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Abstract

A detailed description of the development of the tangent linear model (TLM) and
its adjoint model of the adiabatic version of NASA GEOS-1 C-Grid GCM(Version 5.2)
is presented. The derivations of and the methods for coding the TLM and its adjoint as
well as the notation conventions used in these two models are described in detail. The
flow charts of the NASA GEOS-1 GCM, its tangent linear model and adjoint model
are provided. The procedures and their results of correctness verification of the TLM
and the adjoint model are presented. Finally, tutorial examples of derivation of adjoint
code from the tangent linear code are provided for the benefit of various users.
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1 Introduction

The GEOS-1 C-Grid GCM was developed by Data Assimilation Office (DAO) at Goddard
Laboratory for Atmosphere (GLA), NASA to be used in conjunction with an analysis scheme
to produce a multi-year global atmospheric data set for climate research (Schubert et al.,
1993). It has also been used to produce multiple 10-year climate simulations as part of the
DAO’s participation in the Atmospheric Model Intercomparison Project (AMIP) sponsored
by the Program for Climate Model Diagnostics and Intercomparison (PCMDI) (see Gates,
1992).

The NASA GEOS-1 C-grid GCM has an advanced structure, i.e., a “plug-compatible” struc-
ture. It means that if “plug-compatible” rules are followed in coding different GCMs and
parameterizations, codes can be “unplugged” from one model and “plugged” into another
with little coding effort. Thus each part of GEOS-1 C-grid GCM can be used independently
in another GCM. For instance, full physics package of GEOS-1 C-grid GCM has been used
into NASA/GLA Semi-Lagrangian Semi-Implicit (SLSI) GCM. Having developed the tan-
gent linear model(TLM) and adjoint model of the NASA GEOS-1 C-grid GCM contributes
to various applications involving other 4-D variational data assimilation systems with dif-

ferent GCMs.

The earliest predecessor of the GEOS-1 C-Grid GCM was developed in 1989 based on
“plug-compatible” concepts outlined in Kalnay et al. (1989), and subsequently improved in
1991 (Fox-Rabinovitz, et al., 1991; Helfand et al., 1991). The plug-compatibility of physical
parameterizations together with plug-compatible concept of “Dynamical Core” introduced
by Suarez and Takacs (1994) facilitated development and testing of new algorithms. To-
gether DAO and Climate and Radiation Branch at GLA, NASA have produced a library
of physical parameterizations and dynamical algorithms which may be utilized for various
GCM applications.

In order to obtain a 4-D variational data assimilation system based on the NASA GEOS-1
C-grid GCM, a first prerequisite is to develop the tangent linear and its adjoint model, two
key parts of any four dimensional variational assimilation system. With the tangent linear
and its adjoint model, the 4-D variational data assimilation (VDA) system of the adiabatic
version of the NASA GEOS-1 GCM was employed successfully to carry out a series of 4-D
VDA experiments to research the Hessian precondition methods and to test a new proposed
Hessian estimation algorithm (Yang, et al, 1995). This document describes the development
of the tangent linear model and its adjoint model of the adiabatic version of NASA GEOS-1
C-Grid GCM.

In Section 2 we provide a condensed description of NASA GEOS-1 GCM, which includes the
basic original atmospheric dynamical equations and their discrete forms, the discretization
methods as well as the model structure. Then we present a detailed flow chart of its code,
which should prove to be useful to first time users. Section 3 describes and documents in



detail the derivation of and coding the tangent linear model (TLM) of the GEOS-1 GCM,
its flow chart and its correctness verification against the full nonlinear forward code, as well
as the notation conventions used in the TLM. Section 4 describes in detail the derivation
of the adjoint model code (for the adiabatic version of the GEOS-1 GCM). A flow chart of
the adjoint code is provided along with notation conventions and adjoint model correctness
verification procedures. Finally,tutorial examples of derivation of adjoint code from the
tangent linear code are provided for the benefit of various users.

2 Description of the NASA GEOS-1 GCM

2.1 Basic original atmospheric dynamical equations

In NASA GEOS-1 C-Grid GCM, a o vertical coordinate is defined by

p—pr
= 1
Y - (1)

where T = ps — pr, ps is the surface pressure and pr is a constant prescribed pressure at
the top of the model atmosphere. In the current NASA GEOS-1 GCM version, pyr=0.

The basic original atmospheric dynamics equations of the NASA GEOS-1 GCM are as
follows(for obtaining the adiabatic version, just need to delete the terms related to diabatic
processes). The continuity equation is

ox (&)

— =-V,-(7V)-— 2
ot Vo (V) do (2)
where V is the horizontal velocity vector. The state equation is
cpt 8P)
= —|=— 3
@ o (87r - (3)

where « is the specific density, § = T'/ P is the potential temperature, T" is the temperature,
P =(p/po)t, k = R/c,, R is the gas constant, ¢, is the specific heat at constant pressure,
and pg is a reference pressure which be taken as py = 1000 hPa.

The hydrostatic equation is

0o
8_]3 = —Cp0 (4)

where @ is the geopotential.

The thermodynamic equation is written in flux form to facilitate the derivation of a 6-
conserving differencing scheme:
d(m8)
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where Q is the diabatic heating per unit mass.

The equations of tendencies of an arbitrary number of atmospheric constituents, such as
water vapor and ozone, are also written in flux form:

0 (m](k)) 0 (ﬂdq(k))
ot do

where ¢(*) is the specific mass of the kth constituent, and 5 is its source per unit mass
of air.

_v,. (ﬂvqw)) _ +75%) (6)

The momentum equation is written in “vector-invariant” form, as in Sadourny (1975) and
Arakawa and Lamb (1981), to facilitate derivation of an energy- and enstrophy-conserving
differencing scheme.

A% OV i
a7 = Ok XV =657 — Vo(® 4 K) = eV, P — (7)

where f is the Coriolis parameter, k is the unit vector in the vertical, { = V, X V is the
vertical component of the vorticity along o surfaces, K = %(V -'V) is the kinetic energy per
unit mass, ¢ is the acceleration of gravity, and 7 is the horizontal frictional stress.
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2.2 Description of discretization methods and structure of the model

In GEOS-1 GCM, a Lorenz grid is used in the vertical, with both winds and temperatures
defined at the same levels. The atmosphere between ¢ = 0 and ¢ = 1 is divided into LM
layers. At these LM layers, the velocity, the potential temperature and the specific masses
of all trace constituents are defined. The vertical velocity ¢ is defined at interfaces between
layers and at top and bottom surfaces.

On horizontal grids, the prognostic variables are located on an Arakawa C grid. The
temperature, pressure and all tracers are located at “p-points”, which exclude the poles.
The “u-points”, at which zonal wind components are defined, are located between “p-points”
and on the same latitude circles, while “v-points” are located between “p-points” and on
the same meridians. The vorticity is defined at “{-points” on the same latitude circles as v
and on the same meridians as u.

The discretization of the momentum equation is carried out with a second-order energy
and potential enstrophy conserving scheme of Sadourny described by Burridge and Haseler
(1977). A simple second-order finite difference scheme is used for discretizing the thermo-
dynamic equation and the continuity equation.

A polar Fourier filter is applied to the tendencies of all the prognostic variables. The
purpose of the polar filter is to avoid linear computational instability due to convergence



of the meridians near the poles. The filter acts poleward of about 45° latitude, and its
strength is gradually increased towards the pole by increasing the number of affected zonal
wavenumbers and the amount by which they are damped.

The time differencing scheme used in NASA GEOS-1 C-Grid GCM is the Brown-Campana
scheme (1978). It is an explicit scheme used in conjunction with a leap-frog differencing
scheme that relaxes somewhat the instability condition for gravity waves. The basic idea of
the Brown-Campana scheme is to average the pressure gradient force over three time levels.
In NASA GEOS-1 C-Grid GCM, a simple strategy is used which assumes the pressure
gradient force is linearized. That is, to average the three time levels of the mass field and
only to compute the pressure gradient once, while the averaged mass field is used only for
the pressure gradient calculations. Asselin (1972) time filter and Shapiro filter are also used

in the dynamic core of NASA GEOS-1 C-Grid GCM.

The NASA GEOS-1 C-Grid GCM has a resolution of 5% x 4° longitude-latitude grid points
in horizontal plane and 20 o-coordinate levels. The time step used is five minutes.

2.3 Discrete dynamical equations

The discrete dynamical equations used in the adiabatic version of the NASA GEOS-1 C-Grid
GCM are as follows (for all the definition of the used symbols and the detailed method of
the Arakawa-Lamb C-grid discrete scheme please see Documentation of the ARIES/GEOS
Dynamical Core (Suarez and Takacs, 1994)). The equations are presented here for ease of
reference to corresponding equations in the tangent linear model.

The hydrostatic equations are

drar = O, + 00 (P — Prar) (8)
and )
Q= @1 + b1 (P — P, forl=1, LM -1 (9)
The continuity equations are
om; ; Ly 3 3
5 ; m[éiul + 6507 li,i (60 ) (10)
and
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The component forms of the momentum equation are

% = (A%x)m[aﬁjv;f—l—l,j-l—l + B vl vl v+ (13)
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Here the o, 3, 7, 6, €, ¢, v and p are linear combinations of neighboring potential vorticities.

For further details concerning this GCM, we refer to Suarez et al., (1994) and Takacs et
al. (1994). The detailed flow chart of the NASA GEOS-1 GCM with full physics package
is in the next subsection (for getting the adiabatic version of it, one just needs to skip the
computational processes related to the physics packages and the moisture processes).

2.4 Flow chart of the NASA GEOS-1 GCM

At the next six pages we will present the flow chart of the NASA GEOS-1 C-Grid GCM.



CALL SETUP:Initial model set up, set control parameters
for model execution and output.

b

[ CALL DIAGSIZE: Diagnostic memory allocation.]

b

[ CALL RESTART: GET initia conditions.]

b

[ CALL CLRANAL :Initialize analysis tendencies to zero.]

b

CALL DIAGDRVN: Set pointer locations for diagnostics
turned on in NAMELIST output.

¢ GEOS-1/ARIES GCM FLOW CHART, page 1.

b

l Compute number of distinct frequenci es}

b

l Call output routines at begining of experiment.}

b

@the main loop to execute the GCM@

CALL SETMET: Initialize resolution dependent
terms in model.

|

[ CALL GETBCS: Update GCM boundary conditions.]

b

[ Set physics flags. ]

¢ GEOS-1/ARIES GCM FLOW CHART, page 2.



