEOS-4 product generally underestimates SWrad relative to the GEWEX-SRB, with maximum 

differences in excess of 3 MJ m-2 d-1 in the high northern latitudes (> 60°N) and northern tropical 

deserts. The MERRA SWrad estimates show similar or slightly larger RMSD values (relative to 

the GEWEX-SRB) than the GEOS-4 product over most latitudes, although the GEOS-4 SWrad

results show a marked increase in RMSD values above approximately 60°N (Figure 2b).

The differences between MERRA/GEOS-4 and GEWEX-SRB daily SWrad estimates also 

show very different seasonal patterns (Figure 3c - f). MERRA generally overestimates SWrad

relative to the GEWEX-SRB over large areas during local summer but slightly underestimates 

SWrad in portions of the tropics, while differences between GEOS-4 and the GEWEX-SRB 

product are more spatially complex. In the austral summer (December to February, DJF), the 

MERRA SWrad estimates show a positive discrepancy (> 2 MJ m-2 d-1) for over 60% of Southern 

Hemisphere (SH) land areas. In contrast, GEOS-4 underestimates SWrad over most SH land areas 

during this period. The GEOS-4 results also underestimate SWrad in most of the northern mid-

latitudes, contrasting with a small positive discrepancy in MERRA SWrad for these regions 

during the DJF period. In the northern summer (July to August, JJA), MERRA shows a positive

SWrad discrepancy (> 2 MJ m-2 d-1) relative to the GEWEX-SRB over 45% of the Northern 

Hemisphere (NH) land area, mostly in mid-latitudes (30 ~ 60°N) including the Tibetan Plateau 

and northern Eurasia, but with a small negative discrepancy in portions of the northern tropics. A 

strong negative GEOS-4 SWrad discrepancy (> 2 MJ m-2 d-1) relative to GEWEX-SRB occurs 

during the JJA period for the northern high latitudes above 60°N and also in arid regions 
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including the Sahara desert and Arabian Peninsula. The GEOS-4 JJA results also slightly 

overestimate SWrad in most of the NH mid-latitudes, and portions of western Amazonia and 

central Africa. 

We also analyzed bias and RMSD values for MERRA and GEOS-4 SWrad estimates against 

available in situ observations within the Continental United States (CON-US; Figure 1b) for a 

two year period (2001-2002) as summarized in Figure 4. The latitudinal patterns of SWrad bias 

and RMSD values for MERRA and GEOS-4 against the CON-US in-situ data are similar to the 

previous global comparisons against the GEWEX-SRB results (Figures 2 and 3). MERRA shows

a mean positive bias of 1.43 MJ m-2 d-1, while GEOS-4 shows a mean bias of -0.92 MJ m-2 d-1. 

Both MERRA and GEOS-4 show similar mean RMSD values of approximately 4.0 MJ m-2 d-1

(Figure 4b).

The patterns of MERRA and GEOS-4 SWrad accuracy versus selected tower site observations 

in arid regions and northern high latitudes (> 60°N) are also consistent with the comparisons 

against GEWEX-SRB in those areas (Table 2). At these sites, MERRA generally shows higher 

correspondence and much reduced biases with the tower observations than GEOS-4. At the arid 

sites, the GEOS-4 SWrad estimates show large negative bias (> 2 MJ m-2 d-1) and RMSD values 

(4 ~ 5 MJ m-2 d-1) relative to the tower site observations, in contrast with a small positive bias (< 

1 MJ m-2 d-1) and low RMSD values in MERRA. At the northern sites, MERRA generally 

overestimates SWrad (0.3 ~ 1.5 MJ m-2 d-1) except at an Alaska site, while the GEOS-4 generally 

underestimates SWrad (0 ~ 3.63 MJ m-2 d-1) and shows large RMSD values (3.08 ~ 6.53 MJ m-2

d-1) with the exception of a Finland site.  

b. Surface air temperatures and vapor pressure deficit
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Global patterns of temporal correlations between MERRA and AMSR-E UM daily air 

temperature estimates are presented in Figure 5a - b. Overall, the two datasets show higher 

temporal correspondence for Tmax (R = 0.67, Figure 5a) than for Tmin (R = 0.62, Figure 5b) 

anomalies. The two temperature anomaly datasets show higher correspondence in the middle and 

high latitudes (> 30°N/S, except for portions of the Tibetan plateau), than in the tropics. Low 

correlations in tropical non-desert regions are partially explained by characteristically low 

temporal variability in the daily and seasonal temperature ranges. Lower correlations in tropical 

desert areas also reflect greater microwave emissivity variations in these regions that influence 

the AMSR-E (UM) temperature retrievals (Jones et al. 2010). However, the temperature 

climatology was calculated from a relatively short period (2003-2006), which may cause 

uncertainty in the temperature correlation analysis. 

MERRA shows an overall larger discrepancy relative to AMSR-E in Tmax, with mean

difference of -0.96°C and RMSD of 4.1°C, than in Tmin with mean difference of -0.39°C and 

RMSD of 3.4°C (Figure 5c - f). MERRA generally underestimates Tmax relative to AMSR-E for 

most NH areas but overestimates Tmax for most SH land areas. Relative large (> 3°C) differences 

can be found in mountainous areas such as the Tibetan Plateau and Western North America, and 

some desert regions such as the Sahara desert and Middle East. The overestimation in MERRA 

Tmax in SH areas, especially in South America, and different signs of differences in northern 

Amazonia and African rainforest areas are associated with the MERRA cloud patterns relative to 

GEWEX-SRB in those areas (Figure 3b). The MERRA and AMSR-E UM Tmin results also show 

a large negative discrepancy (> 3°C) in some arid and mountainous areas including the western 

US, portions of the Sahara desert, southern Africa and Australia.
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The latitudinal and seasonal distributions of mean differences between MERRA and GEOS-4 

daily Tmax, Tmin and VPD results are depicted in Figure 6. MERRA typically shows warmer and 

drier conditions in most of the low and mid-latitudes (< 50°N/S) during local summer relative to 

GEOS-4 (Figure 6a), which is consistent with the overall positive discrepancy in MERRA SWrad

relative to GEOS-4 (Figure 3). In these areas, MERRA shows large diurnal variations in 

temperatures with larger difference in Tmax than in Tmin, but a reduced dynamic range relative to 

GEOS-4 above 50°N in the boreal winter (DJF). The characteristically warmer temperatures of 

MERRA in the low and mid-latitudes generally result in larger MERRA VPD estimates in those 

areas for both seasons (Figure 6b). In the DJF period, MERRA shows generally warmer 

conditions in the SH region resulting in overestimation of VPD, and slightly wetter conditions

(higher actual vapor pressure, AVP) in the northern tropics resulting in a slight underestimation 

of VPD. In the JJA period, MERRA shows generally wetter and colder conditions in the 

southern tropics resulting in VPD underestimation, and warmer conditions in NH low and middle 

latitudes (< 40°N) resulting in VPD overestimation relative to GEOS-4. 

The latitudinal dependence of the mean bias and RMSD in relation to WMO in situ 

observations for the MERRA, GEOS-4 and AMSR-E UM Tmin and Tmax daily estimates is 

presented in Figure 7a - d. The bias patterns of the three products versus WMO stations are 

consistent with the differences among these products discussed above, although they have 

overall similar performance with latitudinal bias and RMSD values generally less than 2°C and 

4°C, respectively. GEOS-4 shows a reduced diurnal temperature range, especially in the northern 

tropics, with a general cold bias (> 2 °C) in the tropics for Tmax and an overall warm bias for Tmin; 

MERRA generally shows a warm bias for Tmax in most SH areas and a cold bias near the equator, 

and an overall warm bias for Tmin. The MERRA temperatures also show reduced biases and 
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RMSD values in the northern high latitudes (> 60°N) relative to GEOS-4. The uncertainty in the 

AMSR-E UM algorithms in desert areas may contribute to large biases and RMSD (> 3°C) 

values of the AMSR-E UM temperatures relative to WMO observations in the northern tropics, 

especially in Tmin. The three datasets also show generally larger biases in SH and tropical regions, 

which partially reflect the reduced number of available WMO stations in these areas.

