
NASA/TM-2021-104606/Vol. 55 

Technical Report Series on Global Modeling and Data Assimilation, 
Volume 55 

Randal D. Koster, Editor  

A Phenomenon-Based Decomposition of Model-
Based Estimates of Boreal Winter ENSO Variability 

Siegfried Schubert, Young-Kwon Lim, Andrea Molod, and Allison Marquardt Collow

February 2021 



NASA STI Program ... in Profile 

Since its founding, NASA has been dedicated 

to the advancement of aeronautics and space 

science. The NASA scientific and technical 

information (STI) program plays a key part in 

helping NASA maintain this important role. 

The NASA STI program operates under the 

auspices of the Agency Chief Information Officer. 

It collects, organizes, provides for archiving, and 

disseminates NASA’s STI. The NASA STI 

program provides access to the NTRS Registered 

and its public interface, the NASA Technical 

Reports Server, thus providing one of the largest 

collections of aeronautical and space science STI 

in the world. Results are published in both non-

NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compila-

tions of significant scientific and technical

data and information deemed to be of

continuing reference value. NASA counter-

part of peer-reviewed formal professional

papers but has less stringent limitations on

manuscript length and extent of graphic

presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and 

feeds, providing information desk and personal 

search support, and enabling data exchange 

services. 

For more information about the NASA STI 

program, see the following: 

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199



NASA/TM-2021-104606/Vol. 55 

Technical Report Series on Global Modeling and Data Assimilation, 
Volume 55 

Randal D. Koster, Editor  

A Phenomenon-Based Decomposition of Model-
Based Estimates of Boreal Winter ENSO Variability 

February 2021

Siegfried Schubert  
Science Systems and Applications, Inc., Lanham, MD 

Young-Kwon Lim  
Universities Space Research Association, Columbia, MD 

Andrea Molod 
Goddard Space Flight Center, Greenbelt, MD

Allison Marquardt Collow 
Universities Space Research Association, Columbia, MD

National Aeronautics and 
Space Administration 

Goddard Space Flight Center 
Greenbelt, Maryland 20771 



Notice for Copyrighted Information
This manuscript has been authored by an employees of Science Systems  and 
Applications, Inc. under Contract/Grant/ Cooperative Agreement No.NNG17HP01C and 
Universities Space Research Association under Contract/Grant/ Cooperative Agreement 
No. NNG11HP16A with the National Aeronautics and Space Administration. The United 

States Government has a non-exclusive, irrevocable, worldwide license to prepare 
derivative works, publish, or reproduce this manuscript, and allow others to do so, for 

United States Government purposes. Any publisher accepting this manuscript for 
publication acknowledges that the United States Government retains such a license in any 
published form of this manuscript. All other rights are retained by the copyright owner.
Trade names and trademarks are used in this report for identification only. Their usage 
does not constitute an official endorsement, either expressed or implied, by the National 
Aeronautics and Space Administration.
Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148 
NASA’s Langley Research 
Center Hampton, VA 
23681-2199

National Technical Information 
Service 5285 Port Royal Road
Springfield, VA 22161
703-605-6000

Available from



1 

Table of Contents 

List of figures ....................................................................................................................... 2 

1.0 Introduction ................................................................................................................... 9 

2.0 Methodology ................................................................................................................ 11 

2.1 Decomposition of the variance ....................................................................... 12 

2.2 Decomposition of the covariance ................................................................... 15 

3.0 Datasets ........................................................................................................................ 16 

3.1 MERRA-2 ........................................................................................................ 16 

3.2 M2AMIP simulations ..................................................................................... 16 

4.0 Results for ENSO during boreal winter.................................................................... 17 

4.1 The variance budget ....................................................................................... 18 

4.2 The composite variance .................................................................................. 33 

4.3 The event-to-event (E2E) variance ................................................................ 40 

4.4 The signal-to-total (S/T) variance ratio ......................................................... 49 

4.5 Correlations with observations ...................................................................... 55 

5.0 Summary and Discussion ........................................................................................... 68 

6.0 References .................................................................................................................... 72 



2 

 

List of Figures: 

Figure 1a: The variance decomposition of the 250mb eddy height for El Niño events that 

occurred during 1980-2016, averaged over the months December through March, with 

terms defined in eq. 2.1.2. See text for details.  Units are m2.  

Figure 1b: Same as Fig. 1a, but for La Niña. 

Figure 2a:  The variance decomposition of the 250mb u-wind for El Niño events that 

occurred during 1980-2016, averaged over the months December through March, with 

terms defined in eq. 2.1.2. See text for details.  Units are m2/s2. 

Figure 2b: Same as Fig. 2a, but for La Niña. 

Figure 3a: The variance decomposition of the precipitation for El Niño events that occurred 

during 1980-2016, averaged over the months December through March, with terms defined 

in eq. 2.1.2. See text for details.  Units are mm2/day2. 

Figure 3b: Same as Fig. 3a, but for La Niña. 

Figure 4a: The variance decomposition of the precipitation over North America for El Niño 

events that occurred during 1980-2016, averaged over the months December through 

March, with terms defined in eq. 2.1.2. See text for details.  Units are mm2/day2. 

Figure 4b: Same as Fig. 4a, but for La Niña. 

Figure 5a:  The variance decomposition of T2m over North America for El Niño events 

that occurred during 1980-2016, averaged over the months December through March, with 

terms defined in eq. 2.1.2. See text for details. Units are °K2. 

Figure 5b:  Same as Fig. 5a, but for La Niña. 

Figure 6:  The variance of the 250mb eddy height composite mean based on MERRA-2 

( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels 

are for El Niño, and bottom panels are for La Niña events that occurred during 1980-2016. 