\

CALL CTOA: Convert ‘‘C’’ gridded datato ‘‘*A’’
gridded data for physics packages u

b

CALL MOISTIO: Compute the moist processes,
Relaxed Arakawa-Schubert scheme

and large-scal e convection.

\

CALL SWRIO: Compute the short wave
radiation processes.

b

CALL LWRIO: Compute the long wave
radiation processes.

v

CALL TURBIO: Compute the turbulence
parameterization processes.

¢ GEOS-1/ARIES GCM FLOW CHART, page 3.

b

CALL ATOC: Convert ‘“*A’’ gridded datato ‘‘C’’
gridded data to execute the hydro
dynamical processes.

\

Calculate the diagnostics, including
. total diabatic U-tendency;
. total diabatic V-tendency;
. total diabatic T-tendency;
total diabatic g-tendency;
the analysis tendencies increment of U, VV, T, q;
. incident solar radiation;
. net solar radiation at the ground,;
solar radiation heating.

b

Starting the hydrodynamical processes,
the time integration scheme is either the Matsuno
two-step scheme or the leapfrog scheme.

ONOUA®WNP

¢ GEOS-1/ARIES GCM FLOW CHART, page 4.



The first step of the
M atsuno scheme,

E | the predictor. ) The leapfrog time

\l/ integration scheme.

The second step,
the corrector.

[ CALL TICK: Updatetimeinformation.]

\L GEOS-1/ARIES GCM FLOW CHART, page 5.

\

[ Compute more diagnostics, including |
averaged P-field;

averaged U-field;

averaged V-field;

averaged T-field;

averaged g-field;

averaged QQ-field;

. precipitable water;

temperature and moisture
convergence diagnostics.

v

Check for pressure diagnostic, ensure
that Ps < Psmax and Ps > Psmin.

b

Update alarm flags.

ONOOTAWNPE

¢ GEOS-1/ARIES GCM FLOW CHART, page 6.



b

Call all output routines to output prognostic
and diagnostic results.

b

CALL RESTART: write out restart and

diagnostic results to
disk.

b

End of the main loop.

b

CALL RESTART: write out current

restart and diagnosti
results to disk.

GEOS-1/ARIES GCM FLOW CHART, page 7.

THE FLOW CHART OF THE DYNAMICAL CORE PACKAGE
DESCRIBING BOTH THE FIRST STEP (PREDICTOR) AND
THE SECOND STEP (CORRECTOR) OF THE MATSUNO
TIME INTEGRATION SCHEME AS WELL AS THE
LEAPFROG TIME INTEGRATION SCHEME.

Put total diabatic tendencies into the
control variable tendency terms.

\

CALL SHAPIJ: apply the global Shapiro low-pass
filter schemeon U, V, T, g fieldsto
damp small-scal e dispersive waves.

v

If integrating backward in time, invert the sign of the time
tendency terms to ensure non-reversible effects are positive.

\

CALL SETGRID: define parameters for integrating
at the staggered grid points.

¢ GEOS-1/ARIES GCM FLOW CHART, page 8.



b

‘ CALL SETDMP: calculate damping coeffici ents?

for high latitude filter.

b

[ CALL PKAP: calculate Phillips‘‘P**KAPPA’’ on C-grid]

b

[ Compute perturbation geopotential hei ght.]

b

[ Average mass to vorticity points. ]

b

CAAL SUB1: compute Kkinetic energy, potential
vorticity, ustar, vstar, which are
used for Arakawa C-grid scheme.

¢ GEOS-1/ARIES GCM FLOW CHART, page 9.

b

CALL SUB2:compute parameter alpha, beta, gamma, delta
which are used for Arakawa C-grid scheme.

b

CALL HADVECT: compute tendencies of height
and wind due to the horizonal

advection processes.

b

CALL HADVCTT: computetemperature
tendencies due to the horizonal

advection processes.

b

CALL HADVCTT: compute moisture
tendencies due to the horizonal

advection processes.

b

Compute the adiabatic pressure and
total pressure tendencies.

¢ GEOS-1/ARIES GCM FLOW CHART, page 10.

10



b

[ CALL GETOMEGA: compute omega diagnostic. ]

b

[ Compute PI* Sl GMADOT]

b

CALL VADVCT: caculate centered second-order
vertical advection of U, V, T, q.

b

CALL FFTDDT: apply FFT scheme to filter the
tendencies of U, V, T, g over the
high-latitude region (polar filter).

¢ GEOS-1/ARIES GCM FLOW CHART, page 11.

v

Add analysis increment to dynamical
omega diagnostics.

\

CALL STEP: update prognostic fields one time-
step, compute total tendency
diagnostics, check global mean
surface pressure and negative
humidities, bump diagnostic
counters, aswell asCALL
TMFILT for applying the
Asselin time filter.

\

1
1
1
V GEOS-1/ARIES GCM FLOW CHART, page 12.

11



3 Tangent linear model of the adiabatic version of NASA
GEOS-1 C-Grid GCM

3.1 Linearized discrete dynamical equations

The linearized discrete dynamical equations of Eqs. (8)- (14) used in the derivation of the
tangent linear model of the adiabatic version of the NASA GEOS-1 GCM are as follows
(we use { } to describe the basic state trajectory terms and ()’ to denote the perturbation
variables terms. For all other definitions of the symbols used please see the documentation

of the ARIES/GEOS Dynamical Core (Suarez and Takacs, 1994)).
The linearized equations of the hydrostatic equations (8)- (9) are

(@rar) = (@) + cp{0rm}(Prarsr — Ponr) + epiPoarsr — Poae }(0rar) (15)
and
(@) = (2151) + o031} (Pis1 — P + epi Py — P3040 ), forl=1, LM —1 (16)
The linearized continuity equations are

d(mi ;) LMy

o1 = 2 Ay )+ 85w (0o (17)
=1 p/tJ
and
: ) ;)
{rijur1}(Gigar) + {0ijl(mijie) = —or (géj) - (18)

l
= (A})i
The linearized form of the thermodynamic equation (12) is

OO )i OHOMT s L i gy
th n l@t - —m[éz({u}(O)—l—{O}(U))l-l- (19)
({0 O) + {0} (07 )i
_(ﬂ&mxmwwﬁﬂww+{%ﬂm©)
2,7,

oo

[8:(u7) 4 6;(0]) )i (60 )

The linearized component forms of the momentum equation (13)- (14) are

0 s 4 ! 1 * *
: 8715]71) - (Auz) [{evi i (071 j40)" + {0y Haig) + (20)
J

)

12



oMvig)

ot

H{Bi (0] i) {07 H(Big) +

v 7)) A0l v {8 oi )+ {ol  16) +
il o) g o ) = Avege (e ) = {1 i) —
—{eit1,5Huip ])' - {UZ*+1 i) e (wig ;) +{ui_q e )l +

{(ﬂz)ml}((glg) % [{W} (ur — Ul—l)/ + {u; — w1} (@Z)l] -
_m% [{WH} (uipr — w) + {wgr — w} ((71'0')1_'_1)/] _

1 apry
| 8(®; + K} 0 | —
(Avz)q; [ (%14 £0) +Cp{ l<d7r)z

_(Aulw)ﬂ [cp5 () (01 (ff;) )

L (RN LR [y (21)
F{Bi gy (ul )+ {ul o H(Bij—1) +
vl ) g 3 (i) i iy )+ iy 3 (61 ) +
{0l ) oip (i) = i H (0l ) = vy jH i) —
—{i i 307 0) = {08 i)+ {eiioa () + {vi o1 i) +

1 1 — T j
+ {m5 (&N (01 = v1oa) + (70N (10— ””L,]} (7Y, -

forj=1,JM -1

]

Wl [{W }w — om0 = o) (W)'] -

27]

_{(7”)2]} o)y [

1
_(Avy) l <I)l + Ix; {0 } ] y —
1 J
_(Ay)] 6{%}(01 ) forj=2,JM —1

Here the a, 3, v, 6, €, ¢, v and p denote linear combinations of neighboring potential

vorticities.

13



To obtain the perturbation temperature output fields (7")’, with the definition of 6,

,_ 3+ @Y

OO = ey

we have

(TY ({6} + (0)){ P} + (P)) - {0{P}

({63 + (0)) ({ps}™ + ((p:))") = {63{ps}"] P (23)

where we take pr = 0 and use Equation (27a) of Suarez and Takacs (1994)’s documentation
of the dynamical core of NASA model,

P =7"P (24)

where

1 fortl
P, = 25
! p3<1+m>l 7 ], (23)

We may design the TLM version of NASA GEOS-1 GCM from the above TLM discrete
equations. However, to code the TLM conveniently and to avoid coding mistakes, we choose
another way to code the tangent linear model, i.e., we linearize the original adiabatic version
of NASA GEOS-1 GCM code segment by segment. The detailed method is presented in
the next subsection.

3.2 Coding the tangent linear model

For coding the tangent linear model, we linearize the original nonlinear forward model code
line by line, do loop by do loop and subroutine by subroutine. This amounts to obtain the
exact same tangent linear model as by coding directly from the original linearized model
dynamical equations.

The tangent linear model is the linearized nonlinear forward model in the vicinity of a basic
state which is on a model trajectory. For any original code line, we may write it as

U= f(X) (26)

where
X = ($1, L2y © s xm)T (27)

where U is a new derived variable related to the original control variables of the nonlinear
forward model, i.e., it may be one of the original control variables or an intermediate variable
which is a function of the original control variables. Here z1, 23, -+, 2, (the components
of the vector X) are the required variables to derive U, which may consist of either the

14



original model control variables or of the intermediate variables derived from the original
control variables. m is the number of the required variables.

The corresponding tangent linear code will assume the form:

J J
U = baq (—f) + by (—f) +---+ (28)
8$1 X:Xbasic state 8$2 X:Xbasic state
J
+oéx,, ( / )
8$m X:Xbasic state
where X = Xjgsic state means that in the expression %, 1=1, 2, ---, m, all the values of
the required variables z{, x2, - -, x,, are chosen to have the exact same values as those of

the basic state trajectory values in the nonlinear forward model to ensure that the basic state
of the integration of tangent linear model is exactly the basic state of the nonlinear model
integrating trajectory. Here 6U and 6z, dzq, ---, 6z, are the corresponding perturbation
variables of U and zq, @3, ---, x,,, respectively.