Globally, the MERRA, GEOS-4 and AMSR-E UM datasets have a mean temperature bias of 

less than 1°C and RMSD of less than 4°C for both Tmax and Tmin relative to the WMO 

observations (Table 3). Among the three datasets, MERRA Tmax and Tmin results show the 

highest correlation (R > 0.9) and lowest RMSD (< 3°C) with the WMO observations. The 

MERRA results also show a warm bias (~ 1 °C) for Tmin, but no apparent bias for Tmax. The 

GEOS-4 results show a general cold bias for Tmax and warm bias for Tmin. The AMSR-E UM 

results show a warm bias for both Tmax and Tmin. It should be noted that these global statistics are 

weighted towards the NH middle latitudes, which have a much higher WMO station density than 

other areas. Also, the statistics at seasonal scales are not given because AMSR-E temperatures 

are largely constrained with frozen conditions and snow present and incomplete temporal 

coverage in the winter may introduce bias to global averages at different seasons.

 The biases of MERRA and GEOS-4 daily VPD estimates relative to the WMO observations 

show similar latitudinal patterns as the temperature comparisons (Figure 7e - f). The VPD biases 

are strongly influenced by MERRA/GEOS-4 daily air temperature biases, which introduce error 

into the saturated vapor pressure (esat) calculations used to compute VPD; these errors are 

compounded under warmer temperatures due to the near-exponential relationship between air 

temperature and esat. Therefore, larger biases (> 300 pa) and RMSD values in MERRA/GEOS-4 

VPD can be found in the tropics and SH middle latitudes. Comparatively, the biases in 
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MERRA/GEOS-4 AVP are smaller (< 100 pa, not shown). Globally, the MERRA VPD results 

have slightly higher correlation (R = 0.83), and lower bias and RMSD relative to the WMO 

observations (Table 3). As with the temperature results, the global AVP/VPD statistics are also 

weighted towards NH middle latitude regions.

c. Surface soil moisture

The MERRA daily surface soil moisture results show similar global patterns of 

correspondence with the two AMSR-E surface soil moisture products (Figure 8a, b). Relatively 

strong soil moisture correlations occur in areas with low to moderate vegetation cover and 

characteristically larger seasonal soil moisture variability (see below), including portions of India, 

the Sahel, Kazakhstan, Australia and the North Central US. The MERRA soil moisture results 

show overall higher correspondence with the AMSR-E VU data (R = 0.49) than the UM data (R

= 0.38), with negatively correlated pixels excluded from the statistics. Negative correlations

occur mostly in the VU product over the northern high latitudes, and in the Sahara desert region 

for the UM soil moisture product. 

The AMSR-E soil moisture retrievals are subject to greater uncertainty in the high latitudes 

and desert regions, which may partially explain the negative correlations between MERRA and 

AMSR-E soil moisture. The MERRA and AMSR-E VU soil moisture results show significant

negative correlations (p < 0.05) in high latitude boreal and arctic areas. These areas coincide with 

a relatively high fraction of open water cover in the summer (Figure 8c), which may adversely 

affect the VU soil moisture retrievals. The MERRA and AMSR-E UM soil moisture results also 

show relatively low correspondence in these regions. The AMSR-E retrievals for these northern 

areas are sparse relative to other regions due to screening of frozen conditions and high 

vegetation biomass. The characteristic dry conditions and low soil moisture variations in arid
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regions, e.g. Sahara desert, and large variability in microwave emissivity in these regions also 

cause low correspondence between MERRA and AMSR-E soil moisture. 

The MERRA surface soil moisture results generally show characteristic global patterns of soil 

moisture seasonal changes (Figure 9a - c). Most NH middle latitude areas show characteristically 

wet soils in the spring that dry out over the summer months, while in southeast Asia and the 

Indian peninsula soil moisture dynamics closely follow the tropical NH summer monsoon. Drier 

soils are observed in July in central and eastern Amazonia and Africa, which corresponds with 

the occurrence of the local dry season. In Australia, the MERRA surface soil moisture wets and 

dries in response to regional shifts in seasonal rainfall from northern areas in January to 

southeastern areas in July (Draper et al. 2009). 

The MERRA results show overall similar seasonal patterns as the two AMSR-E surface soil 

moisture datasets in the low and middle latitudes, but with generally stronger seasonal variation. 

(Figure 9d - i). For example, the characteristic patterns of spring wetting in central Asia and 

northern Europe, and gradual summer drying in the North Central US are evident in both

MERRA and AMSR-E results. The influence of local precipitation seasonality on surface soil 

moisture is also evident in the Indian Peninsula and Australia. Great uncertainty remains in both 

MERRA and AMSR-E soil moisture products in the high latitudes. In the northern latitudes, the 

AMSR-E soil moisture retrievals are largely constrained by seasonal frozen conditions. In 

contrast, the MERRA results show relatively high soil moisture levels in the boreal latitudes in 

April, including northern Siberia, which is still predominantly frozen at that time (Takala et al.

2009). The AMSR-E VU soil moisture results also show relatively high soil moisture in the 

northern high latitudes in April and July. This persistently wet state may be due to the influence 

of regionally extensive open water cover on the VU retrievals (e.g. Figure 8c).
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Table 4 summarizes the temporal correspondence between MERRA daily soil moisture and 

monthly precipitation estimates, and coincident in-situ measurements of these parameters at 26

selected tower sites across the CON-US region (< 50°N). Statistical correspondence was also 

assessed between the AMSR-E soil moisture retrievals and available in situ observations. The

MERRA surface soil moisture estimates show significantly better temporal correspondence with 

in situ soil moisture measurements than the two AMSR-E soil moisture products for all biome 

types except croplands, with the largest differences in correlations for high biomass sites (e.g. 

forests). The MERRA surface soil moisture results are significantly correlated (R = 0.53±0.01, p 

< 0.001) with observed soil moisture at all sites except for two sites composed of grassland and

cropland cover types. The correspondence between MERRA and in-situ surface soil moisture 

observations was not significantly different between forest and non-forest sites, although needle-

leaf forest (ENF) and woody savannah sites showed the strongest correspondence. Relatively

low correspondence between MERRA and observed soil moisture at the cropland sites may 

reflect human intervention activities such as irrigation. The MERRA monthly precipitation 

estimates correspond significantly (R > 0.6, p < 0.005) with the in-situ precipitation 

measurements at all sites. The relative agreement between MERRA and in situ precipitation is 

proportional to the correspondence between MERRA and in situ soil moisture results, which 

indicates that accurate representation of precipitation is a major determinant of MERRA soil 

moisture accuracy at these middle-latitude sites.

In contrast, the soil moisture accuracies of the two AMSR-E products are insignificantly 

different from each other at these sites and closely related to vegetation canopy biomass. The 

reduced seasonality of AMSR-E soil moisture retrievals due to masking of higher vegetation 

canopy biomass (VOD) conditions, especially in densely vegetated areas (e.g. ENF), and the 
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relatively shallow (~ 1cm) AMSR-E sensing depth reduce correlations with the in-situ 

observations. The use of a combined 6.9 and 10.7 GHz soil moisture dataset to reduce RFI 

impacts in the CON-US region should have only a minor influence on the correlation analysis. 