Units: m2. 

Figure 7:  The variance of the 250mb U-wind composite mean based on MERRA-2 

( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels 

are for El Niño, and bottom panels are for La Niña events that occurred during 1980-2016. 

Units: m2/s2. 



3 

 

Figure 8:  The variance of the precipitation composite mean based on MERRA-2 ( 𝑌′2, left 

panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels are for El 

Niño, and bottom panels are for La Niña events that occurred during 1980-2016. Units: 

mm2/day2. 

Figure 9:  The variance of the North American precipitation composite mean based on 

MERRA-2 ( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  

Top panels are for El Niño, and bottom panels are for La Niña events that occurred during 

1980-2016. Units: mm2/day2. 

Figure 10:  The variance of the North American T2m composite mean based on MERRA-

2 ( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels 

are for El Niño, and bottom panels are for La Niña events that occurred during 1980-2016. 

Units: °K2. 

Figure 11:  E2E results for 250mb eddy height for El Niño (left panels) and La Niña (right 

panels) averaged over the months December through March for the events that occurred 

during 1980-2016. Top panel: E2E variance based on MERRA-2.  Middle panel: E2E (Term 

3 +Term 4) variance based on M2AMIP. Units: m2.  Bottom panel: E2E signal (Term 3) / 

E2E noise (Term 4) based on M2AMIP. 

Figure 12:  E2E results for 250mb u-wind for El Niño (left panels) and La Niña (right 

panels) averaged over the months December through March for the events that occurred 

during 1980-2016. Top panel: E2E variance based on MERRA-2.  Middle panel: E2E (Term 

3 +Term 4) variance based on M2AMIP. Units: m2/s2.  Bottom panel: E2E signal (Term 3) 

/ E2E noise (Term 4) based on M2AMIP. 

Figure 13:  E2E results for precipitation for El Niño (left panels) and La Niña (right panels) 

averaged over the months December through March for the events that occurred during 

1980-2016. Top panel: E2E variance based on MERRA-2.  Middle panel: E2E (Term 3 

+Term 4) variance based on M2AMIP. Units: mm2/day2.  Bottom panel: E2E signal (Term 

3) / E2E noise (Term 4) based on M2AMIP. 

Figure 14:  E2E results for precipitation over North America for El Niño (left panels) and 

La Niña (right panels) averaged over the months December through March for the events 

that occurred during 1980-2016. Top panel: E2E variance based on MERRA-2.  Middle 

panel: E2E (Term 3 +Term 4) variance based on M2AMIP. Units: mm2/day2.  Bottom panel: 

E2E signal (Term 3) / E2E noise (Term 4) based on M2AMIP.  

Figure 15:  E2E results for T2m over North America for El Niño (left panels) and La Niña 

(right panels) averaged over the months December through March for the events that 

occurred during 1980-2016. Top panel: E2E variance based on MERRA-2.  Middle panel: 

E2E (Term 3 +Term 4) variance based on M2AMIP. Units: °K2.  Bottom panel: E2E signal 



4 

 

(Term 3) / E2E noise (Term 4) based on M2AMIP.  

Figure 16:  The signal-to-total variance ratios for precipitation for the composite mean (S/T 

|composite, left panels), and event-to-event variability (S/T |E2E, right panels).  Top row is for 

El Niño and the bottom row is for La Niña for the events that occurred during 1980-2016. 

See Section 2 for details. 

Figure 17:  Same as Fig. 16, except for 250mb eddy height. 

Figure 18:  Same as Fig. 16, except for 250mb u-wind. 

Figure 19:  The signal-to-total variance ratios for precipitation (top four panels) and T2m 

(bottom four panels) over North America for the composite mean (S/T |composite, left panels), 

and event-to-event variability (S/T |E2E, right panels).  Top row in each set of four is for El 

Niño and the bottom row is for La Niña for the events that occurred during 1980-2016. See 

Section 2 for details.  

Figure 20a:  The El Niño January (top panels), February (middle panels) and average of 

January through March (bottom panels) conditional correlations between MERRA-2 and 

M2AMIP for the 250mb eddy height field for the events that occurred during 1980-2016.  

The correlations are decomposed into the terms associated with event-to-event (E2E) 

variability (left panels) and the composite mean (right panels).  Values not significant at the 

1% level based on a Monte Carlo approach to assess ensemble uncertainty and/or 

correlations with absolute values less than 0.2 are masked out. Positive values are 

contoured. 

Figure 20b:  Same as Fig. 20a except for La Niña. 

Figure 21a:  The El Niño January (top panels), February (middle panels) and average of 

January through March (bottom panels) conditional correlations between MERRA-2 and 

M2AMIP for the 250mb u-wind field for the events that occurred during 1980-2016.  The 

correlations are decomposed into the terms associated with event-to-event (E2E) variability 

(left panels) and the composite mean (right panels).  Values not significant at the 1% level 

based on a Monte Carlo approach to assess ensemble uncertainty and/or correlations with 

absolute values less than 0.2 are masked out. Positive values are contoured. 

Figure 21b:  Same as Fig. 21a except for La Niña. 

Figure 22a:  The El Niño January (top panels), February (middle panels) and average of 

January through March (bottom panels) conditional correlations between MERRA-2 and 

M2AMIP for precipitation for the events that occurred during 1980-2016.  The correlations 

are decomposed into the terms associated with event-to-event (E2E) variability (left panels) 

and the composite mean (right panels).  Values not significant at the 1% level based on a 



5 

 

Monte Carlo approach to assess ensemble uncertainty and/or correlations with absolute 

values less than 0.2 are masked out. Positive values are contoured.   