In order to obtain the necessary values of Xpusic state, the nonlinear model integrating
trajectory, for the tangent linear model, we must apply a parallel method. This method
consists of calculating in parallel the nonlinear model integration trajectory as the basic
state Xpasic state and carrying out the integration of perturbation variables(such as §U) in
the tangent linear model.

The dynamical core part of the tangent linear model flow chart of the NASA GEOS-1
GCM is presented in Subsection 3.4 (for the adiabatic version one needs to omit some steps
related to the computation of physical processes, moisture processes and some diagnostic
calculations),

3.3 Notational convention for variables and subroutines used in the tan-
gent linear model code

For convenience, the same original names used in the nonlinear forward model are employed
for the corresponding perturbation variables in the tangent linear model code. For instance,
we use “U” for “6U”, “PKHT” for “6(PKHT)”, “USTR2” for “6(USTR2)”, etc.. This
also means that the perturbation control variables in the TLM share the same common
structure and same common block names as the GCM itself. So one needs to pay attention
to this issue when running the TLM in conjunction with the original GCM.

We just add a “0” at the end of a variable name in the original nonlinear forward model
to represent the corresponding basic state variable, such as using “U0” for “Upysic state s
“PKHTO” for “(PK HT )pasic state” » “USTR20” for “(UST R2)pasic state”, €tc..

For naming subroutines in the tangent linear model , we simply add a “L” at the beginning

15



of the original names of subroutines of the nonlinear forward model. To conform to the
general FORTRAN language rule, if the new name of a tangent linear subroutine exceeds
six letters, we just retain its first six letters. For instance, for the subroutines of the
original nonlinear model “SUB1”, “VADVCT” and “HADVCTT?”, the corresponding
names of the subroutines in the tangent linear model code are “LSUB1”, “LVADV(C” and
“LHADV(C?”, respectively.

3.4  Flow chart of the dynamical core of the tangent linear model

The following is the flow chart of the dynamical core of the tangent linear model of NASA
GEOS-1 GCM.

THE FLOW CHART OF THE TANGENT LINEAR MODEL OF
THE DYNAMICAL CORE PACKAGE DESCRIBING

THE TWO STEPS OF THE MATSUNO TIME INTEGRATION
SCHEME AND THE LEAPFROG TIME INTEGRATION SCHEME.

[ Put total diabatic tendencies into the ]

perturbation variable tendency terms.

b

CALL LSHAPI:apply the global Shapiro filter
onU, V, T, gqperturbation fields to
damp small-scal e dispersive waves.

b

If integrating backward, invert the sign of the time tendency
terms to ensure non-reversible effects are positive.

b

CALL SETGRID: define parameters for integrating
at the staggered grid points.

¢ TLM OF THE DYNAMICAL CORE, page 1.

16



b

CALL SETDMP: calculate damping coefficient
for high latitude filter.

b

[CALL L PK AP: calculate perturbation “* P** KA PPA’’ term.]

b

[ Compute perturbation geopotential hei ght.]

b

[ Average perturbation mass to vort. points. ]

b

CAAL LSUBI1: compute the perturbation terms,
kinetic energy, potential
vorticity, ustar, vstar , which are
used for Arakawa C-grid scheme.

¢ TLM OF THE DYNAMICAL CORE, page 2.

b

CALL SUBZ2:compute parameters alpha, beta, gamma, delt
which are used for Arakawa C-grid scheme.

b

CALL LHADVE: compute tendencies of perturbations
of height and wind due to the
horizonal advection processes.

b

CALL LHADVC: compute perturbation temperature
tendencies due to the horizonal
advection processes.

b

CALL LHADVC: compute perturbation moisture
tendencies due to the horizonal
advection processes (for the
adiabatic version, skip this step).

b

Compute the adiabatic perturbation pressurj

and total perturbation pressure tendencies.

¢ TLM OF THE DYNAMICAL CORE, page 3.
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b

[ Compute delta(Pl* SIGMADOT) ]

b

CALL LVADVC: caculate centered second-order
vertical advection of perturbations of
u,Vv,T,a.

b

CALL FFTDDT: apply FFT scheme to filter the
tendencies of the perturbation
variables of U, V, T, g over the
the high-latitude region.

¢ TLM OF THE DYNAMICAL CORE, page 4.

\

Add analysis increment to dynamical
omega diagnostics (for the adiabatic
tangent linear moddl, it is not
necessary to compute diagnostics.
May skip this step).

\

[ CALL LSTEP: update perturbation prognostic fieldg
onetime-step, CALL LTMFIL
for applying Asselin time filter.

(The following computations are
skipped in the adiabatic version of
TLM, i.e.,, compute total perturbatior
tendency diagnostics, check global
mean surface pressure and negative
humidities, as well as bump
diagnostic counters.)

b

1
1
1
V TLM OF THE DYNAMICAL CORE, page 5.
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3.5 Verifying correctness of the tangent linear model

To verify the correctness of the tangent linear model, we compared the output of each
subroutine of the tangent linear model with its counterpart in the original forward model.
To verify the full tangent linear model, we employed a more quantitative method, described
below.

The evolution of X, the vector of control variables, is given by the integration of the model
M between times ¢ty and ¢,, as:

X(tn) = M (tn,0) (X (t0)) = M (tn,10) (Xo (To) + 6X (t0)) (29)

whereas the first order evolution of the perturbation 6X (¢,,) is the result of the integration
of the tangent linear model R :

§X (tn) = R (1, 10) 6X (to) (30)

We then compare the total perturbation
N(6X (t0)) = M (1n,10) (Xo (to) + 6X (10)) = M (tn, 10) (Xo (10)) (31)
with its linear component
L(6X (t0)) = R(t,,t0) 06X (to) (32)
The difference between the two is denoted as

D (8X (1)) = N (6X (t0)) — L (6X (10) (33)

In order to quantify this comparison, we choose a norm whose square is defined by
IX* = X"WX (34)

in accordance with the norm used in the inner product of the cost function for the variational
data assimilation problem. The relative difference between the tangent linear model and

the nonlinear forward model is then defined as the ratio %. We first examine different

components of JJ%U and calculate correlation coefficients between nonlinear output fields
N and linear output fields L according to the individual model variables contributions
(u,v,T, Ps).

The data used to verify the tangent linear model is the January 1, 1985 00Z ECMWF data.
As in Rabier and Courtier(1992), we chose zonal average fields as basic state initial condi-
tion, while departure of zonal average fields multiplied by a scaling factor a serves as the
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perturbation of initial conditions. Both the basic state initial condition fields (i.e., zonal
average fields) and the perturbed initial condition fields (which is just the original ECMWF
data) are good initial conditions for stable integration of the model and do not cause ex-
citation of gravity waves. The amplitudes of different components of this perturbation are
very large when a = 1: at level ¢ = 0.223, the maximum zonal wind perturbation reaches
63 m/s; at level ¢ = 0.352 , the maximum meridional wind perturbation reaches 65 m/s;
the temperature perturbation at ¢ = 0.029 level is close to 18 K, while the maximum per-
turbation of the surface pressure is -424 hPa, due to the orography of the Tibetan Plateau.
The tangent linear model check with these strongly perturbed initial conditions can shed
light on possible coding errors. The period of integration, t,,, is taken to be 12 hours.

Table 1: Correlation Coeflicients Between N Field and L Field:

a U v T Ps
1.0 | 0.8919275 | 0.9094758 | 0.8628350 | 0.8714384
10~ | 0.9981103 | 0.9986473 | 0.9971051 | 0.9981210
1072 | 0.9999804 | 0.9999861 | 0.9999694 | 0.9999809
1073 | 0.9999998 | 0.9999999 | 0.9999997 | 0.9999998
10~* | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
10> | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
Table 2: Relative Error % (%):
a U v T Ps
1.0 45.32 41.99 50.69 49.41
101 6.18 5.20 7.62 6.14
1072 0.63 0.53 0.79 0.62
1073 [ 6.33x 1072 [ 5.27 x 1072 | 7.88 x 1072 | 6.22 x 1072
10741 6.33x 1077 | 5.27 x 1072 | 7.89 x 1072 | 6.22 x 1073
107° [ 6.33x 107* [ 527 x 107* | 7.89 x 10~* | 6.22 x 10~*

Table 1 presents correlation between N field and L field for various values of parameter
«, while Table 2 displays relative error Jﬁ%hl. From these tables we see that all correlation
coefficients between N and L for each of the variable fields exceed 86% (when a=1.0), and
reach values close to unity when a is less or equal to 0.1. As a decreases, the relative
errors decrease to very small values in a linear manner. The correlation coefficients reach
up to 10 digits of accuracy in vicinity of unity while relative error values attain an order of
magnitude of 10~* when « is equal to 107°. Comparing with similar relative errors analysis
applied to adiabatic version of NASA/GLA Semi-Lagrangian Semi-Implicit (SLSI) GCM
(Table 3) (Li et al., 1994), the tangent linear model of the adiabatic version of NASA
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GEOS-1 C-Grid GCM seems to display better linearity property than the tangent linear
model of NASA/GLA SLSI GCM. These analyses provide a reliable indication about the
correctness of the tangent linear model code.

Table 3: Relative Error % (%) of NASA/GLA 3-D SLSI GCM(from Li et al., 1994):

a u v T% (Inp,)’
1.0 34.85 42.09 44.12 28.77
101 5.22 10.63 7.63 3.44
1072 6.05 4.81 26.40 3.44
1073 | 8.85 x 1072 0.14 0.11 5.41 x 1072
1074 | 2.77x 1072 | 414 x 1072 | 2.67 x 1072 | 1.49 x 102
1072 | 1.71x 1072 | 216 x 1072 | 1.38 x 1072 | 1.34 x 1072

To assess impact of the length of integration period (or the length of data assimilation
window) on the validity of tangent linear approximation, we carried out a check for different
window lengths, up to 96 hours. For convenience, we averaged correlation coefficients of
four model variables and used the norm (described in Eq. (3.6) in Li et al., 1994) for || D||
and ||L|| to calculate relative error. The diagonal component values of weighting matrix
used are W, = W, = 1072 s?m™2, Wy = 107! K2, Wp,=10"2 hPa"?2, respectively.
We chose values of the parameter a=1.0, as representing a strong perturbation, a=0.1, as
representing a normal perturbation, while a=0.01 represented a small perturbation.