The two frequency soil moisture retrievals have similar spatial and temporal characteristics and 

marginal differences relative to differences between these shallow soil layer measurements and 

the deeper in situ soil layer measurements of the tower sites (Draper et al. 2009). 

The above analysis indicates that precipitation plays a major role in MERRA soil moisture 

modeling in the mid-latitudes. However, other factors may also impact MERRA soil moisture 

accuracy in mid- and high latitude regions. Additional evaluation of the daily surface soil 

moisture time series was conducted at two tower sites representing woody savanna (~ 31.8°N) 

and boreal forest (~ 53.9°N) land cover types (Figure 10). Figure 10a represents a woody 

savannah tower site in Arizona (USSRM, 31.821°N, 110.866°W). The MERRA soil moisture 

results correspond favorably with in-situ soil moisture measurements for this site (R = 0.70, p < 

0.001). The two AMSR-E soil moisture datasets respond to all major rainfall events (R > 0.55, p 

< 0.001) but show much greater daily variability than the site observed soil moisture series. The 

discrepancy between MERRA and in-situ soil moisture is primarily due to differences between 

MERRA and in-situ precipitation (not shown). MERRA over-predicts local precipitation (> 20 

mm) at the site from January to March and also in September (not shown), resulting in relative 

high MERRA surface soil moisture during these two periods. The USSRM site has an annual 

rainfall of 300 mm with a desert monsoon climate and most precipitation comes from single 

cloud cell type summer rainfall events. Therefore, a large precipitation discrepancy between a 

coarse-resolution reanalysis product such as MERRA and local point observations can be 

expected. The two AMSR-E products represent a shallower soil depth (≤ 1 cm) layer than the in-
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situ measurements (≤ 5 cm) and thus show a higher frequency wetting and drying response. The 

larger temporal variability in AMSR-E surface moisture may also reflect diurnal Tb and moisture 

differences between descending and ascending overpasses (Draper et al. 2009) that are neglected 

in the daily surface soil moisture composite. 

 Figure 10b represents a boreal old jack pine forest tower site in Saskatchewan (CA-OJP, 

53.916°N, 104.692°W). The AMSR-E retrievals are strongly constrained at this cold site due to

seasonal snow cover and frozen soil conditions in winter and high biomass (VOD) in the summer. 

We present only the AMSR-E VU data because the AMSR-E UM data produce relatively larger 

VOD levels, resulting in more extensive screening and an insufficient number of retrievals at this 

forest site. The AMSR-E VU (~ 1 cm depth) soil moisture series still show greater daily 

variability than the in-situ observations (≤ 15 cm depth) and are not available during the summer 

due to high VOD. The MERRA soil moisture results at this site generally correspond with the 

observed temporal variability and seasonal dry-down of the in-situ soil moisture measurements 

during the annual non-frozen period (R = 0.62, p < 0.001). However, MERRA shows a soil 

moisture increase 2-3 weeks early relative to site observations in the spring, indicating an earlier 

spring thaw in the model, even though MERRA slightly underestimates surface air temperature 

(bias = 2.66°C) before April for this site (not shown). MERRA also shows generally higher soil 

moisture levels during the winter frozen season relative to the other seasons at the CA-OJP site, 

which is consistent with MERRA global patterns showing generally high soil moisture levels 

under predominantly frozen northern conditions in early spring (e.g. Figure 9a).

4. Discussion

The results of this study indicate that the MERRA reanalysis provides overall improved 

predictions of land surface processes, with significant improvements in the northern high 
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latitudes relative to the GEOS-4 products and currently available estimates from satellite 

microwave remote sensing. The improvement in MERRA cloud modeling relative to GEOS-4 

contributes to better accuracy in MERRA land surface parameters including incident solar 

radiation and air temperatures. Accurate prediction of precipitation and application of the 

Catchment land surface contribute to the favorable comparisons between MERRA and other soil 

moisture datasets, though great uncertainty still persists in both MERRA and AMSR-E soil 

moisture in the high latitudes.

The comparisons between MERRA/GEOS-4 and GEWEX-SRB solar radiation indicate that 

MERRA has a very different cloud pattern from GEOS-4, with reduced SWrad uncertainty in the 

northern deserts and high latitudes. MERRA generally overestimates SWrad in the mid- latitudes

but underestimates SWrad in the equatorial regions relative to the GEWEX-SRB. The

comparisons between MERRA and GPCP (Global Precipitation Climatology Project)

precipitation (Bosilovich et al. 2010) indicate that MERRA is affected by a sparse cloud effect in 

most of the middle latitudes and an excessive cloud effect in the tropics, which could explain the 

above discrepancy in SWrad. In contrast, GEOS-4 generally underestimates SWrad relative to the 

GEWEX-SRB, especially in the northern high latitudes and NH arid regions (e.g. Sahara desert 

and Arabian Peninsula). Previous validation studies showed that GEOS-4 produced excessive 

precipitation throughout the globe, especially in the tropics, and thus had overall excessive cloud 

effects (Bloom et al. 2005). Previous comparisons between GEOS-4/MERRA and GPCP 

precipitation also indicated that the overestimation of tropical precipitation is greatly reduced in 

MERRA relative to GEOS-4 (Bosilovich et al. 2008, Bosilovich et al. 2010), which is consistent 

with the reduced uncertainty in MERRA SWrad compared with GEOS-4 in these areas. The 

reason why GEOS-4 greatly underestimates SWrad (> 4 MJ m-2 d-1) in northern (> 60°N) areas
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during the boreal summer is uncertain from the current study, but may be caused by a deficiency 

in GEOS-4 cloud modeling in the high latitudes (Bloom et al. 2005). It should be noted that the 

GEWEX-SRB data were generated using GEOS atmospheric moisture and temperature profiles 

as background (first guess) estimates; the three datasets are therefore not completely independent. 

However, although the GEWEX-SRB version 3.0 dataset from this study utilized temperature 

and moisture profiles from the GEOS-4 system, the GEWEX-SRB algorithms also use additional 

information from satellite visible and infrared radiances and likely provide better cloud estimates

than GEOS-4.  

The cloud modeling and observation systems in GCMs have great impact on modeled land 

surface parameters, including air temperatures and VPD presented in this study. MERRA 

generally shows warmer and drier conditions (high air temperatures and VPD) relative to GEOS-

4 and WMO observations especially in the SH and northern tropics, which is consistent with 

generally greater solar radiation and reduced clouds in MERRA. In contrast, GEOS-4 generally 

shows a reduced diurnal temperature range and cold bias in Tmax in these areas, which is also 

consistent with GEOS-4 generally showing more cloud cover than MERRA throughout the globe. 

The MERRA and GEOS-4 products show a large temperature discrepancy (> 3 °C) in the 

northern high latitudes (> 60°N), while comparisons against WMO station observations indicate

that MERRA has a reduced temperature bias in these areas. The VPD discrepancy between 

MERRA and GEOS-4 is mainly caused by the air temperature biases, especially in warmer areas. 

Both datasets show reduced biases relative to WMO stations for temperatures and VPD in the 

northern middle latitudes, but larger biases in the SH and tropics. The heterogeneity of surface 

observations (mostly Radiosonde) assimilated in GEOS systems may partly account for this 
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difference, where NH land areas (especially North America and Europe) have greater 

observation densities relative to sparse observations over SH areas. 