Figure 22b:  Same as Fig. 22a except for La Niña. 

Figure 23:  The conditional correlations between MERRA-2 and M2AMIP for precipitation 

over North America for El Niño (a) and La Niña (b) events that occurred during 1980-2016.  

In each set of six panels, the results are shown for January (top panels), February (middle 

panels) and average of January through March (bottom panels). The correlations are 

decomposed into the terms associated with event-to-event (E2E) variability (left panels) 

and the composite mean (right panels).  Values not significant at the 1% level based on a 

Monte Carlo approach to assess ensemble uncertainty and/or values with absolute 

correlations less than 0.2 are masked out. Positive values are contoured.   

Figure 24:  The conditional correlations between MERRA-2 and M2AMIP for T2m over 

North America for El Niño (a) and La Niña (b) events that occurred during 1980-2016.  In 

each set of six panels, the results are shown for January (top panels), February (middle 

panels) and average of January through March (bottom panels). The correlations are 

decomposed into the terms associated with event-to-event (E2E) variability (left panels) 

and the composite mean (right panels).  Values not significant at the 1% level based on a 

Monte Carlo approach to assess ensemble uncertainty and/or correlations with absolute 

values less than 0.2 are masked out. Positive values are contoured.   



6 

 

  



7 

 

Abstract 

Climate models are now routinely being used to simulate and predict climate variability on 

time scales ranging from sub-seasonal to seasonal and longer.  As such, there are now long 

histories of such simulations and predictions spanning multiple decades and multiple 

ensemble members, both of which are crucial for separating climate signal from climate 

noise.  A key focus of such runs has been the El Niño-Southern Oscillation (ENSO), spurred 

by recent improvements in our ability to predict such events, though questions remain as to 

how well climate models do beyond simply always predicting the “canonical” atmospheric 

response to an ENSO event—something simple statistical models already do reasonably 

well.  This is a critical issue that needs addressing, given the importance of event-to-event 

differences for predicting regional impacts of ENSO teleconnections, and the need to justify 

the expense of running sophisticated climate models.  Unfortunately, current diagnostic 

tools are not well suited for quantifying the different sources of variability associated with 

specific phenomena such as ENSO.  More generally, while much effort has focused on 

addressing model bias, less has been done to address errors in second moment statistics—

an issue whose importance is gaining increased attention particularly as we build climate 

prediction systems capable of taking advantage of forecasts of opportunity—a capability 

that requires reliable estimates of forecast uncertainty. 

In this report, we outline a phenomenon-based statistical decomposition of climate variance 

(in essence a detailed variance budget) that is specifically tailored to address the above 

questions by separating the variability (both the signal and noise) into that tied to the long-

term average impact of a particular phenomenon (the composite mean) and the event-to-

event (E2E) variability about the composite mean. In addition, we provide related 

decompositions of the correlations that allow us to quantify how much of the agreement 

with observations (the skill) comes from the composite mean as opposed to from the E2E 

variability.  As an example, we present the results of such a decomposition for ENSO based 

on simulations with the GEOS atmospheric general circulation model (AGCM), with a 

focus on the monthly mean impacts over North America during boreal winter (December – 

March).  Here we take advantage of existing GEOS AGCM simulations that were produced 

as companion simulations to MERRA-2 for the period 1980-2016.  Comparisons are made 

throughout with MERRA-2.   

Insights into the quality of the model’s ENSO-related variability, including that of the upper 

tropospheric eddy (deviations from the zonal mean) height and zonal wind as well as the 

near surface air temperature and precipitation over North America, are facilitated by 

providing observational constraints on selected components of the variance budget.  A key 

finding—one that highlights the advantage of the variance decomposition— is that the 

monthly mean impacts of La Niña on the upper tropospheric circulation over the North 

Pacific/North American region during boreal winter are, for the most part, currently not 

predictable with the GEOS AGCM beyond what can be achieved from predicting the 

canonical (composite) La Niña response, while there is some evidence that we can predict 
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E2E differences in the responses over the North Pacific/North American region for El Niño.  

The extent to which these results are indicative of fundamental limits to ENSO prediction 

are, however, unclear, given a number of deficiencies in the model’s ability to reproduce 

ENSO-related variability, including a too strong composite signal over North America and 

excessive unpredictable E2E noise (especially for El Niño) over much of the North Pacific 

and North America.  As such, it is clear our findings about the predictability of ENSO need 

to be verified with other models, including through hindcasts carried out with coupled 

models in which the predictability of the SST is also considered.   

We believe that the variance decomposition detailed here should provide an important 

metric (one that focuses on second moments) for evaluating model performance.  Such an 

evaluation is currently not a trivial task, since it requires long, multi-decadal histories of 

simulations/hindcasts and large enough ensembles to overcome statistical sampling errors.  

The availability of such simulations and hindcasts, however, should become more routine 

as computing resources increase in the coming years.  
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1. Introduction 

Despite the substantial amount of progress made in understanding and modeling the El 

Niño–Southern Oscillation (ENSO) phenomenon, there are still considerable unknowns 

about what controls the characteristics (e.g., strength, temporal evolution, spatial pattern, 

etc.) of specific ENSO events and our ability to predict these characteristics.  As reported 

in a recent World Meteorological Organization report (WMO, 2015), “ENSO remains a 

problem worth solving – there are few if any natural semi-regular climate signals whose 

prediction can have such widespread impact – but we are not there yet. We continue to be 

surprised by the diversity of ENSO events. Regular oscillations in the 1960s and 1970s 

shaped early understanding of ENSO. The 1980s and 1990s were dominated by El Niño 

phases—including the large 1982/83 and 1997/98 events. The recent period has been 

accompanied by changes in the mean state, reduced variability and the so-called “Modoki” 

El Niño.”  