Fig. 1 displays the correlation coefficients between the N and the L fields for three values
of the parameter o with respect to different lengths of integration period. Fig. 2 displays
the relative error JH%L'l curves. Considering the av = 0.1 curve we deduce that the error of the
tangent linear moée[l is small when a normal perturbation is used corresponding to pertur-
bations of wind, temperature and surface pressure of 1m/s, 1K and 10hPa, respectively.
Even for integration periods of up to 96 hours, the correlation coefficient still exceeds 86%
and the relative error is 57%. These numerical results confirm earlier results of Courtier and
Talagrand (1987), Lacarra and Talagrand (1988), Rabier and Courtier (1992) that tangent
linear model well approximates the nonlinear forward model for up to 4 days when initial
perturbations are not too strong. For the weak perturbation case (a = 0.01), the model
displays a very good linear behavior with a correlation coefficient reaching 99.6% while the
relative error remains below 10% after 4 days of numerical integration. For strongly per-
turbed initial conditions(a = 1), the validity of the tangent linear model decreases quickly as
the length of integration period is increased. With these strong perturbations, the validity
limit of the tangent linear model is less than a day.
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4 Adjoint model of the adiabatic version of the NASA GEOS-
1 C-Grid GCM

4.1 Using adjoint method to calculate the gradient of the cost function

The practical determination of the adjoint model of the adiabatic version of the NASA
GEOS-1 C-Grid GCM is the key computational method enabling us to calculate the gradient
of the cost function with respect to the initial conditions (or other control variables) for
carrying out the 4-D variational assimilation. In 4-D variational assimilation, the cost
function, which measures the weighted difference between observations and forecasts in an
adequate norm, is minimized by using a large-scale unconstrained minimization method
iteratively which requires for its implementation the gradient of the cost function with
respect to the control variables. Finally, the optimal state defines a trajectory which passes
as close as possible in a least-squares sense to the observations while satisfying the system
of coupled partial differential equations describing the numerical weather prediction model
as strong constrains.

Assuming that the cost function consists of a weighted least square fit of the model forecast
to the observations, it assumes the form :

R
JX(ta)) = 30 (X0t - X00) W) (X(1,) - X9(1,) (35)

r=0

where X(%,) is a model state vector of size M (3K + 1) containing the values of the zonal
wind u, the meridional wind v, the temperature T and the surface pressure P;. M is the
number of grid points at each level; K is number of vertical levels. . is a given time in the
assimilation window; X°%(t,) is a vector of observations defined over all grid points on all
levels at time ¢,; W(¢,) is an N x N diagonal weighting matrix. From Navon et al.(1992),
we have the following expression

R
(VI (X)) X'(t0) = 3 (W) (X(0) = X(1,)) ) X(1,). (36)

r=0

where X'(#g) is the initial perturbation, X'(¢,) is the perturbation in the forecast resulting
from the initial perturbation, V.J (X(ty)) is the gradient of the cost function with respect
to the initial conditions.

The tangent linear model of the nonlinear forward model can be symbolically expressed as
X'(t,) = P, X' (o) (37)

where P,. represents the result of applying all the operator matrices in the linear model to
obtain X'(¢,) from X'(%o).
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We define the adjoint model as
X" (to) = PIX(t,), r=1,---,R, (38)

where (A) represents an adjoint variable. After some algebra we obtain (see Navon et al.,
1992) that the expression of the gradient of the cost function with respect to the initial
conditions is

R
VJ (X(to)) = 3 PIW(t,) (X(t,) - X (1,)) (39)
r=0
From this analysis, we note that the so called adjoint model operator is just the transpose
of the tangent linear model operator.

The flow chart of the adjoint model (of the dynamical core of the adiabatic version of NASA
GEOS-1 GCM is presented in Subsection 4.4.

4.2 Coding the adjoint model

Since the adjoint model equations consist of the transpose of the linearized version of the
nonlinear forward model, if we view the tangent linear model as the result of the multipli-
cation of a number of operator matrices:

P=AA;-- Ay, (40)
where each matrix A;(i = 1,---, N) represents either a subroutine or a single DO loop,
then the adjoint model can be viewed as being a product of adjoint subproblems

Pl = ALAL |- AT (41)

So the adjoint model is simply the complex conjugate of all the operations in the tangent
linear model. Each of the DO loops and each of the subroutines in the tangent linear
model have their adjoint image DO loop and subroutine. Therefore, we code the adjoint
model directly from the discrete tangent linear model by rewriting the code of the tangent
linear model sentence by sentence (i.e., on DO loop by one DO loop, subroutine by sub-
routine) in the opposite direction. This simplifies not only the complexity of constructing
the adjoint model but also avoids the inconsistency generally arising from the derivation
of the adjoint equations in analytic form followed by the discrete approximation.(Due to
non-commutativity of discretization and adjoint operations).

4.3 Notational convention for variables and subroutines used in the ad-
joint model code

In a similar way as in the tangent linear model, we employed the same original variable
names used in the nonlinear forward model for the corresponding adjoint variables in the
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adjoint model code. For instance, we use “U” for “U”, “PK HT” for “(PKAHT)”, “USTR2”
for “(USTRQ)”, etc.. As in the TLM, this convention also means that the adjoint control
variables in the adjoint model share the same common structure and same common block
names as the GCM itself. So one needs to pay attention to it when carrying out four dimen-

sional data assimilation experiments in which the adjoint model will be run in conjunction
with the original GCM.

We also just add a “0” at the end of a variable name (in a similar way as done pre-
viously in the tangent linear model) to represent the corresponding basic state variable,
such as using “U0” for “Upssic state”, “PKHTO0” for “(PKHT )pasic state”, “USTR20” for
“(USTRQ)basic state”7 etc..

For naming subroutines, we simply change the letter “L” at the beginning of the names of
the tangent linear model subroutines to “A” and used them as corresponding adjoint model
subroutine names. We also retain the adjoint subroutine names which do not exceed six let-
ters to conform to the general FORTRAN language rule. For instance, for the subroutines of
the original nonlinear model “SU B1”, “VADVCT” and “HADVCTT”, the corresponding
names of the subroutines in the tangent linear model code are “LSUB1”, “LVADV(C” and
“LHADVC”, respectively, and the corresponding adjoint subroutine names are “ASUB1”,
“AVADVC” and “AHADVC”, respectively.

4.4 Flow chart of the dynamical core of the adjoint model

In this subsection, we present the flow chart of the dynamical core of the adjoint model of

NASA GEOS-1 GCM.
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THE FLOW CHART OF THE ADJOINT MODEL OF THE
DYNAMICAL CORE PACKAGE DESCRIBING THE

TWO STEPS OF THE MATSUNO TIME INTEGRATION SCHEME
AND THE LEAPFROG TIME INTEGRATION SCHEME. All
COMPUTATIONS RELATED TO RETRIEVE THE BASIC STATE
TRAJECTORY AND INITIALIZATION OF VARIABLES AND
PARAMETERS ARE NOT INCLUDED.

ENTER

CALL ASTEP: update adjoint prognostic fields
backward one time-step, and
CALL ATMFIL for applying
the adjoint computations of Asselin
time filter.

v

CALL AFTDDT: apply the adjoint computation of the
FFT scheme to the tendencies of
the adjoint variables U, VV, T, q
over the high-latitude region.

¢ ADJOINT OF THE DYNAMICAL CORE, page 1.

V

CALL AVADVC: compute the adjoint operations of
the centered second-order vertical
advections of perturbations of U, V,
T, Qg

Compute the adjoint of the delta(PI* SIGMADOT)

Compute the adjoint of the total perturbation
pressure tendencies and the adiabatic perturbation
pressure tendencies.

CALL AHADVC: compute the adjoint operations of
the perturbation moisture tendencies
due to the horizonal advection
processes (for the adiabatic version,
skip this step).

¢ ADJOINT OF THE DYNAMICAL CORE, page 2.
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b

CALL AHADVC: compute the adjoint operations of
the perturbation temperature
tendencies due to the horizonal
advection processes.

v

CALL AHADVE: compute the adjoint operations of
the tendencies of perturbations of
height and wind due to the horizonal
advection processes.

CALL ASUBZ2: compute the adjoint operator
related to parameters alpha,
beta, gamma, delta which are
used in the Arakawa C-grid
scheme.

¢ ADJOINT OF THE DYNAMICAL CORE, page 3.

b

CAAL ASUBI1: compute adjoint operator related
to perturbation terms, kinetic
energy, potential vorticity,
ustar, vstar, which areused in
the Arakawa C-grid scheme.

Adjoint computations of average
perturbation mass to vorticity points.

Adjoint computations of the
perturbation geopotential height.

CALL APKAP: apply the adjoint operations for calculating
the perturbation ‘ * P** KAPPA’’ term.

¢ ADJOINT OF THE DYNAMICAL CORE, page 4.
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v

[ when integrating backward (in time) |
in TLM, invert the sign of the time
tendency termsin the adjoint model
to ensure that the non-reversible
processe are positive.

v

CALL ASHAPI: apply the adjoint operations for
the global Shapiro low-pass filter
onU, V, T, g perturbation fields
to damp small-scale dispersive
waves.

1
V ADJOINT OF THE DYNAMICAL CORE, page 5.

4.5 Verification of the correctness of the adjoint model

Integrating nonlinear model forward in time and its adjoint backwards in time, while forcing
the r.h.s.of the adjoint model with difference between model and observations (see Eq.
(39)), one can obtain value of gradient of cost function with respect to distributed control
variables, which may consist of either the initial conditions or the initial conditions plus
boundary conditions or model parameters. Since the adiabatic version of NASA GEOS-1
C-Grid GCM consists of thousands of lines of code, any minor coding error may cause
the final gradient of cost function with respect to the control variables to be erroneous.
Therefore, we need to verify the correctness of the linearization and adjoint coding segment
by segment. Each segment may consist of either a subroutine or of several DO loops. For
a detailed derivation of the adjoint model and verification of its correctness, see Navon et
al.(1992).