 MERRA and AMSR-E air temperatures show large discrepancies in mountainous areas, 

deserts and tropical regions due to topographically induced spatial heterogeneity, and greater 

uncertainty in the MERRA cloud scheme and AMSR-E temperature algorithms. The MERRA 

topographic grid generally has a higher elevation than the NSIDC AMSR-E grid, with a mean 

difference of 120 m and substantial differences in mountainous areas (e.g. Tibetan plateau, 

Western US, and west coast of South America). In these areas, MERRA generally 

underestimates Tmax relative to AMSR-E and also shows a larger Tmin difference. The MERRA 

and AMSR-E Tmax and Tmin results also show large differences in tropical desert areas, which 

likely reflect greater uncertainty in microwave emissivity and associated temperature retrievals

in these sparsely-vegetated areas (Jones et al. 2010). The AMSR-E and MERRA Tmax differences 

show opposite signs in portions of Amazon and east Africa rain forests, which may be associated 

with different MERRA cloud patterns relative to the GEWEX-SRB (Figure 3b). MERRA also 

overestimates SWrad in most SH land areas, which is consistent with a positive MERRA Tmax

discrepancy relative to AMSR-E. 

The MERRA surface soil moisture results generally capture observed soil wetting and drying 

processes in the low and middle latitudes and show favorable correlations with the two AMSR-E 

based soil moisture products for areas with low to moderate vegetation biomass. Accurate 

prediction of precipitation in the middle latitudes and the application of the Catchment land

surface model (section 2) used in the GEOS-5 assimilation system may both contribute to the 

favorable temporal correspondence between MERRA and the other soil moisture datasets. The 

MERRA surface soil moisture accuracy in mid-latitude regions shows minimal difference 
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between forest and non-forest sites, but is proportional to the accuracy of MERRA predicted 

precipitation. The MERRA precipitation data showed strong correspondence with in situ 

precipitation observations at all selected tower sites in this study. The Catchment model 

considers the horizontal sub-grid scale heterogeneity in hydrological processes. Both of these 

modifications should improve model representation of hydrological processes in MERRA.

While precipitation accuracy largely influences soil moisture modeling accuracy in the middle 

latitudes, the accuracy of MERRA and AMSR-E derived surface soil moisture is also constrained

by uncertainties in the modeling of seasonal snow and frozen soil processes in the high latitudes. 

The MERRA results indicate earlier spring snow melt relative to the available in-situ 

observations, though MERRA generally underestimates surface air temperature during winter. 

The Catchment land surface model does consider the impact of thermodynamic changes in 

surface snow cover on water and energy cycling. However, the model still uses relatively simple 

approaches to represent soil freezing and thawing effects on subsurface thermodynamics and 

hydrological processes, which are important for accurate modeling of soil moisture and stream 

flow in the high latitudes (Cherkauer et al. 2003). The reduced MERRA soil moisture correlation 

with in situ measurements during northern high latitude frozen to non-frozen season transitions 

indicates that further effort is required to improve MERRA snow and soil freeze/thaw dynamics.

Alternative soil moisture retrievals from satellite microwave remote sensing are limited in 

northern boreal forest and tundra regions by high biomass (VOD) levels, snow and frozen 

conditions, and extensive open water cover during the non-frozen season. 

Spatial scale differences may contribute to discrepancies between the in situ station 

observations and regional products from global reanalysis and satellite microwave remote 

sensing retrievals. Soil moisture, in particular, has strong characteristic spatial heterogeneity
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(Scipal et al. 2008). The three independent soil moisture datasets employed in this study 

(including reanalysis, AMSR-E remote sensing retrievals and in situ measurements) are strongly 

constrained by relatively coarse spatial scales and sparse observations in relation to characteristic 

soil moisture heterogeneity over much of the globe. Precipitation is a key factor influencing land 

surface hydrological cycles, but current climate simulation systems have difficulty providing 

accurate simulations of precipitation at finer spatial scales commensurate with landscape 

variability (Sheffield et al. 2006; Reichle et al. 2010a). The poor spatial and temporal coverage 

of in situ observations and generally large spatial heterogeneity in surface soil moisture limits the 

potential assimilation value of these measurements for climate system reanalysis and the utility 

of these observations as effective ground truth for most areas of the globe.

The AMSR-E surface soil moisture retrievals generally coincide with major rainfall events 

represented by the available precipitation observations; similar satellite microwave remote 

sensing retrievals could provide valuable information for climate reanalysis. In the northern

latitudes, microwave remote sensing can also provide accurate predictions of surface temperature 

and freeze/thaw processes (Jones et al. 2007, 2010). The assimilation of satellite microwave 

remote sensing based temperature and freeze-thaw retrievals may improve model predictions of 

snow and soil thermal and moisture changes during seasonal freeze/thaw transition periods. 

However, the relative coarse spatial scale of currently available passive microwave sensors (e.g. 

~ 25-km for AMSR-E) and vegetation biomass constraints on higher frequency (e.g. C-, X-band) 

microwave radiometric measurements of surface soil conditions limits their application for 

climate data assimilation. The NASA SMAP mission will provide global coverage and 

operational mapping of freeze/thaw state at 3 km resolution with two-day precision and surface 

(≤ 5cm depth) soil moisture with a projected 0.04 m3 m-3 volumetric accuracy at 9 km spatial 
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resolution (Entekhabi et al. 2010). The SMAP L-band active-passive microwave sensor will also 

improve soil moisture retrievals for moderately vegetated areas, with longer penetration depth 

and finer spatial resolution compared with other operational satellite passive microwave sensors. 

The planned SMAP freeze/thaw and soil moisture products are potentially useful for improving 

reanalysis simulations of land surface processes and will provide enhanced L-band sensitivity to 

land surface processes and finer spatial scale inputs for ecosystem and hydrological models.

5.  Conclusions 

The NASA GMAO MERRA reanalysis is a prototype of the eventual system that will provide 

forcing inputs and land modeling components for the SMAP Level 4 soil moisture and carbon 

products. In this study, MERRA estimates of selected land surface variables that are important 

for global ecological and hydrological studies were compared to similar variables from the 

precursor GEOS-4 system, independent satellite microwave remote sensing datasets derived 

from AMSR-E, and in-situ observations distributed across the globe. Generally, MERRA 

provides similar accuracy or slightly better estimates of land surface meteorology compared with 

estimates from GEOS-4 and AMSR-E retrievals. The uncertainty of GEOS-4 incoming solar 

radiation in northern desert regions and high latitudes is greatly reduced in the MERRA 

reanalysis. The MERRA surface soil moisture results show advantages over the AMSR-E soil 

moisture products in the mid-latitudes due to less limitation by dense vegetation. However,

MERRA soil moisture accuracy is proportional to the accuracy of predicted precipitation, which 

is subject to uncertainty due to sub-grid scale spatial heterogeneity in topography and local 

weather conditions. Significant uncertainty also remains in MERRA surface soil moisture for the 

high latitudes. Assimilating surface temperature, soil moisture, and freeze/thaw information 

available from higher-resolution microwave remote sensing may improve model representation 
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of snow and soil thermodynamic changes and hydrological cycles in those areas. SMAP will 

provide L-band active and passive microwave observations with enhanced spatial resolution that 

will enable better estimates of surface soil moisture and freeze/thaw changes than are currently 

available from AMSR-E and other operational satellite passive microwave sensors; these remote 

sensing observations should enable improved spatial resolution and soil moisture retrieval 

accuracy under higher biomass levels, with potentially improved assimilation value and 

reanalysis accuracy. Meanwhile, the GEOS assimilation system will be continually updated and 

advances in climate modeling and data assimilation will all contribute to better representation of 

land surface processes in the future analysis products. 
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Appendix: Additional data descriptions and data processing

a. Temperature and humidity observations

Daily Tmin, Tmax and atmospheric vapor pressure measurements were obtained from the NCDC

Global Summary of the Day to evaluate the accuracy of the reanalysis and satellite remote 

sensing datasets. The daily observations were available at over 6000 World Meteorological 

Organization (WMO) weather stations from 2000 to 2006 (Figure 1a).

b. Solar radiation observations

Because of the paucity of available global in situ surface solar radiation observations, the 

NASA/GEWEX SRB database was used as a baseline to evaluate global patterns of relative 

uncertainty of SWrad in MERRA and GEOS-4. 