Concerns about the predictability of ENSO and the nature of ENSO diversity were 

expressed in the same WMO 2015 report: “Perplexed by the apparent failures of ENSO 

forecasts in 2012 and again in 2014, several researchers ask whether changes in ENSO 

reflect larger shifts or changes in the planet-wide climate system.”  Some progress in our 

understanding of ENSO prediction was reported by Sohn et al. (2019), who found that the 

6-month prediction skill in APEC Climate Center multi-model ensemble (MME) forecasts 

depends on both the strength and the flavor of ENSO. Stratifying the sea surface 

temperature (SST) into that associated with a typical ENSO and its residual, they found that 

the typical ENSO is the major source of predictability of tropical Pacific SST, while the 

residual ENSO variability acts to limit tropical rainfall predictability.  Also relevant to the 

predictability question is the study by Imada et al. (2015), which found that, compared to 

the conventional eastern Pacific El Niño, the central Pacific El Niño has more limited 

predictability. They suggested that the relatively small amplitude of the central Pacific El 

Niño (which is thus more affected by atmospheric noise) is the reason for the limited 

predictability. 

Concerns about our lack of understanding of ENSO diversity and our ability to predict it 

are, in fact, reflected in a broad range of studies addressing the case-to-case variability of 

ENSO (e.g., Kumar and Hoerling 1997; Hoerling and Kumar 1997; Kao and Yu 2009; Kug 

et al. 2009; Capotondi et al. 2015), the nonlinearity of ENSO (e.g., Hoerling et al. 1997; 

Hoerling et al. 2001; Zhang et al. 2014; Frauen et al. 2014), and the question of whether 

complex dynamical models are even capable of outperforming much simpler statistical 

models (Kumar et al. 1996; Barnston et al. 1999; Kirtman et al. 2000; Goddard et al. 2005).  

There is however general agreement that, despite limitations in the skill of current forecast 

models, climate forecasts are nevertheless more accurate during El Niño and La Niña events 

compared with ENSO neutral periods (e.g., Goddard and Dilley, 2005).   Furthermore, there 

is evidence that the skill of precipitation and temperature forecasts over North America is 

higher for El Niño events than for La Niña events (Chen et al. 2017), and that this appears 
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to reflect the fact that the El Niño response over North America is stronger than the La Niña 

response, resulting in higher signal-to-noise ratios for El Niño events (e.g., Hoerling et al. 

2001; Frauen et al. 2014).   

Digging deeper into the ability to predict ENSO impacts, Chen et al. (2017) concluded 

(based on an analysis of North American Multi-Model Ensemble (NMME) predictions): 

“For probability composites, all models have superior performance in predicting ENSO 

precipitation patterns than temperature patterns.” They also found that “predictive skill 

varies with month. All models, as well as NMME, have greater ACC for February 

prediction, and this is seen for both P and T anomaly composites under either El Niño or La 

Niña condition.”  Lim et al. (2020) carried out an in-depth analysis of the underlying reasons 

for the within-season variations in the boreal winter skill found by Chen et al. (2017), 

focusing on why the skill of January forecasts is so much poorer than that of February 

forecasts in the NASA GEOS model (forecasts that are contributed to the NMME).  That 

study found that the relatively poor skill of the January forecasts in the GEOS model was 

the result of biases in the January climatological stationary waves rather than the result of 

errors in the tropical Pacific El Niño heating anomalies in January. Furthermore, evidence 

was provided that the relatively poor simulation of the observed January climatology, which 

is characterized by a strengthened North Pacific jet and enhanced ridge over western North 

America, can be traced back to biases in the January climatological heating over the Tibet 

region and the tropical western Pacific. 

Given the still on-going uncertainties about the nature of ENSO diversity and our ability to 

predict variations in ENSO character, we believe an important step in making progress on 

both of those research fronts is to develop new metrics that are specifically tailored to: (i) 

separate the event-to-event variations from the canonical (composite mean) ENSO 

response, and (ii) quantify the separate contributions of each to forecast skill.  The variance 

decomposition presented here does just that.  By distinguishing between the contributions 

to the total variability coming from the composite mean ENSO response and event-specific 

ENSO character, it allows a direct and quantitative assessment of how well models perform 

in simulating (or predicting) both.  While we focus on ENSO, the variance (and covariance) 

decomposition presented here can be applied to any recurring climate phenomenon, with 

the main caveat being that there must be enough recurrences of the event in the climate 

record to provide reliable statistics. More generally, this approach can provide an important 

metric of performance for climate models, especially those that are used for climate 

prediction, given that an estimate of the uncertainty is a key component of the forecast 

product. 

Section 2 presents the methodology used for the variance (Section 2.1) and the covariance 

(Section 2.2) decomposition.  The datasets used in this study are described in Sections 3.1 

(MERRA-2) and 3.2 (the model simulations).  The results are presented in Section 4.  This 

includes the complete variance budget (Section 4.1), a focus on the variance associated with 

the composite mean (section 4.2), a focus on the event-to-event variance (Section 4.3), the 
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signal-to-total variance ratios (Section 4.4), and the correlations with 

observations/MERRA-2 (Section 4.5).  Section 5 provides a summary and discussion. 