The correctness of the adjoint of each operator was checked by applying the following
identity (Navon et al., 1992)

(AQy7(AQ) = QT (4T(4Q)), (42)
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where () represents the input of the original code, A represents either a single DO loop or
a subroutine (See Navon et al. 1992). The left hand side involves only the tangent linear
code, while the right hand side involves also adjoint code (A*T). If Eq. (42) holds, the
adjoint code is correct when compared with the TLM. In practice identity Eq. (42) holds
only up to machine accuracy. In our verifications of the correctness of each segment of
the adjoint model and the whole adjoint model, the LHS and the RHS of Eq.Eq. (42)
attained 13 digits of accuracy which is near the machine accuracy limit of NASA Charney
C-90 CRAY Computer which has intrinsic double precision.

In the subroutine “ASHAP”, to ensure the correctness of the adjoint code check, we employ
the “DOUBLE PRECISION” definition on some variables. In practice, to save computa-
tional cost, if do not need higher accuracy results of the adjoint model, one may omit use

the “DOUBLE PRECISION” definition.

These results show that our adjoint code consists of absolutely the exact adjoint operators

of the TLM of the adiabatic version of NASA GEOS-1 C-Grid GCM.

A gradient check (Fig. 3) was then performed to assess accuracy of the discrete adjoint
model. This verification method is described below. First, we chose the cost function J as
follows:

R T
TX(10)) = 5 3 (X(t) = X(1)) Wit (X(1) = X(1,)) (43)
r=0
where X(¢,) is an N = (M(3K + 1)) component vector containing values of (u, v, T,
Ps), with which NASA GEOS-1 GCM model is initialized, over all grid points and at all
vertical levels at time ¢,; M is the number of grid points at each vertical level; K is the
number of vertical levels; R is the number of time levels for the analyzed fields in the
assimilation window; ¢, is a certain observation time in the assimilation window; X°*%(¢,)
is the N-component vector of analyzed values of X over all grid points on all levels at
time t,; and W(¢,) is an N x N diagonal weighting matrix, where W,, W,, W¢ and
W p, are diagonal submatrices consisting of weighting factors for each variable, respectively.

Their respective values (as used in gradient check calculation) were W, = 10731 s?m ™2,

W, =10"°T s?m™ 2, Wy =10"'1 K2, Wp,= 10731 hPa"?. Then, let
J(X + ah) = J(X) + ahTVJ(X) 4+ 0(a?), (44)

be a Taylor expansion of the cost function. Here « is a small scalar and h is a vector of
unit length (such as h = V.J/||VJ||). Rewriting the above formula we can define a function
of a as

_ J(X +oh) - J(X
o) = = VX

) Z 14+ 0(a), (45)
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For values of @ which are small but not too close to the machine zero, one should expect
to obtain a value for ®(«) which is close to unity. We obtained that the value of function
#(a) equals unity to a high degree of accuracy when parameter a varied from 107! to 1073,
and obeys a monotonically decreasing rule when a decreased over 12 orders of magnitude.
From the residual of ¢(a)(Fig. 4), we found that the residual tends linearly to zero . The
gradient check verifies that adjoint model is correct and can be safely used to perform 4-D
VDA experiments.

4.6 Some examples of coding the discrete adjoint model from the tangent
linear model code

In the following we will provide some simple tutoring coding examples and technical methods
which are very helpful for understanding the tangent linear model and the adjoint model

coding techniques used in the adiabatic version of NASA GEOS-1 C-Grid GCM.
e EXAMPLE 1:

In the original nonlinear model

DO 10 I=1, N-1
10 X(I)=AxY(I+1)

where A is a parameter, X and Y are N dimensional vectors. This DO loop is linear and do
not need to be linearized. So the corresponding tangent linear code will remain identically
the same as the original one,

DO 10 I=1, N-1
10 X(I)=AxY(I+1)

The corresponding adjoint code form depends on whether the values of Y (1) will be reused
or not after this DO loop. If the values of Y (1) will not be reused after this DO loop, the
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matrix form of this DO loop is

X(1) A 0 0 0 Y (2)
X(2) 0 A 0 0 Y (3)
' = ' (46)
X(N-1) 0 0 --- 0 A Y(N)
The adjoint of the equation (46) can be written out directly as
Y (2) A 0 0 --- 0 0 X(1)
Y (3) 0 A0 -+ 00 X(2)
. _ . . (47)
Y(N) 0 00 --- 0 A X(N)

Equation (47) is equivalent to the following code

DO 10 I=1, N-1
10 Y(I+1)=A%X(I)

However, If the values of Y (/) will be reused after this EXAMPLE 1 DO loop, the corre-
sponding matrix form should modified to be

X(1) A0 0 0 0

X(2) 0 A 0 0 0

) . . ‘ol

Y(3)

X(N-1) 0 0 0 A -

Y (2) I 0 0 0 (48)
Y (3) 10 0 0 :

: Y(N)

Y(N) 0 0 0 0 1
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The adjoint of the equation (48) should be written out as

X(1)
X(2)
Y(2) A 00 00100 0 0 '
Y (3) 00 A0 -~ 00010 0 0 :
. X(N—1)
= Y(2) (49)
. e Y (3)
Y(N) 000 --0A000 - 01 -
Y('N)

Thus the adjoint code of Equation (49) will be

DO 10 I=1, N-1
10 Y(I+1)=Y(I+1)+A*X(I)

Thus this is a different adjoint code compared to the code derived from Equation ( /refeq47).
The issue of identifying which variables on the right side of tangent linear code belong either
to reused variables or non-reused variables is very important for adjoint code derivation.

e EXAMPLE 2:

In the original nonlinear model code and the tangent linear model code, a DO loop assumes
the following form

DO 10 I=1, N-1
10 X(I)=X(I)+A*Y(I+1)

The matrix form of the above DO loop (if the values of Y(I) will not be reused) for the
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tangent linear model is

X(1) 10 00 A 0
X(2) 0 1 000 A
X(N-1) 0 0 010 0

0

X()
X(2)
0 .
0 .
X(N—1)
Y (2) (50)
- v(3)
A .
Y(N)

The adjoint operation matrix equation will be (by transposition, i.e., for tangent linear code

X = LX, the adjoint code is X = LTX.)

X(1) 10
X(2) 0 1
xv=1n | o o
Y2y [T 4 o
Y(3) 0 A
Y(N) 0 0

So the corresponding adjoint code is

DO 10 I=1, N-1
10 Y(I+1)=A%X(I)

o O

o

o O

(51)

Similarly, we may derive easily the adjoint code for this example when Y (1) will be reused

after this DO loop in the tangent linear model as
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DO 10 I=1, N-1
10 Y(I+1)=Y(I+1)+A*X(I)

e EXAMPLE 3:

In the nonlinear model, a DO loop is

DO 10 I=1, N
10 Z{I)=X(I)*Y(I)

where X, Y and Z are N dimensional vector variables. The corresponding tangent linear
model code is

DO 10 I=1, N
10 Z(I)=YO(I)*X(I)+X0(I)*Y(I)

Recall from Subsections 3.3 and 4.3 that Y0 and X0 are basic state variables. If Y(/) and
X (1) will not be reused anymore after this DO loop, the matrix form of this DO loop is
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Z(1) Yo(1) 0 0 X0(1) 0
Z(2) 0 Y0(2) 0
Z(‘N) 0 YO&N ) 0
X(1)
X(2)
X(‘N)
v
Y(2
The adjoint of the equation (52) can be written out directly as
X(1) Yo(1) 0 0
X(2) 0 Yo2) --- 0
X(‘N) B 0 0 YO&N)
Y (1) | X0(1) 0 0
Y(2) 0 X0(2) 0
Y(N) 0 0 . XO)

The adjoint DO loop code is

DO 10 I=1, N
X(I)=Y0(I)*Z(I)
10 Y(I)=X0(I)*Z(I)
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If Y(I)and X (/) will be reused in future, the matrix form of the linearized code of EX-

AMPLE 3 is

Z(1)
Z(2)

o =

o

o

o
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Then the adjoint matrix form is

X(1) Yo(1) 0 -~ 0 10
X(2) 0 Y02 --- 0 01
x| | 0o 0 v oo
vy | T | xo) o0 .0 00
Y(2 0 X0(2) 0 0 0
Y(N) 0 0 -XO‘(N) 0 0

Z(1)

7(2)

2(N)

X(1)

X(2)

X(‘N)

Y(1)

Y(2)

Y(N)

Thus the adjoint code can be obtained from above equation as

DO 10 I=1, N
X(I)=X(I)+Y0(I)*Z(I)
10 Y(I)=Y(I)+X0(I)*Z(I)

e EXAMPLE 4:
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In last three examples, all the calculations do not have recursion relation. Here we present
a simple example which exhibits a recursion relation. The DO loop code of the original
nonlinear model and its tangent linear model is

DO 10 I=1, N-1
10 Z(I+1)=Z(I)+YO(I)*X(I)+X0(I)*YY

where Z(1), X(I) and YY are control variables and will be reused in future, Y0 and X0
are two parameter vectors. This recursion loop can be expressed in matrix form as

Z(1) 100 --0000 - 0 0 0
Z(2) 10 - 0000 - 0 0 0
Z(3) 001 --0000 ---0 0 0
Z(N - 1) 00 0 0100 0 0 0
Z(N) = oo o 0100 0 YON—1) XO(N—1) |+
X(1) 00 0 0010 0 0 0
X(2) 00 0 000 1 0 0 0
X(N —1) 000 --0000 ---0 1 0
YY 000 --0000 ---0 0 1
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0000
0000
0000
1 0 00
0000
0010
00 01
0000
0000

0
0
1
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

e

e

o o o

o o o

o o o

0

0 0 YO(1)
0

0

0
0
0
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The corresponding adjoint matrix equation is

0
0
0

0
0
0

0000
0000
0000

0
0
0

0
0
0
0

0
0
0
0

0000
0000
0010

0
0

00 01

0

0
1
0

0000
0000
0000

0
0

1

Z(N -2

Z(N -1

X(1)
X(2)

X(N_ 1)

YY

0
0
0

0
0
0

00 00
00 00
00 00

0

00 00
00 00
0010

0 0 01 0

0 0 YO(2)

0
0
1

0
1
0

00 00
00 00
00 00

X0(2)