(http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html). The dataset is generated using 

ISCCP (International Satellite Cloud Climatology Project) cloud fields and parameters and 

widely used as a reference for global shortwave radiation (Betts et al. 2006). The model uses the 

shortwave radiation algorithms of Pinker and Laszlo (1992) and background (or first guess) 

temperature and moisture profiles from the GMAO GEOS analysis. The model also uses the 

information on atmospheric column ozone amounts constituted from Total Ozone Mapping 

Spectrometer (TOMS) and NOAA TOVS archives, and the Stratospheric Monitoring-group's 

Ozone Blended Analysis (SMOBA), which is an assimilation product from the NOAA Climate 

Prediction Center. The release-3.0 GEWEX-SRB products have updated meteorology inputs 

from GEOS-4 (replacing the GEOS-1 inputs used in earlier versions), and are available as daily 

averages with a spatial resolution of 1° latitude globally and longitudinal resolution varying from 

1° in the tropics to 120° near the poles. 
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Regional observations of SWrad were also collected to validate the GEOS-4 and MERRA 

datasets. In situ SWrad measurements are available from approximately 300 agricultural and 

weather stations in the Continental United States from 2001 to 2002 (Zhao et al. 2006, Figure 1b). 

MERRA and GEOS-4 show large SWrad discrepancies in arid regions and high latitudes;

therefore, additional in-situ SWrad measurements in those regions were obtained from the global 

flux tower (FLUXNET) network (Baldocchi et al. 2001). Six northern tower sites (> 60°N) 

covering all or a portion of the period from 2000 to 2006 were selected, including one Alaska 

site (USIvo, Epstein et al. 2004), one Russian site and four European sites (Suni et al. 2003). 

Three arid tower sites with annual precipitation less than 400 mm were chosen and were located 

in Israel (IL-Yat), Botswana (BW-Wal) and Arizona (USSRM, Scott et al., 2009), respectively.

c. Soil moisture observations

Surface soil moisture observations (≤ 15 cm) from 26 sites were obtained from the AmeriFlux 

(Baldocchi et al. 2001) and BERMS (Boreal Ecosystem Research and Monitoring Sites, Griffis 

et al. 2004) datasets to validate MERRA and AMSR-E soil moisture results. These sites are also 

being used for SMAP Level 4 carbon algorithm development and testing. Woody savannah 

(USSRM) and boreal forest (CA-OJP) site comparisons were presented to evaluate the different 

performances of MERRA and AMSR-E soil moisture series in different hydro-climatic regions. 

Additional evaluation of MERRA soil moisture accuracy using SCAN observations is available 

from Reichle et al. (2010a).  

d. Ancillary elevation datasets

 The elevation data were used to correct the influence of elevation on surface air temperatures. 

The elevations of the WMO stations are provided by NCDC. The 25 km EASE-Grid elevation 
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data were obtained from NSIDC, which was regridded from the Global Land One-km Base 

Elevation (GLOBE) dataset (Knowles 2001). The MERRA topography was derived from the 

surface geopotential grid. The GEOS-4 model topography was obtained by regridding the USGS 

global 30 arc-second digital elevation model of the world (GTOPO30).

e. Data processing

Our analysis focused on daily time series because most hydro-ecological models, including the 

planned SMAP Level 4 carbon algorithms, operate at a daily step. The evaluated datasets were 

available at different time periods and spatial resolutions (Table 1). Comparisons between the 

different datasets were conducted for periods when all datasets were available. Therefore, 

comparisons involving the GEOS-4 analysis extended from 2000 to 2006 and the comparison 

period was confined from 2003 to 2006 when AMSR-E retrievals were included. The GEOS-4 

analysis before 2004 was reprocessed and provided by NASA for the MODIS operational GPP 

algorithms (Zhao et al. 2006). A reference grid with the finest spatial resolution was chosen from 

the evaluated datasets, and the other datasets were reprojected and resampled into this consistent 

grid scale for the subsequent comparisons. For example, for the SWrad comparison, the GEOS-4

and GEWEX-SRB grids were regridded to the MERRA (0.5°) grid scale, while the 25 km EASE 

Grid is chosen as the reference grid when the AMSR-E datasets were included. An Inverse 

Distance Weight (IDW) method was employed to perform the spatial interpolation between 

different grids (Ma et al. 2008): 
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Where j and i represents the regridded and original grid cell respectively, iA is the value of the 

original grid cell, and iW is the weight of each grid, which is a simple function of the inverse of 



30

the distance between input and output grid cells (Zhao et al. 2005); n is the number of input grid 

cells, and set as 4 in this study; iA∆ is used to correct for elevation effects on air temperatures 

using the standard environmental lapse rate (i.e. 6.0×10-3 °C m-1). For VPD, the difference 

between actual vapor pressures at different altitudes was ignored, and only the elevation effect

on daily averaged temperature (thus on saturated vapor pressure) was corrected. 

For the comparison against in situ observations, all of the overlying grids were interpolated 

into a 25 km EASE grid scale, and the grid cell closest to the sites was extracted. When 

comparing against the WMO stations, the elevation difference between the center of the 

extracted grid cell and WMO site was calculated and its influence on Tmin, Tmax and VPD was

corrected using the same method as above. Sites differing by more than 500m from that of the 

grid cell average were dropped from the analysis to reduce pixel-point scale uncertainties. 

Correlation coefficients (R), bias, and root mean square differences (RMSD) were used as 

major performance metrics to evaluate the accuracy of MERRA surface meteorology (including 

Tmax, Tmin, VPD and SWrad). The correlation coefficient is used to assess the temporal 

correspondence between different datasets. The bias evaluates the difference between the means 

of different datasets and observations, and RMSD is a common measurement of the error (or 

difference) between the datasets incorporating both the variance and bias. The spatial distribution 

of uncertainty in MERRA/GEOS-4 and AMSR-E daily surface meteorology was assessed by 

examining latitudinal distributions of mean bias and RMSD against the in situ observations.

Generally, different soil moisture datasets show different statistical moments and are not 

directly comparable to each other in an absolute sense (Reichle et al. 2004). Systematic bias 

between different datasets can be effectively removed by rescaling the datasets to a consistent 

mean and standard deviation (Reichle and Koster, 2004; Koster et al., 2009; Draper et al., 2009). 
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In this study, the biases between different soil moisture datasets were removed following Koster 

et al. (2009) before direct comparison. When the in-situ data were available, the MERRA and 

AMSR-E soil moisture values were scaled to match the mean values and standard deviations of 

the observations. Otherwise, the AMSR-E soil moisture was normalized to match the statistics of 

the MERRA data.      