2. Methodology 

The underlying assumption is that there exists a particular recurring phenomenon (PHEN), 

whose variability and impacts we are trying to isolate.  Furthermore, we assume that there 

exists an ensemble of realizations (model simulations or predictions) of the phenomenon in 

question.  With that in mind we begin by defining three averaging operators:    

[ ] 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 (𝑐𝑙𝑖𝑚𝑎𝑡𝑒) 𝑚𝑒𝑎𝑛  

〈 〉 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑚𝑒𝑎𝑛 𝑜𝑣𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤ℎ𝑒𝑛 𝑃𝐻𝐸𝑁 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒  

{ } 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑚𝑒𝑎𝑛 

Then, for a monthly mean1 simulated quantity X, the anomaly with respect to the long-term 

ensemble mean can be decomposed into: 

 

      𝑋 − [{𝑋}] = 𝑋∗ + {𝑋′} + {𝑋̂}, where      2.1.1 

 

𝑋∗ = 𝑋 − {𝑋} is the anomaly about the ensemble mean,   

𝑋′ = 〈𝑋〉 − [𝑋] is the anomaly of the PHEN composite about the long term mean, 

and 

  𝑋̂ = 𝑋 − 〈𝑋〉 is the anomaly about the PHEN composite.  

 

It is important to note that what we are considering in our variance decomposition (see 

2.1.2) are the anomalies and variability with respect to the long-term climate mean [ ], but 

conditioned on (averaged over) periods, 〈 〉, when the phenomenon of interest is active.  

 

 
1 We consider here monthly means, though this is somewhat arbitrary (we could, for example, have used seasonal 

means instead).  Our choice of monthly means allows for an assessment of within-season differences in the ENSO 

variability. 
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2.1 Decomposition of the variance 

With the above definitions, the square of an anomaly with respect to the long-term ensemble 

mean (𝑋 − [{𝑋}]) averaged over all PHEN events and all ensemble members (the total 

variance) is: 

 

   {〈(𝑋 − [{𝑋}])2〉}    =   

 

          {(𝑋′ − {𝑋′})2}      +      {𝑋′}2         +       〈{𝑋̂}
2

〉       +      {〈(𝑋∗ − 〈𝑋∗〉)2〉 }     2.1.2 

             

            Composite             Composite                E2E     E2E  

              noise                signal               signal     noise 

          (1)  (2)   (3)            (4) 

 

The first term on the RHS of 2.1.2 is the intra-ensemble variance of the composite mean 

and, as such, represents the inherent unpredictable noise associate with that composite.  The 

second term on the right-hand side (RHS) is the signal associated with the composite mean 

event.  Terms three and four deal with the signal and noise, respectively, associated with 

the event-to-event (referred to hereafter as E2E) differences from the composite mean.  We 

note that the sum of terms two and three in 2.1.2 is the total signal: 

 

 〈({𝑋} − [{𝑋}])2〉         =         {𝑋′}2         +            〈{𝑋̂}
2

〉.     2.1.3 

 

We make such a separation of the signal with the idea that it is the signal associated with 

the E2E variability (〈𝑋̂2〉) that separates the prediction capabilities of dynamical models 

from those of simple statistical/empirical methods, which primarily provide information on 

the ENSO composite ({𝑋′}2). 

Also, the total noise (intra-ensemble variance) is the sum of terms (1) and (4) in 2.1.2: 
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〈{𝑋∗2}〉   =  {(𝑋′ − {𝑋′})2}      +    {〈(𝑋∗ − 〈𝑋∗〉)2〉 } .   2.1.4 

 

It is also useful to note that the total E2E variance is the sum of terms 3 (signal) and 4 

(noise), 

 

〈{𝑋̂}
2

〉     +    {〈(𝑋∗ − 〈𝑋∗〉)2〉 } =    {〈𝑋̂2〉 }   2.1.5 

 

Furthermore, the total composite mean variance is the sum of terms 1 (composite noise) 

and 2 (composite signal),  

 

 {(𝑋′ − {𝑋′})2}    +  {𝑋′}2  =   {𝑋′2}.    2.1.6 

 

In order to facilitate the assessment of predictability, we define two signal-to-total variance 

ratios for the two sources of signal defined in 2.1.3 (E2E and composite).  The first 

quantifies the potential predictability of individual events (E2E) and involves the ratio of 

term 3 in 2.1.2 to the total variance:  

 

 S/T |E2E =  〈{𝑋̂}
2

〉 {〈(𝑋 − [{𝑋}])2〉}⁄ .    2.1.7 

 

The second quantifies the potential predictability of the composite and involves the ratio of 

term 2 in 2.1.2 to the total variance: 

   S/T |composite = {𝑋′}2 {〈(𝑋 − [{𝑋}])2〉}⁄ .   2.1.8 

 

Also, the total S/T is the sum of 2.1.7 and 2.1.8: 
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   S/T |total = (〈{𝑋̂}
2

〉 + {𝑋′}2) / {〈(𝑋 − [{𝑋}])2〉}.    2.1.9 

 

It is important to note that some (but not all) components of the above variance 

decomposition (2.1.2) can be constrained by the observations.  In particular, the following 

ensemble quantities involving X (the model quantity) have companion terms that can be 

estimated from the observations (Y).  These are the total variance: 

 

{〈(𝑋 − [{𝑋}])2〉}  
    
⇒  〈(𝑌 − [𝑌])2〉,     2.1.10 

 

the variance of the composite mean (2.1.6): 

 

   {𝑋′2} 
    
⇒  𝑌′2  ,     2.1.11 

 

and the total E2E variability (2.1.5):   

  

{〈𝑋̂2〉 } 
    
⇒ 〈𝑌̂2〉 .      2.1.12 

 