O O O

O O O
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100 0 0
10 0 0
00 1 0 0
00 0 0 0
.00 1 1
00 0 0 0
00 0 0 0
000 - 0 0
00 0 0 YO(N—1)
00 0 0 XO(N-—1)

o

(el en B an IR

0
0
0

_ o o o - o

o O

Finally, the adjoint code for this recursion DO loop is

DO 10 1I=N-1, 1, -1
Z(I)=Z(I)+Z(I+1)
X(D)=X(I)+Y0(I)*Z(I+1)
YY=YY+X0(I)*Z(I+1)

10 Z(I+1)=0.0

oo o o - o

O = O

o

oo o o -

Z(N —1)
Z(N)
X(1)
X(2)

X(N_ 1)
YY

For this example, the DO loop variable I must evolve in the opposite direction of the
variation of the DO loop variable in the tangent linear model code. As a matter of fact,
the adjoint model is always integrated in the opposite direction of the tangent linear model.
Thus, to avoid unexpected mistakes in the adjoint code and to conveniently identify and
code the adjoint model, we follow the convention that the DO loop variables in all DO loops
of adjoint model code should evolve in the opposite direction of the corresponding tangent

linear model DO loops.

e EXAMPLE 5:

Here we present a simple example for a subroutine, the original code of which is
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SUBROUTINE SIM(X, Y, N)
DIMENSION X(N), Y(N), Z(N*2)

Y(N)=0.0
DO 10 I=1, N-1
10 Y(I)=X(I+1)*%2
DO 20 I=1, N
20 Z(I)=X(I)**3
DO 30 I=1, N
30 Z(I+N)=X(I)*%4
DO 40 I=1, N
40 Y(I)=Y(I)+10.0%Z(I)+8.0%Z(I+N)

CALL OTHER(Y, N)

RETURN
END

In this subroutine, the input variable is “X”, and the output variables are “X” and “Y”.
Its tangent linear code is

SUBROUTINE LSIM(X, Y, N, X0, YO0)
DIMENSION X(N), Y(N), Z(N*2), XO(N), YO(N), ZO(N%2)

Y(N)=0.0

YO(N)=0.0

DO 10 I=1, N-1

Y(I)=2.0*%X0(I+1)*X(I+1)
10 YO(I)=X0(I+1)**2

DO 20 I=1, N

Z(I)=3.0%X0(I)**2xX(I)
20 ZO(I)=X0(I)**3

DO 30 I=1, N

Z(I+N)=4.0%X0(I)**3*X(I)

43



30 ZO(I+N)=X0(I)**4
DO 40 I=1, N
Y(I)=Y(I)+10.0%Z(I)+8.0*Z(I+N)

40 YO(I)=YO(I)+10.0%ZO(I)+8.0*Z0(I+N)

CALL LOTHER(Y, N, YO)

RETURN
END

The corresponding adjoint subroutine code(assume X () will be reused in future) is

SUBROUTINE ASIM(X, Y, N, X0, YO0)
DIMENSION X(N), Y(N), Z(N*2), XO(N), YO(N), ZO(N%2)

CALL AOTHER(Y, N, YO)

DO 40 I=N, 1, -1
Z(I)=10.0%Y(I)

40 Z(I+N)=8.0%Y(I)
DO 30 I=N, 1, -1

30 X(I)=X(I)+4.0%X0(I)**3*xZ(I+N)
DO 20 I=N, 1, -1

20 X(I)=X(I)+3.0%X0(I)**2%Z(I)
DO 10 I=N-1, 1, -1

10 X(I+1)=X(I+1)+2.0%X0(I+1)*Y(I)

RETURN
END

¢« EXAMPLE 6:
Finally, we provide here a real subroutine in the adiabatic version of the NASA GEOS-1

GCM. This subroutine relates the horizontal advection calculations of momentum equations
using the Arakawa-Lamb c-grid energy-conserving form.
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———The original nonlinear forward model subroutine code is—

SUBROUTINE HADVECT ( DUDT, DVDT, CONV,
FACTU, FACTV, FACTH, A,B,C,D,
ZKE, Q, PHI, PKZ,
USTAR,VSTAR,TBARU,TBARV, IM,JM,
UDOT,VDOT )

DIMENSION DUDT(IM,JM), DVDT(IM,JM), CONV(IM,JM)

DIMENSION A(IM,IM), B(IM,IM), C(IM, M), D(IM,IM)
DIMENSION  ZKE(IM,JM), Q(IM,JM), PHI(IM,JM), PKZ(IM,JM)
DIMENSION USTAR(IM,JM), VSTAR(IM,JM)

DIMENSION TBARU(IM,JM), TBARV(IM,JM)

DIMENSION UDOT(IM,JM), VDOT(IM,JM)

DIMENSION FACTU(IM,JM)

DIMENSION FACTV(IM,JM)

DIMENSION FACTH(IM,JM)

PARAMETER ( ZERO = 0.00 )
PARAMETER ( AHALF = 0.50 )
PARAMETER ( ONE = 1.00 )
PARAMETER ( TWO = 2.00 )
PARAMETER ( THREE = 3.00 )
PARAMETER ( FOUR = 4.00 )
IMIM = IMx JM

IMIMM1 = IM*(JM-1)

IMIMM2 = IM*(JM-2)

IMJMM3 = IM*(JM-3)

IMJMM4 = IMx(JM-4)

CP = GETCON(’CP?)

C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k
C ok COMPUTE HEIGHT TENDENCIES *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k

J=2
DO I=1,IMJMM2
CONV(I,J) = - ( USTAR(I,J) - USTAR(I-1,J)
+ VSTAR(I,J) - VSTAR(I,J-1) )
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ENDDO

C FIX LONGITUDINAL BOUNDARIES

C ___________________________
IM1 = IM
I =1
DO J=2,JM-1
CONV(I,J) = - ( USTAR(I,J) - USTAR(IM1,J)
. + VSTAR(I,J) - VSTAR(I,J-1) )
ENDDO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C ok COMPUTE U-WIND TENDENCIES *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k

J=2
DO I=1,IMJMM2
UDOT(I,J) = A (I ,J ) % VSTAR (I+1,] )
+B (I ,J ) % VSTAR (I ,J )
+C (I ,J ) * VSTAR (I ,J-1)
+D (I ,J ) * VSTAR (I+1,J-1)
- (ZKE(I+1,J ) + PHI  (I+1,7 ) )
+ (ZKE(I ,J ) + PHI (I ,J ) )
-CP*TBARU(I,J)* (PKZ(I+1,J ) - PKZ (I ,J D))
ENDDO
C FIX LONGITUDINAL BOUNDARIES
C ___________________________
DO J=2,JM-1
IM1 = IM-1
I =1IM
IP1 = 1
UDOT(I,J) = A (I ,J ) % VSTAR (IP1,] )
+B (I ,J ) % VSTAR (I ,J )
+C (I ,J ) * VSTAR (I ,J-1)
+D (I ,J ) * VSTAR (IP1,J-1)
- (ZKE(IP1,J ) + PHI  (IP1,J ) )
+ (ZKE(I ,J ) + PHI (I ,J ) )
-CP*TBARU(I,J)* (PKZ(IP1,J ) - PKZ (I ,J ) )
IM1 = IM
I =1
IP1 =
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UDOT(I,J) = A (I ,J ) % VSTAR (IP1,] )
+B (I ,J ) % VSTAR (I ,J )
+C (I ,J ) * VSTAR (I ,J-1)
+D (I ,J ) * VSTAR (IP1,J-1)
- (ZKE(IP1,J ) + PHI  (IP1,J ) )
+ (ZKE(I ,J ) + PHI (I ,J ) )
-CP*TBARU(I,J)* (PKZ(IP1,J ) - PKZ (I ,J ) )

ENDDO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C ok COMPUTE V-WIND TENDENCIES *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k

J=JM-1
DO I=1, IM
VDOT(I, J)=ZERO
END DO
J=2
DO I=1,IMJMM3
VDOT(I,J) = - C (I ,J+1) * USTAR (I ,J+1)
- D (I-1,J+1) * USTAR (I-1,J+1)
- A (I-1,J ) * USTAR (I-1,J )
-B (I ,J ) * USTAR (I ,J )
- ( ZKE(I ,J+1) + PHI (I ,J+1) )
+ ( ZKE(CI ,J )+ PHI (I ,J ))
. -CP*TBARV(I,J)*( PKZ(I ,J+1) - PKZ (I ,J ) )
ENDDO

DO J=2,JM-2

IM1 = IM
I =1
IP1 = 2
VDOT(I,J) = - C (I ,J+1) * USTAR (I ,J+1)
- D (IM1,J+1) * USTAR (IM1,J+1)
- A (IM1,J ) * USTAR (IM1,J )
-B (I ,J ) * USTAR (I ,J )
- ( ZKE(I ,J+1) + PHI (I ,J+1) )
+ ( ZKE(CI ,J )+ PHI (I ,J ))
-CP*TBARV(I,J)*( PKZ(I ,J+1) - PKZ (I ,J ) )
IM1 = IM-1
I =1IM
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IP1 = 1

VDOT(I,J) = - C (I ,J+1) * USTAR (I ,J+1)
- D (IM1,J+1) * USTAR (IM1,J+1)
- A (IM1,J ) * USTAR (IM1,J )
-B (I ,J ) * USTAR (I ,J )
- ( ZKE(I ,J+1) + PHI (I ,J+1) )
+ ( ZKE(CI ,J )+ PHI (I ,J ))
-CP*TBARV(I,J)*( PKZ(I ,J+1) - PKZ (I ,J ) )

ENDDO
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k
C ok APPLY SCALE FACTORS *okokk

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

DO I=1,IMJMM2

CONV(I,2) = CONV(I,2) * FACTH(I,2)
DUDT(I,2) = DUDT(I,2) + UDOT(I,2) * FACTU(I,2)
DVDT(I,2) = DVDT(I,2) + VDOT(I,2) * FACTV(I,2)
ENDDO

DO I=1, IMJIM
UDOT(I, 1)=ZERO
VDOT(I, 1)=ZERO
END DO

RETURN
END
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———TIts corresponding TLM subroutine code is accordingly———