Correlations between MERRA and the two AMSR-E (VU and UM) daily soil moisture time 

series and their monthly means were used to evaluate global consistency in soil moisture 

variability among the three products. Grid cells with less than 30 daily soil moisture retrievals 

per year were excluded from the analysis. Correlations were calculated from the same pixels on a 

daily basis for both AMSR-E datasets. When there were more than 5 daily AMSR-E soil 

moisture retrievals per month, the AMSR-E and MERRA monthly means were calculated from 

the same available dates. Otherwise, only the MERRA monthly means were calculated. The 

correlations between MERRA/AMSR-E daily surface soil moisture and the AmeriFlux

observations were summarized by global land cover class (DeFries et al. 1998) to evaluate the 

influence of vegetation type on modeled or satellite retrieved soil moisture. The soil moisture 

correlations were computed from in situ measurement series for sites exceeding a minimum 

threshold of 100 days of record using consistent dates and periods among the different data 

products. The approximate 95% confidence intervals (CIs) of the correlations were also 

calculated. The CIs for a single site was based on the Fisher Z-transform, and the CIs for 

multiple sites were approximated by the division of the site-average CIs and the square root of 

the number of sites.   



32

References

Baldocchi, D., and Coauthors, 2001: FLUXNET: A New Tool to Study the Temporal and Spatial 

Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. 

Bull. Amer. Meteor. Soc., 82, 2415-2434.

Berg, A. A., J. S. Famiglietti, J. P. Walker, and P. R. Houser, 2003: Impact of bias correction to 

reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. 

Geophys. Res., 108, 4490, doi:10.1029/2002JD003334, 2003.

Betts, A. K., J. H. Ball, M. Bosilovich, P. Viterbo, Y. Zhang, and W. B. Rossow, 2003: 

Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF 

reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. 

Res., 108, 8618, doi:10.1029/2002JD003127.

Betts, A. K., M. Zhao, P. A. Dirmeyer, and A. C. M. Beljaars, 2006: Comparison of ERA40 and 

NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111, 

D22S04, doi:10.1029/2006JD007174.

Bloom, S., and Coauthors, 2005: Documentation and Validation of the Goddard Earth Observing 

System (GEOS) Data Assimilation System - Version 4. Technical Report Series on Global 

Modeling and Data Assimilation 104606, 26, 187pp.

Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global 

precipitation in reanalysis. J. Appl. Meteor. Climatol., 47, 2279-2299.

Bosilovich, M. G., F. R. Robertson, and J. Chen, 2010: Global Energy and Water Budgets in 

MERRA. J. Climate, submitted.     



33

Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier, 2003: Variable infiltration capacity cold 

land process model updates. Global Planet. Change, 38, 151-159.

Churkina, G., S. W. Running, and A. L. Schloss, 1999: Comparing global models of terrestrial 

net primary productivity (NPP): the importance of water availability. Global Change Biol., 5, 

46-55.

DeFries, R.S., M. C. Hansen, J. R. G. Townshend, and R. S. Sohlberg, 1998: Global land cover 

classifications at 8km spatial resolution: the use of training data derived from Landsat 

imagery in decision tree classifiers, Int. J. Remote Sens., 19, 3141-3168.

Dirmeyer, P. A., Z. Guo, and G. Xiang, 2004: Comparison, validation, and transferability of 

eight multiyear global soil wetness products. J. Hydrometeor., 5, 1011-1033.

Draper, C. S., J. P. Walker, P. J. Steinle, R. de Jeu, and T. Holmes, 2009: An evaluation of 

AMSR-E derived soil moisture over Australia. Remote Sens. Environ., 113, 703-710.

Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. 

Proceedings of the IEEE, 98, 704-716.

Epstein, H. E., M. P. Calef, M. D. Walker, F. S. Chapin, and A. M. Starfield, 2004: Detecting 

changes in arctic tundra plant communities in response to warming over decadal time scales. 

Global Change Biol., 10, 1325-1334.

Griffis, T. J., T. A. Black, D. Gaumont-Guay, G. B. Drewitt, Z. Nesic, A. G. Barr, K. 

Morgenstern and N. Kljun, 2004: Seasonal variation and partitioning of ecosystem respiration 

in a southern boreal aspen forest. Agric. Forest Meteorol, 125, 207-223.



34

Jolly, W., R. R. Nemani, and S. W. Runnning, 2005: A generalized, bioclimatic index to predict 

foliar phenology in response to climate. Global Change Biol., 11, 619-632. 

Jones, L. A., C. R. Ferguson, J. S. Kimball, K. Zhang, S. K. Chan, K. C. McDonald, E. G. Njoku, 

and E. F. Wood, 2010: Satellite microwave remote sensing of daily land surface air 

temperature minima and maxima from AMSR-E. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 3, 111-123.

Jones, L. A., J. S. Kimball, K. C. McDonald, S. K. Chan, E. G. Njoku, and W. C. Oechel, 2007: 

Satellite microwave remote sensing of boreal and Arctic soil temperatures from AMSR-E.

IEEE Trans. Geosci. Remote Sens., 45, 2004-2018.

Jones, L. A., J. S. Kimball, E. Podest, K. C. McDonald, S. K. Chan, and E. G. Njoku, 2009: A 

method for deriving land surface moisture, vegetation, and open water fraction from AMSRE. 

IEEE Int. Geosci. Rem. Sens. Symp. IGARSS ’09, July 13-17, Cape Town, South Africa.

Kimball, J. S., L. A. Jones, K. Zhang, F. A. Heinsch, K. C. McDonald, and W. C. Oechel, 2009: 

A Satellite Approach to Estimate Land-Atmosphere CO2 Exchange for Boreal and Arctic 

Biomes Using MODIS and AMSR-E. IEEE Trans. Geosci. Remote Sens., 47, 569-587.

Kimball, J. S., R. Reichle, K. C. McDonald, and P. E. O'Neill, 2010: Algorithm Theoretical 

Basis Document (ATBD) for the SMAP L4 Carbon Model Assimilation Product. NASA 

Technical Report to the SMAP SDT, 37pp (http://smap.jpl.nasa.gov/science/dataproducts/). 

Kimball, J. S., S. W. Running, and R. R. Nemani, 1997: An improved method for estimating 

surface humidity from daily minimum temperature. Agric. For. Meteorol., 85, 87-98.



35

Knowles, K. 2001: EASE-Grid elevation data resampled from the Global Land One-km Base 

Elevation (GLOBE) project. Boulder, Colorado USA: National Snow and Ice Data Center. 

Digital media.

Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the 

nature of soil moisture in land surface models. J. Climate, 22, 4322-4335.

Koster, R. D., M. J. Suárez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based 

approach to modeling land surface processes in a GCM, Part 1, Model Structure. J. Geophys. 

Res., 105, 24809-24822. 

Li, H., A. Robock, S. Liu, X. Mo, and P. Viterbo, 2005: Evaluation of reanalysis soil moisture 

simulation using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180-193. 

Ma, L., T. Zhang, Q. Li, O. W. Frauenfeld, and D. Qin, 2008: Evaluation of ERA-40, NCEP-1, 

and NCEP-2 reanalysis air temperatures with ground-based temperatures in China. J. Geophys. 

Res., 113, D15115, doi: 10.1029/2007JD009549.

Mu, Q., L. A. Jones, J. S. Kimball, K. C. McDonald, and S. W. Running, 2009: Satellite 

assessment of land surface evapotranspiration for the pan-Arctic domain, Water Resour. Res., 

45, W09420, doi:10.1029/2008WR007189.

Njoku, E. G., P. Ashcroft, T. K. Chan, and L. Li, 2005: Global Survey and Statistics of Radio-

Frequency Interference in AMSR-E Land Observations.  IEEE Trans. Geosci. Rem. Sens., 43,

938-947.

Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. N. Nghiem, 2003: Soil moisture 

retrieval from AMSR-E.  IEEE Trans. Geosci. Remote Sens., 41, 215-229.



36

Owe, M., R. De Jeu, and T. Holmes, 2008: Multisensor historical climatology of satellite-derived 

global land surface moisture. J. Geophys. Res., 113, F01002, doi:1029/2007JF000769.

Owe, M., R. De Jeu, and J. P. Walker, 2001: A methodology for surface soil moisture and 

vegetation optical depth retrieval using the microwave polarization difference index. IEEE 

Trans. Geosci. Remote Sens., 39, 1643-1654.

Pinker, R. T. and I. Laszlo, 1992: Modeling Surface Solar Irradiance for Satellite Applications 

on a Global Scale. J.  Appl.  Met., 31, 194-211.

Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in 

coupled climate-carbon models. Global Change Biol., 15, 2642-2484.

Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System -

Documentation of Versions 5.0.1 and 5.1.0. NASA GSFC Technical Report Series on Global 

Modeling and Data Assimilation. NASA/TM-2007-104606, 27, 95pp.

Reichle, R. H., and Coauthors, 2010a: Assessment and enhancement of MERRA land surface 

hydrology estimates. J. Climate, submitted.

Reichle, R. H., W. Crow, R. Koster, J. Kimball, and G. De Lannoy, 2010b: Algorithm 

Theoretical Basis Document for the SMAP Level 4 Surface and Root-Zone Soil Moisture 

Product. NASA Technical Report to the SMAP SDT, 55pp.

(http://smap.jpl.nasa.gov/science/dataproducts/).

Reichle, R. H. and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture, 

Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938.



37

Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite 

observations, land surface models, and ground data: implications for data assimilation, J. 

Hydrometeor., 5, 430-442.

Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004: A 

continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 

547-560.

Scipal, K., T. Holmes, R. de Jeu, V. Naeimi, and W. Wagner, 2008: A possible solution for the 

problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett.,

35, L24403, doi:10.1029/2008GL035599.

Scott, R. L., G. D. Jenerette, D. L. Potts, and T. E. Huxman,

2009: Effects of seasonal drought on net carbon dioxide exchange from a

woody-plant-encroached semiarid grassland. J. Geophys. Res., 114, G04004, 

doi:10.1029/2008JG000900.

Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-yr high-resolution global 

dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088-3111.

Stieglitz, M., A. Ducharne, R. Koster, and M. Suarez, 2001: The impact of detailed snow physics 

on the simulation of snow cover and subsurface thermodynamics at continental scales. J. 

Hydrometeor., 2, 228-242. 

Suni, T., and Coauthors, 2003: Long-term measurements of surface fluxes above a Scots pine 

forest in Hyytiälä, southern Finland, 1996-2001. Boreal Env. Res., 8, 287-301.



38

Takala, M., J. Pulliainen, S. J. Metsamaki, and J. T. Koskinen, 2009: Detection of snowmelt 

using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. 

Geosci. Remote Sens., 47, 2996-3007.

Zhang, K., J. S. Kimball, Q. Mu, L. A. Jones, S. J. Goetz, and S. W. Running, 2009: Satellite 

based analysis of northern ET trends and associated changes in the regional water balance 

from 1983 to 2005. J. Hydrol., 379, 92-110. 

Zhao, M., F. A. Heinsch, R. R. Nemani and S. W. Running, 2005: Improvements of the MODIS 

terrestrial gross and net primary production global data set. Remote Sens. Environ., 95, 164-

176.

Zhao, M., S. W. Running, and R. R. Nemani, 2006: Sensitivity of Moderate Resolution Imaging 

Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological 

reanalysis. J. Geophys. Res., 111, G01002, doi:10.1029/2004JG000004.



39

Figure Captions

Figure 1. (a) Location of NCDC WMO weather stations (n>6000). (b) Contiguous US locations 

of weather and agricultural stations with SWrad observations (n=333, solid triangles) and 

AmeriFlux tower sites (<50°N; n=27, circles) with surface (≤15 cm) soil moisture observations.

Figure 2. Latitudinal distributions of mean bias (a) and RMSD (b) of GEOS-4 and MERRA 

versus GEWEX-SRB for 2000-2006 daily SWrad.

Figure 3. Annual (a,b) and seasonal (c-f) bias of MERRA and GEOS-4 versus GEWEX-SRB for 

2000-2006 daily SWrad (DJF = December to February, JJA = June to August).

Figure 4. Bias (a) and RMSD (b) of GEOS-4 and MERRA SWrad versus in situ observations in 

the contiguous US from 2001 and 2002; bars show the number of sites in each 2.5° latitudinal 

bin. 

Figure 5. (a,b): Correlation coefficient (R) between MERRA and AMSR-E UM daily Tmax and 

Tmin anomalies; (c-f): mean difference (°C) and RMSD (°C) values between MERRA and 

AMSR-E UM retrieved daily Tmax and Tmin. The daily temperature anomalies were calculated 

based on a climatology averaged from 2003 to 2006. The global multi-year averages including R, 

difference, and RMSD from 2003 to 2006 were provided in the caption. Areas outside the study 

domain or with insufficient retrievals (<100) were masked from the analysis and are shown in 

white.

Figure 6. Latitudinal distributions of mean difference between MERRA and GEOS-4 daily land 

surface Tmax and Tmin (a) and VPD (b).
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Figure 7. Bias and RMSD of daily Tmax (a,b), Tmin (c,d) and VPD (e,f) from GEOS-4, MERRA 

and AMSR-E UM versus WMO observations. All bias and RMSD values were computed from 

2000 to 2006 data for GEOS-4 and MERRA, and from 2003 to 2006 data for AMSRE UM for 

each 5° latitudinal bin.  

Figure 8. (a,b): Correlations (R) between MERRA and AMSR-E daily surface soil moisture; (c) 

AMSR-E UM retrieved open water fraction in the summer (July and August) above 50 °N. All 

the results were averaged from 2003 to 2006. Areas with insignificant correlations (p > 0.05), 

insufficient retrievals or outside the study domain are shown in white; areas with significant 

negative correlations (p < 0.05) are shown in gray.

Figure 9. Seasonal (April and July) mean differences between MERRA and AMSR-E 2003-2006 

daily surface soil moisture. Areas with insufficient retrievals or outside of the study domain are 

shown in white.

Figure 10. Daily surface soil moisture from in situ observations, MERRA and AMSR-E at (a) a 

woody savannah site (USSRM, 31.821°N 110.866°W, soil depth ≤5 cm) and (b) boreal old jack 

pine forest site (CA-OJP, 53.916°N 104.692°W, soil depth ≤15 cm).  Bars from top show daily 

in situ-precipitation.
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Table 1 Summary of evaluated datasets and in-situ observations used for validation. 

Datasets Properties Evaluated variables Evaluated
period

Temporal
resolution

Spatial
resolution

GEOS-4 Analysis Tmin, Tmax, VPD, SWrad 2000-2006 3-hourly 1° × 1.25°

MERRA Reanalysis Tmin, Tmax, VPD, SWrad, SM1 2000-2006 hourly 1/2° ×2/3°

GEWEX-SRB2 Model SWrad 2000-2006 Daily 1° in tropics

AMSR-E UM3 Satellite Tmin, Tmax, SM 2003-2006 1-3 day 25 km

AMSR-E VU4 Satellite SM 2003-2006 1-3 day 25 km

WMO5 In situ Tmin, Tmax, VPD 2000-2006 Daily Point

CON-US6 SWrad In situ SWrad 2001-2002 Daily Point

FLUXNET In situ SWrad, SM 2000-2006 Daily Point

1: surface Soil Moisture; 2: Global Energy and Water Cycle Experiment Solar Radiation Budget; 3: University of Montana; 4: Vrijie 

Universiteit; 5: World Meteorological Organization site observations available from National Climate Data Center (NCDC). 6: 

Continental United States.
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Table 2 Performance metrics for daily SWrad from GEOS-4 and MERRA versus in situ observations at selected arid climate tower 

sites (3 sites) and northern (> 60°N) sites (6 sites). For the arid sites, observed annual precipitation (P) is also shown. 