We will in the following sections take advantage of 2.1.10-2.1.12 to provide some 

constraints on the quality of the different components of the model’s variance budget. 
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2.2 Decomposition of the covariance 

Here we examine the covariance between the ensemble mean simulated/predicted {𝑋} and 

the observed (𝑌) anomalies with respect to the long-term mean[ ], conditioned over all 

time periods making up the composite 〈 〉: 

 

𝜎{𝑋}𝑌
2 ≡ 〈({𝑋} − [{𝑋}])(𝑌 − [𝑌])〉 =    〈{𝑋̂}𝑌̂〉   +    𝑌′{𝑋′}.   2.2.1 

 

Here, the first term on the RHS of 2.2.1 is the covariance associated with E2E variability, 

and the second term on the RHS is the covariance associated with the composite mean.  By 

normalizing 2.2.1 by the variances (conditioned on PHEN): 

 

𝜎{𝑋}
2 = 〈({𝑋} − [{𝑋}])2〉 

𝜎𝑌
2 = 〈(𝑌 − [𝑌])2〉 

 

we obtain the conditional correlation 

 

𝜌{𝑋}𝑌 ≡  
𝜎{𝑋}𝑌

2

𝜎{𝑋}𝜎𝑌
   =    

〈{𝑋̂}𝑌̂〉

𝜎{𝑋}𝜎𝑌
     +      

  𝑌′{𝑋′}

𝜎{𝑋}𝜎𝑌
 ,                                          2.2.2 

 

decomposed into that associated with E2E variability (first term on the RHS of 2.2.2) and 

that associated with the composite mean (second term on the RHS of 2.2.2).  Here again the 

quantities are decomposed as follows:  𝑋 − [𝑋] = 𝑋∗ + {𝑋′} + {𝑋̂}, 𝑋∗ = 𝑋 − {𝑋},  𝑋̂ =

𝑋 − 〈𝑋〉,  𝑋′ = 〈𝑋〉 − [𝑋]. Analogous definitions are used for the observations Y, though 

of course, there is no ensemble mean, so 𝑌 − [𝑌] = 𝑌′ + 𝑌̂ , where 𝑌̂ = 𝑌 − 〈𝑌〉 and 𝑌′ =
〈𝑌〉 − [𝑌]. 
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3. Datasets  

Our focus is on the winter months of December through March within the period 1980 

through 2016—a period common to MERRA-2 and the AGCM simulations described 

below.   In the following our phenomenon of interest (PHEN) is ENSO, and we will examine 

El Niño and La Niña composites separately.  For that purpose, the set of 11 El Niño winters 

is [1982/83, 1986/87, 1987/88, 1991/92, 1994/95, 1997/98, 2002/03, 2004/05, 2006/07, 

2009/10, 2015/16], and the set of 9 La Niña winters is [1984/85, 1988/89, 1995/96, 1998/99, 

1999/00, 2000/01, 2007/08, 2010/11, 2011/12].  The following gives a brief overview of 

MERRA-2 and the GEOS AGCM simulations.  

3.1 MERRA-2  

The atmospheric reanalysis data used for this study is the Modern-Era Retrospective 

analysis for Research and Applications version 2 (MERRA-2; Gelaro et al. 2017).  

MERRA-2, developed by NASA Goddard Space Flight Center (GSFC) / Global Modeling 

and Assimilation Office (GMAO), is an updated version of MERRA (Rienecker et al. 2011) 

that includes an improvement of the assimilating model’s physical parameterizations of 

moist processes, turbulence, land and ocean surface processes, and gravity wave drag 

(Bosilovich et al. 2015; Molod et al. 2015; Gelaro et al. 2017; see also below).  Other 

differences from MERRA include aerosol data assimilation, new developments in the 

representation of ozone, and the use of precipitation observations to force the land surface. 

The horizontal resolution of the MERRA-2 data is 0.625° longitude × 0.5° latitude.  The 

key variables used here are 2-meter air temperature (T2m), precipitation, zonal wind, and 

geopotential height.  We note, however, that the MERRA-2 precipitation used in this study 

for verification is an observationally-corrected product in which the precipitation generated 

by the atmospheric model underlying MERRA-2 was scaled to agree with gauge and 

satellite precipitation observations (Reichle et al. 2017). 

In the following, we will use the words observations and MERRA-2 interchangeably with, 

of course, the understanding that MERRA-2 is a reanalysis product that combines a model-

based first guess with observations, meaning that the reanalysis products are potentially 

impacted by model biases.  However, of the quantities considered here, model biases are 

typically only a major problem for the precipitation product, which, again, is 

observationally-corrected. 

3.2 M2AMIP simulations 

The GEOS AGCM used here (Molod et al. 2015; Gelaro et al. 2017) includes the finite-

volume dynamical core of Putman and Lin (2007), which uses a cubed sphere horizontal 

discretization at an approximate resolution of 0.5°  0.625° and a vertical resolution 
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consisting of 72 hybrid-eta levels from the surface to 0.01 hPa.  Recent upgrades to the 

physical parameterization schemes include increased re-evaporation of frozen precipitation 

and cloud condensate, changes to the background gravity wave drag, and an improved 

relationship between the ocean surface roughness and ocean surface stress (Molod et al. 

2015).  The model also includes a Tokioka-type trigger on deep convection as part of the 

Relaxed Arakawa-Schubert (RAS, Moorthi and Suarez 1992) convective parameterization 

scheme, which governs the lower limit on the allowable entrainment plumes (Bacmeister 

and Stephens 2011). A new glaciated land representation and seasonally-varying sea ice 

albedo have been implemented, leading to improved air temperatures and reduced biases in 

the net energy flux over these surfaces (Cullather et al. 2014).  The model includes the 

catchment land surface model developed by Koster et al. (2000).   