SUBROUTINE LHADVE ( DUDT, DVDT, CONV,
FACTU, FACTV, FACTH, A,B,C,D,
ZKE, PHI, PKZ,
USTAR,VSTAR,TBARU,TBARV, IM,JM,
UDOT,VDOT,
DUDTO, DVDTO, CONVO,
A0,B0,CO,DO,
ZKEO, PHIO, PKZO,
USTARO,VSTARO,TBARUO,TBARVO,

UDOTO,VDOTO)
DIMENSION DUDT(IM,JM), DVDT(IM,JM), CONV(IM,JM)
DIMENSION DUDTO(IM,JM), DVDTO(IM,JM), CONVO(IM,JM)
DIMENSION A(IM,IM), B(IM,IM), C(IM, M), D(IM,IM)
DIMENSION AO(IM, M), BO(IM,JM), CO(IM,JM), DO(IM,JIM)
DIMENSION  ZKE(IM,JM), PHI(IM,JM), PKZ(IM,JM)
DIMENSION ZKEO(IM,JM), PHIO(IM,JM),PKZO(IM,JM)
DIMENSION USTAR(IM,JM), VSTAR(IM,JM)
DIMENSION USTARO(IM,JM), VSTARO(IM,JM)
DIMENSION TBARU(IM,JM), TBARV(IM,JM)
DIMENSION TBARUO(IM,JM), TBARVO(IM,JM)
DIMENSION UDOT(IM,JM), VDOT(IM,JM)
DIMENSION UDOTO(IM,JM), VDOTO(IM,JM)
DIMENSION FACTU(IM,JM)
DIMENSION FACTV(IM,JM)
DIMENSION FACTH(IM,JM)
PARAMETER ( ZERO = 0.00 )
PARAMETER ( AHALF = 0.50 )
PARAMETER ( ONE = 1.00 )
PARAMETER ( TWO = 2.00 )
PARAMETER ( THREE = 3.00 )
PARAMETER ( FOUR = 4.00 )
IMIM = IMx JM
IMIMM2 = IM*(JM-2)

CP = GETCON(’CP?)
DO I=1, IMJIM
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UDOT(I, 1)=ZERO
VDOT(I, 1)=ZERO
END DO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C *kkkx

COMPUTE HEIGHT TENDENCIES ook k

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

DO J = 2, JM-1

DO I=2,IM

CONV(I,J) = - ( USTAR(I,J) - USTAR(I-1,J)

. + VSTAR(I,J) - VSTAR(I,J-1) )
CONVO(I,J) = - ( USTARO(I,J) - USTARO(I-1,J)
. + VSTARO(I,J) - VSTARO(I,J-1) )
ENDDO

ENDDO

J=JM-1

DO I=1, IM

VDOT(I, J)=ZERO

END DO

LONGITUDINAL BOUNDARIES

IM1 = IM

I =1

DO J=2,JM-1

CONV(I,J) = - ( USTAR(I,J) - USTAR(IM1,J)

. + VSTAR(I,J) - VSTAR(I,J-1) )
CONVO(I,J) = - ( USTARO(I,J) - USTARO(IM1,J)
. + VSTARO(I,J) - VSTARO(I,J-1) )

ENDDO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C *kkkx

COMPUTE U-WIND TENDENCIES ook k

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

DO J=2,JM-1
DO TI=1,IM-1
UDOT(I,J) =

A (T ,J ) * VSTARO(I+1,J )
+ AO(I ,J ) * VSTAR (I+1,J )
+ B (I ,J ) x VSTARO(I ,J )
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+ BO(I ,J
+C (I ,J
+ CO(I ,J
+D (I ,J
+ DO(I ,J
- (ZKE(I+1,J
+ (ZKE(I ,J

-CP*(TBARU(I,J)* (PKZO(I+1,]

+TBARUO(I,J)* (PKZ(I+1,J ) -

UDOTO(I,J) = AOCI ,J
+ BO(I ,J
+ CO(I ,J
+ DO(I ,J

- (ZKEO(I+1,J
+ (ZKEO(I ,J
-CP*TBARUO(I,J)* (PKZO(I+1,J
ENDDO
ENDDO

C FIX LONGITUDINAL BOUNDARIES

IP1 = 1
DO J=2,JM-1
UDOT(I,J) =
A (I
AO(T
B (I
BO(I
c (1
co(1
D (I
+ DO(I
- (ZKE(IP1,J
+ (ZKE(I ,J
-CP*(TBARU(I,J)* (PKZO(IP1,J

- - -

-

+ + + + o+ o+
[ S S S S S SR

-

+TBARUO(I,J)* (PKZ(IP1,J ) -

UDOTO(I,J) = A0(I ,J
+ BO(I ,J
+ CO(I ,J
+ DO(I ,J
- (ZKEO(IP1,J

+ (ZKEO(I ,J
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-CP+*TBARUO(I,J)* (PKZO(IP1,J ) - PKZO (I ,J) )
ENDDO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C ok COMPUTE V-WIND TENDENCIES *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k

DO J=2, JM-2

DO I=2,IM
VDOT(I,J) =
- CO(I ,J+1) * USTAR (I ,J+1)
- C (I ,J+1) * USTARO(I ,J+1)
- DO(I-1,J+1) * USTAR (I-1,J+1)
- D (I-1,J+1) * USTARO(I-1,J+1)
- A0(I-1,J ) * USTAR (I-1,J )
- A (I-1,J ) * USTARO(I-1,J )
- BO(I ,J ) % USTAR (I ,J )
-B (I ,J ) % USTARO(I ,J )
- ( ZKE(I ,J+1) + PHI (I ,J+1)

)
+ ( ZKE(CI ,J )+ PHI (I ,J ))
-CP*(TBARVO(I,J)*( PKZ(I ,J+1) - PKZ (I ,J )
+TBARV(I,J)*( PKZO(I ,J+1) - PKZO (I ,J ) ))
VDOTO(I,J) = - CO(I ,J+1) = USTARO(I ,J+1)
- DO(I-1,J+1) * USTARO(I-1,J+1)
- A0(I-1,J ) * USTARO(I-1,J )
- BO(I ,J ) * USTARO(I ,J )
- ( ZKEO(I ,J+1) + PHIO (I ,J+1) )
+ ( ZKEO(I ,J ) + PHIO (I ,J ) )
. -CP*TBARVO(I,J)*( PKZO(I ,J+1) - PKZO (I ,J ) )
ENDDO

ENDDO

IM1 = IM

I =1

DO J=2,JM-2

VDOT(I,J) =

- CO(I ,J+1) * USTAR (I ,J+1)
- C (I ,J+1) * USTARO(I ,J+1)
- DO(IM1,J+1) * USTAR (IM1,J+1)
- D (IM1,J+1) * USTARO(IM1,J+1)
- AO(IM1,J ) * USTAR (IM1,J )
- A (IM1,J ) * USTARO(IM1,J )
- BO(I ,J ) % USTAR (I ,J )
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ENDDO

T EEEE T T
C *kkkx
T EEEE T T

DO I=1
CONV (I
CONVO(
DUDT(I
DUDTO (
DVDT(I
DVDTO(
ENDDO

DO I=1
UDOT(I
VDOT(I
END DO

RETURN
END

-B (I ,J ) % USTARO(I ,J )

- ( ZKE(I ,J+1) + PHI (I ,J+1) )

+ ( ZKE(CI ,J )+ PHI (I ,J ))

-CP*(TBARVO(I,J)*( PKZ(I ,J+1) - PKZ (I ,J )
+TBARV(I,J)*( PKZO(I ,J+1) - PKZO (I ,J ) ))
VDOTO(I,J) = - CO(I ,J+1) = USTARO(I ,J+1)
- DO(IM1,J+1) * USTARO(IM1,J+1)
- AO(IM1,J ) * USTARO(IM1,J )
- BO(I ,J ) * USTARO(I ,J )

- ( ZKEO(I ,J+1) + PHIO (I ,J+1) )

+ ( ZKEO(I ,J ) + PHIO (I ,J ) )

-CP*TBARVO(I,J)*( PKZO(I ,J+1) - PKZO (I ,J ) )

)

2k 3k ok ok ok >k ok ok ok ok sk ok ok ok ok >k sk ok ok ok sk >k sk ok ok >k sk ok ok ok ok %k sk ok ok ok ok >k sk ok ok >k sk >k k ok ok >k ok ok ok ok ok >k 3k ok ok k ok >k

APPLY SCALE FACTORS *okokk
stk ok sk ok ok ok ok ok ke ok sk ok ok ok ok ko ok otk ok sk ok ok stk ok ok sk ok ok sk sk sk ke ok skok ook ok ok kokok ok ok ok ok ok ok

, IMJMM2

,2) = CONV(I,2) * FACTH(I,2)
I,2) = CONVO(I,2) * FACTH(I,2)
,2) = DUDT(I,2) + UDOT(I,2) * FACTU(I,2)

I,2) = DUDTO(I,2) + UDOTO(I,2) * FACTU(I,2)
,2) = DVDT(I,2) + VDOT(I,2) * FACTV(I,2)
I,2) = DVDTO(I,2) + VDOTO(I,2) * FACTV(I,2)

, IMIM
, 1)=ZERO
, 1)=ZERO
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———The corresponding adjoint subroutine code is accordingly———

SUBROUTINE AHADVE ( DUDT, DVDT, CONV,
FACTU, FACTV, FACTH, A,B,C,D,
ZKE, PHI, PKZ,
USTAR,VSTAR,TBARU,TBARV, IM,JM,
UDOT,VDOT,
A0,B0,CO,DO,
PKZO,
USTARO,VSTARO,TBARUO,TBARVO)

DIMENSION DUDT(IM,JM), DVDT(IM,JM), CONV(IM,JM)

DIMENSION A(IM,IM), B(IM,IM), C(IM, M), D(IM,IM)
DIMENSION AO(IM, M), BO(IM,JM), CO(IM,JM), DO(IM,JIM)
DIMENSION  ZKE(IM,JM), PHI(IM,JM), PKZ(IM,JM)

DIMENSION PKZO(IM,JM)

DIMENSION USTAR(IM,JM), VSTAR(IM,JM)

DIMENSION USTARO(IM,JM), VSTARO(IM,JM)

DIMENSION TBARU(IM,JM), TBARV(IM,JM)

DIMENSION TBARUO(IM,JM), TBARVO(IM,JM)

DIMENSION UDOT(IM,JM), VDOT(IM,JM)

DIMENSION FACTU(IM,JM)