Site Year location P 

(mm) 

R

MERRA  GEOS-4

Bias (MJ m-2 d-1)

MERRA  GEOS-4

RMSD (MJ m-2 d-1)

MERRA GEOS-4

IL-Yat (Israel) 2001-2006 31.35°N, 35.05°E 267 0.91 0.88 0.19      -2.62 3.45     4.96

BW-Ma1 (Botswana) 2000-2001 19.92°S, 23.56°E 329 0.63  0.56 0.80      -2.43 4.25      4.91

USSRM (Arizona) 2004-2006 31.82°N, 110.87°W 314 0.92  0.88 1.11      -2.02 2.99     3.96

RUChe (Russia) 2002-2005 68.61°N, 161.34°E 0.90   0.84  0.32  -2.91  4.07  5.58

FI-Hyy (Finland) 2000-2006 61.85°N, 24.29°E 0.94  0.93 1.50  0.62  3.52  3.09

FI-Kaa (Finland) 2000-2006 69.14°N, 27.30°E 0.92 0.88  0.46  -1.48  3.28  3.90

FI-Sod (Finland) 2000-2006 67.36°N, 26.64°E 0.94 0.93  0.80  -1.14  2.98  3.07

SE-Deg (Sweden) 2001-2005 64.19°N, 19.56°E 0.94  0.92  0.95  -0.01  3.06  3.08

USIvo (Alaska) 2003-2006 68.49°N, 155.75°W 0.93 0.82 -0.64  -3.63  3.46  6.53
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Table 3 Comparisons of MERRA, GEOS-4 and AMSR-E UM daily meteorology against WMO 

station observations. The comparison period for GEOS-4 and MERRA datasets is from 2000 to 

2006, and from 2003 to 2006 for the AMSR-E dataset. The results were based on the same 

temporal mask.

R Bias (°C) RMSD(°C)

Tmax  Tmin VPD Tmax  Tmin VPD Tmax  Tmin VPD

MERRA vs. WMO 0.93      0.91     0.83 -0.05     1.02     37.1 2.76      2.92    329.7

GEOS-4 vs. WMO 0.90     0.89     0.79 -0.59     0.44     101.3 3.57     3.25    384.3

AMSR-E UM vs. WMO 0.91    0.87  0.41     0.67 3.68      3.82
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Table 4 Correlation coefficients (R) versus AmeriFlux tower in situ observations for MERRA monthly precipitation (P) and MERRA 

and AMSR-E daily surface soil moisture. The number of tower sites represented in each land cover category is noted, while the 

approximate 95% confidence intervals of the correlation coefficients are also given. 

MERRA P (monthly)
Soil moisture (daily)

MERRA       AMSR-E UM                  AMSR-E VU

N          R N

(p<0.005)  

N  R    N  

  (p<0.001)

 R  N  

 (p<0.001)

 R   N  

 (p<0.001)

GRS 7 0.78±0.05  7 7 0.48±0. 02   6 0.39±0.02  5 0.38±0.02  5

WSA 5     0.81±0.06  5 5 0.65±0.02   5 0.34±0.04 3 0.30±0.03  3

CRP 3  0.67±0.08  3 3 0.23±0.04   2 0.34±0.04 3 0.23±0.04   2

ENF 4 0.81±0.05  4 4 0.67±0.04   4 0.13±0.06 1 0.20±0.06      2

DBF 4     0.64±0.09  4 1 0.62±0.06       1 0.20±0.10        1 0.30±0.10   1

MXF 3     0.71±0.09  3 1 0.58± 0.08      1 0.36±0.10        1 0.29±0.10   1

All 26 0.75±0.03 26 21     0.53±0.01 19  0.31±0.02 14 0.30±0.02     14

Note: GRS: grassland; WSA: woody savanna/savanna; CRP: cropland; ENF: evergreen needle-leaf forest; DBF: deciduous broadleaf 

forest; MXF: mixed evergreen needle-leaf and deciduous broadleaf forest.



Figure 1. (a) Location of NCDC WMO weather stations (n>6000). (b) Contiguous US locations 
of weather and agricultural stations with SWrad observations (n=333, solid triangles) and 
AmeriFlux tower sites (<50°N; n=27, circles) with surface (≤15 cm) soil moisture observations.



Figure 2. Latitudinal distributions of mean bias (a) and RMSD (b) of GEOS-4 and MERRA 
versus GEWEX-SRB for 2000-2006 daily SWrad.



Figure 3. Annual (a,b) and seasonal (c-f) bias of MERRA and GEOS-4 versus GEWEX-SRB for 
2000-2006 daily SWrad (DJF = December to February, JJA = June to August).



Figure 4. Bias (a) and RMSD (b) of GEOS-4 and MERRA SWrad versus in situ observations in 
the contiguous US from 2001 and 2002; bars show the number of sites in each 2.5° latitudinal 
bin.  



Figure 5. (a,b): Correlation coefficient (R) between MERRA and AMSR-E UM daily Tmax and 
Tmin anomalies; (c-f): mean difference (°C) and RMSD (°C) values between MERRA and 
AMSR-E UM retrieved daily Tmax and Tmin. The daily temperature anomalies were calculated 
based on a climatology averaged from 2003 to 2006. The global multi-year averages including R, 
difference, and RMSD from 2003 to 2006 were provided in the caption. Areas outside the study 
domain or with insufficient retrievals (<100) were masked from the analysis and are shown in 
white.  



Figure 6. Latitudinal distributions of mean difference between MERRA and GEOS-4 daily land 
surface Tmax and Tmin (a) and VPD (b).



Figure 7. Bias and RMSD of daily Tmax (a,b), Tmin (c,d) and VPD (e,f) from GEOS-4, MERRA 
and AMSR-E UM versus WMO observations. All bias and RMSD values were computed from 
2000 to 2006 data for GEOS-4 and MERRA, and from 2003 to 2006 data for AMSRE UM for 
each 5° latitudinal bin.  



Figure 8. (a,b): Correlations (R) between MERRA and AMSR-E daily surface soil moisture; (c) 
AMSR-E UM retrieved open water fraction in the summer (July and August) above 50 °N. All 
the results were averaged from 2003 to 2006. Areas with insignificant correlations (p > 0.05), 
insufficient retrievals or outside the study domain are shown in white; areas with significant 
negative correlations (p < 0.05) are shown in gray.



Figure 9. Seasonal (April and July) mean differences between MERRA and AMSR-E 2003-2006 daily surface soil moisture. Areas 
with insufficient retrievals or outside of the study domain are shown in white.



Figure 10. Daily surface soil moisture from in situ observations, MERRA and AMSR-E at (a) a 
woody savannah site (USSRM, 31.821°N 110.866°W, soil depth ≤5 cm) and (b) boreal old jack 
pine forest site (CA-OJP, 53.916°N 104.692°W, soil depth ≤15 cm). Bars from top show daily 
in situ-precipitation.