An ensemble of ten AMIP2-style simulations were performed for the time period spanning 

January 1980 through December 2016 (Collow et al. 2017).  Initial conditions for each 

ensemble member were taken from different days of November 1979 during the MERRA-

2 spin up period.   An important feature of these simulations is that they were produced with 

the same version of the GEOS AGCM as was used to produce MERRA-2. In addition, they 

were run with the same SST data, greenhouse gases (GHGs), and other forcing as in 

MERRA-2, and they used the MERRA-2 grid resolution.  Indeed, these simulations differed 

from MERRA-2 only in that they did not assimilate observations.  This similarity offers the 

unique opportunity to assess how the observations influence various aspects of the model 

climate, though, of course, we note again that model errors may be implicit in the reanalysis 

itself, potentially clouding our interpretations.   

We also take advantage of an additional set of 5 AMIP-style simulations that, while 

otherwise having the same setup as above, are forced with the SST and sea ice concentration 

used in the European Centre for Medium-Range Weather Forecasts interim reanalysis 

(Marquardt Collow et al. 2020).  It should be noted that Marquardt Collow et al. (2020) 

found substantial differences in the sea ice concentrations in the two forcing datasets (from 

MERRA-2 and ERA-Interim), and that this results in substantial differences in the 

simulations over the Arctic—something to keep in mind as we analyze our results based on 

the combined set of 15 simulations. However, our focus is primarily on the middle latitudes 

and the tropics where the differences in the two sets of simulations appear to be minimal. 

In the following, we shall refer to the 15 AMIP runs made with this model as the M2AMIP 

simulations. 

4. Results for ENSO during boreal winter 

In the following (based on all 15 M2AMIP ensemble members), we examine the variance 

of the 250mb eddy (deviation from the zonal mean) height, the 250mb zonal wind, and the 

precipitation over a large region extending from 120°E to 0°W and from 30°S northward to 

 
2 AMIP stands for the Atmospheric Model Inter-comparison Project as described in Gates et al. (1992), but the 

acronym is now used more generally to refer to any long AGCM simulations forced with observed SST. 
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the pole—a region tailored to encompass the main ENSO impacts.  Additional plots focus 

on the precipitation and two-meter air temperature (T2m) over North America.   

Section 4.1 examines the various terms (the budget) of the variance decomposition to get 

an overall sense of the magnitudes and spatial distributions of the different budget terms 

(eq. 2.1.2) and any differences between El Niño and La Niña events.  Next we look in more 

detail into the character and quality of the model’s composite variance (in section 4.2) and 

the E2E variance (section 4.3).  This is followed by an examination of signal-to-total 

variance ratios (section 4.4) and correlations with observations (section 4.4). 

4.1 The variance budget 

We present in Figs. 1-5 the various terms of the variance budget for each of several 

meteorological variables.  Each figure is organized to show the individual components of 

the budget (see 2.1.2) in the top 4 panels, with the bottom two panels comparing the model’s 

total variance with the observed/MERRA-2 variance, thereby providing an indication of the 

quality of the model’s overall variability.  We focus on the average of the variances for the 

four months of the extended winter season, December through March (DJFM)3.  Such an 

average, we believe, should provide robust estimates of the various terms in the budget, 

though we acknowledge that there are substantial within-season (monthly) changes in the 

statistics (e.g., Chen et al. 2017; Lim et al. 2020).  We will address some aspects of the 

within-season month-to-month differences in Section 4.5.   

Figure 1 shows the DJFM mean variance decomposition for the 250 mb eddy height during 

El Niño events (Fig. 1a) and La Niña events (Fig. 1b).  Term 2 (the composite signal) is 

simply the square of the ensemble mean of the composite mean anomaly, averaged over the 

4 months.  Term 1 indicates how much variability there is in the composite as a result of 

having different ensemble members (the noise in the composites).  Clearly that noise 

variability (term 1) is small compared to the associated composite signal (term 2).  The 

strength of the signal (versus that of the noise) will be quantified in Section 4.4 in terms of 

the ratio of the signal to the total variance.  Term 3 is the signal (the variance about the 

ensemble mean) associated with individual El Niño/La Niña events (the E2E signal), while 

term 4 is the average intra-ensemble variance (E2E noise) during the El Niño/La Niña 

events.  The E2E noise variability (term 4) is clearly the largest component of the variability 

in middle and high latitudes for both El Niño and La Niña.    

Comparing the El Niño and La Niña model results (Figs. 1a and 1b) we see a remarkable 

similarity in both the pattern and the magnitude of the composite signals (term 2, upper 

right panels).  There is less similarity in the E2E variance, with the E2E noise (term 4) 

substantially larger over the North Pacific for La Niña (cf. middle right panels of Figs 1a 

 
3 To be clear, the various budget terms are computed separately for each month, and then averaged.  The choice of 

an extended winter (including March) is motivated by the work of Chen et al. (2017) and also helps to increase the 

sample size. 
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and 1b).  Also, the La Niña E2E signal is farther west (over the Northwest Pacific) compared 

with that of El Niño, though of similar magnitude (cf. middle left panels of Figs 1a and 1b).  