DIMENSION FACTV(IM,JM)

DIMENSION FACTH(IM,JM)

PARAMETER ( ZERO = 0.00 )
PARAMETER ( AHALF = 0.50 )
PARAMETER ( ONE = 1.00 )
PARAMETER ( TWO = 2.00 )
PARAMETER ( THREE = 3.00 )
PARAMETER ( FOUR = 4.00 )
IMIM = IMx JM

IMIMM2 = IM*(JM-2)

CP = GETCON(’CP?)
C skoskoskoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk ok sk ok ok ok ok sk ok ok sk sk sk sk sk sk sk ok sk sk ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk skok ok

C ok APPLY SCALE FACTORS *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k
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DO I=1, IMJIM
UDOT(I, 1)=ZERO
VDOT(I, 1)=ZERO
END DO

DO I=IMJMMZ2, 1, -1
VDOT(I,2)=DVDT(I,2) * FACTV(I,2)

UDOT(I,2)=DUDT(I,2) * FACTU(I,2)

CONV(I,2)=CONV(I,2) * FACTH(I,2)
END DO

G keskok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok k

C ok COMPUTE V-WIND TENDENCIES *okokk
C skokokokokofokok ok ook ok ook ok ok sk ok ok stk ok sk ok sk ok ok sk sk ok ok sk okok ok sk sk kokok sk sk kok ok ok ok sk ok ok sk okok skok sk ok okok ok k

DO I=1, IMJIM
ZKE(I, 1)=ZERO
PHI(I, 1)=ZERO
A(I, 1)=ZERO
B(I, 1)=ZERO
C(I, 1)=ZERO
D(I, 1)=ZERO

END DO
IM1 = IM
I =1

DO J=JM-2, 2, -1
AM10=-CP*VDOT(I,J)

AM20=AM10*TBARVO(I,J)

TBARV(I,J)=AM10%( PKZO(I ,J+1) - PKZO (I ,J ) )
PKZ(I ,J+1)=PKZ(I ,J+1)+AM20

PKZ (I ,J )=PKZ (I ,J )-AM20

ZKE(I, J)=ZKE(I, J)+VDOT(I,J)

ZKE(I ,J+1)=ZKE(I ,J+1)-VDOT(I,J)

PHI (I ,J )=PHI (I ,J )+VDOT(I,J)

PHI (I ,J+1)=PHI (I ,J+1)-VDOT(I,J)

B( ,J )=B (I ,J )-VDOT(I,J) * USTARO(I ,J )
USTAR (I ,J )=USTAR (I ,J )-BO(I ,J ) * VDOT(I,J)
A (IM1,J )=A (IM1,J )-VDOT(I,J) * USTARO(IM1,J )
USTAR (IM1,J )=USTAR (IM1,J )-A0(IM1,J ) * VDOT(I,J)
D (IM1,J+1)=D (IM1,J+1)-VDOT(I,J) * USTARO(IM1,J+1)
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USTAR (IM1,J+1)=USTAR (IM1,J+1)-DO(IM1,J+1) * VDOT(I,J)
¢ (I ,J+1)=C (I ,J+1)-VDOT(I,J) * USTARO(I ,J+1)
USTAR (I ,J+1)=USTAR (I ,J+1)-CO(I ,J+1) * VDOT(I,J)
END DO

DO J=JM-2, 2, -1
DO TI=IM, 2, -1

AM10=-CP*VDOT(I,J)

AM20=AM10*TBARVO(I,J)

TBARV(I,J)=AM10%( PKZO(I ,J+1) - PKZO (I ,J ) )
PKZ(I ,J+1)=PKZ(I ,J+1)+AM20

PKZ (I ,J )=PKZ (I ,J )-AM20

ZKE(I, J)=ZKE(I, J)+VDOT(I,J)

ZKE(I ,J+1)=ZKE(I ,J+1)-VDOT(I,J)

PHI (I ,J )=PHI (I ,J )+VDOT(I,J)

PHI (I ,J+1)=PHI (I ,J+1)-VDOT(I,J)

B( ,J )=B (I ,J )-VDOT(I,J) * USTARO(I ,J )
USTAR (I ,J )=USTAR (I ,J )-BO(I ,J ) * VDOT(I,J)
A (I-1,J )=A (I-1,J )-VDOT(I,J) * USTARO(I-1,J )
USTAR (I-1,J )=USTAR (I-1,J )-A0(I-1,J ) * VDOT(I,J)
D (I-1,J+1)=D (I-1,J+1)-VDOT(I,J) * USTARO(I-1,J+1)
USTAR (I-1,J+1)=USTAR (I-1,J+1)-DO(I-1,J+1) * VDOT(I,J)
¢ (I ,J+1)=C (I ,J+1)-VDOT(I,J) * USTARO(I ,J+1)
USTAR (I ,J+1)=USTAR (I ,J+1)-CO(I ,J+1) * VDOT(I,J)
END DO

END DO

LONGITUDINAL BOUNDARIES

IP1 = 1

DO J=JM-1, 2, -1

AM10=-CP*UDOT(I,J)

AM20=AM10*TBARUO(I,J)

PKZ(IP1,J )=PKZ(IP1,J )+AM20

PKZ (I ,J )=PKZ (I ,J )-AM20
TBARU(I,J)=AM10*(PKZO(IP1,J ) - PKZO (I ,J ) )
ZKE(I ,J )=ZKE(I ,J )+UDOT(I,J)

PHI (I ,J )=PHI (I ,J )+UDOT(I,J)
ZKE(IP1,J )=ZKE(IP1,J )-UDOT(I,J)

PHI (IP1,J )=PHI (IP1,J )-UDOT(I,J)
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VSTAR (IP1,J-1)=VSTAR (IP1,J-1)+4DO(I ,J ) % UDOT(I,J)
D (I ,J )=D (I ,J )+VSTARO(IP1,J-1) * UDOT(I,J)
VSTAR (I ,J-1)=VSTAR (I ,J-1)+CO0(I ,J ) * UDOT(I,J)
C (I ,J )=C (I ,J )+VSTARO(I ,J-1) * UDOT(I,J)
VSTAR (I ,J )=VSTAR (I ,J )+BO(I ,J ) * UDOT(I,J)
B (I ,J )=B (I ,J )+VSTARO(I ,J ) * UDOT(I,J)
VSTAR (IP1,J )=VSTAR (IP1,J )+A0(I ,J ) % UDOT(I,J)
A (T ,J )=A (I ,J )+VSTARO(IP1,J ) * UDOT(I,J)

END DO

C kokook ok ok ok sk sk ok 5k ok ok sk ok ok 3k sk >k 5k ok 5k sk ok 5k ok ok 5k 5k ok >k 5k ok >k 5k ok 3k 5k >k 5k ok >k 5k ok 5k 5k ok 5k sk >k 5k 5k ok >k 5k ok >k 5k 5k 3k ok >k 5k ok >k >k >k %k %k ok k
C ®kkok COMPUTE U-WIND TENDENCIES okkok
C kokook ok ok ok sk sk ok 5k ok ok sk ok ok 3k sk >k 5k ok 5k sk ok 5k ok ok 5k 5k ok >k 5k ok >k 5k ok 3k 5k >k 5k ok >k 5k ok 5k 5k ok 5k sk >k 5k 5k ok >k 5k ok >k 5k 5k 3k ok >k 5k ok >k >k >k %k %k ok k

DO J=JM-1, 2, -1

DO I=IM-1, 1, -1

AM10=-CP*UDOT(I,J)

AM20=AM10*TBARUO(I,J)

PKZ(I+1,J )=PKZ(I+1,J )+AM20

PKZ (I ,J )=PKZ (I ,J )-AM20

TBARU(I,J)=AM10*(PKZO(I+1,J ) - PKZ0O (I ,J ) )

ZKE(I ,J )=ZKE(I ,J )+UDOT(I,J)

PHI (I ,J )=PHI (I ,J )+UDOT(I,J)

ZKE(I+1,] )=ZKE(I+1,J )-UDOT(I,J)

PHI = (I+1,J )=PHI  (I+1,J )-UDOT(I,J)

VSTAR (I+1,J-1)=VSTAR (I+1,J-1)+DO(I ,J ) * UDOT(I,J)

D (I ,J )=D (I ,J )+VSTARO(I+1,J-1) * UDOT(I,J)

VSTAR (I ,J-1)=VSTAR (I ,J-1)+CO0(I ,J ) * UDOT(I,J)

¢ (I ,J )=C (I ,J )+VSTARO(I ,J-1) * UDOT(I,J)

VSTAR (I ,J )=VSTAR (I ,J )+Bo(I ,J ) * UDOT(I,J)

B (I ,J )=B (I ,J )+VSTARO(I ,J ) * UDOT(I,J)

VSTAR (I+1,J )=VSTAR (I+1,J )+A0(I ,J ) * UDOT(I,J)

A (I ,J )=A (I ,J )+VSTARO(I+1,J ) * UDOT(I,J)

END DO

END DO

C FIX LONGITUDINAL BOUNDARIES

DO J=JM-1, 2, -1
USTAR(I,J)=USTAR(I,J)-CONV(I,J)
USTAR(IM1,J)=USTAR(IM1,J)+CONV(I,J)
VSTAR(I,J)=VSTAR(I,J)-CONV(I,J)
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VSTAR(I,J-1)=VSTAR(I,J-1)+CONV(I,J)
END DO
C ok sokokokok sk ok ok ok kok ok ook ook ook oK ok ok o sk ok ok ok Kok sk ook ok ok ok o sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
C Hxxkk COMPUTE HEIGHT TENDENCIES *ok ok ok
C ok sokokokok sk ok ok ok kok ok ook ook ook oK ok ok o sk ok ok ok Kok sk ook ok ok ok o sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DO J=JM-1, 2, -1
DO I=IM, 2, -1
USTAR(I,J)=USTAR(I,J)-CONV(I,J)
USTAR(I-1,J)=USTAR(I-1,J)+CONV(I,J)
VSTAR(I,J)=VSTAR(I,J)-CONV(I,J)
VSTAR(I,J-1)=VSTAR(I,J-1)+CONV(I,J)
END DO
END DO

DO I=1, IMJIM
UDOT(I, 1)=ZERO
VDOT(I, 1)=ZERO
END DO

RETURN
END
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