The comparison with the MERRA-2 total variance (bottom panels of Figs. 1a and 1b) shows 

overall reasonable simulations of the variance pattern, although the free-running model 

overestimates the total variance.  Another key difference is that the maximum over the 

North Pacific is situated too far west, especially for El Niño (bottom panels of Fig. 1a) for 

which the simulated maximum is centered over the Aleutian Islands whereas the MERRA-

2 maximum values are to the southeast of that, just off the west coast of North America. It 

is likely that the excessive total variance in the North Pacific during both El Niño and La 

Niña is mostly due to excessive E2E noise (term 4 in Figs. 1a and b).  We will come back 

to that in section 4.3.  There is also excessive total variance over much of western Canada, 

especially for La Niña.  It is also noteworthy that the composite signal (term 2) is somewhat 

larger than the E2E signal (term 3), with a tendency for the two signals to be somewhat 

phase-shifted with respect to each other.   

In summary, the above results indicate that the model has excessive E2E noise.  In addition, 

the model appears to be too linear in the sense that the differences in the total variances over 

the North Pacific between El Niño and La Niña seen in the observations (cf. lower right 

panels of Figs 1a and 1b) are much less apparent in the M2AMIP results (cf. lower left 

panels of Figs 1a and 1b).  As such, the model appears to do better in reproducing the 

observed La Niña variance than the El Niño variance, reflecting the failure of the model to 

reproduce the more eastward location (just south of the Gulf of Alaska) of the maximum 

variability during El Niño— a deficiency that presumably affects the model’s ability to 

predict El Niño impacts over North America.  Nevertheless, the model produces a difference 

in the magnitude of the E2E noise over the North Pacific/western North America region 

(less for El Niño, more for La Niña) that is not inconsistent with recent studies indicating 

that El Niño impacts over North America are more predictable than those of La Niña (e.g., 

Chen et al. 2017).  On the other hand, there seems to be little difference between El Niño 

and La Niña in either the composite or the E2E signals, something we will come back to in 

sections 4.2 and 4.3. 

Figure 2 is the same as Fig. 1, except for the 250 mb zonal (u) -wind.  For El Niño (Fig. 2a), 

the comparison between the total variance from the model and MERRA-2 (bottom two 

panels) shows that the maximum model variance in the North Pacific is larger than the 

observed and located too far west.  The model does better for La Niña, with the location of 

the maximum variance to the northwest of Hawaii similar to the observed, though again the 

simulated maximum is too large (Fig 2b, bottom panels). For both El Niño and La Niña the 

zonal wind signal is predominately associated with the composite variance (term 2), while 

the noise (which is the largest component of the total variability) is for the most part 

associated with E2E variance (term 4).  Also, it is worth noting that the region of maximum 

total variability in the North Pacific for the model is remarkably similar for El Niño and La 

Niña, again reflecting an unrealistic linearity of the model results.  Over North America, it 

is clear that the signal associated with the composite mean (term 2) is the best hope for 
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skillful forecasts associated with both El Niño and La Niña, with the potential for skill 

largely confined to the southern tier of states and the border between the U.S. and Canada 

(top right panels of Figs 2a and 2b).  The E2E signal (term 3) is especially weak over North 

America for La Niña (left middle panel of Fig. 2b).   

Figure 3 is the same as Fig. 1, except for precipitation.  Focusing first on El Niño (Fig. 3a), 

a striking feature of the total variability is the model’s excessive variance in the tropical 

Pacific (cf. the bottom panels of Fig. 3a).  The total precipitation variance in the tropical 

Pacific seems to have roughly equal contributions from the composite signal (Term 2), E2E 

signal (Term 3) and E2E noise (Term 4), and it is unclear which of these are excessive.  We 

will come back to that in sections 4.2 and 4.3.  MERRA-2 also shows a split in the maximum 

variance in the tropical Pacific, with the southern branch presumably linked to variations in 

the South Pacific Convergence Zone (SPCZ); such a southern branch is not evident in the 

model results.  It is noteworthy that the maximum of the tropical Pacific precipitation E2E 

signal (term 3, Fig. 3a) is situated to the east of the maximum in the composite (term 2, Fig 

3a), whereas the E2E noise (term 4, Fig. 3a) is located to the west of the composite 

maximum, suggesting these different sources of precipitation variability may lead to 

different (in particular, phase shifted) atmospheric responses over the North Pacific and 

North America.   

Turning next to La Niña (Fig. 3b), we see that the total observed (MERRA-2) precipitation 

variance is more confined to the central and western tropical Pacific (compared with El 

Niño), with a band of higher variance extending from about 150E into the eastern Pacific 

just north of the equator and a shorter band just south of the equator, with the latter again 

(as we saw for El Niño) not captured by the model (cf. the bottom panels of Fig. 3b).    In 

contrast to the results for El Niño, the model shows a more realistic level of total variance 

in the tropics, though the variance in the eastern tropical Pacific is somewhat excessive.  

Here, the maxima in the tropical Pacific of both the E2E signal (term 3) and E2E noise (term 

4) lie to the west of the maximum in the composite signal (term 2). 

The above precipitation results suggest that it is likely that the excessive variance noted 

earlier in the height and zonal wind over the North Pacific may in fact be driven by the 

excessive tropical Pacific precipitation (heating) variance, especially for El Niño (we will 

look more into the nature of the tropical precipitation variance in our discussions of Figs. 8 

and 13).  It is also noteworthy that for both El Niño and La Niña, much of the total variability 

over the Northern Hemisphere extratropical oceans, the west coast of North America, and 

the eastern United States appears to be due to E2E noise (term 4, middle right panels of 

Figs. 3a and b).  In fact, with the contours used in Fig. 3, there is little evidence of any 

precipitation signal (composite or E2E) over North America.  As such, we next focus more 

closely (i.e., with more refined contouring) on the North American region. 

Figure 4 shows the results for precipitation over North America for both El Niño (Fig. 4a) 

and La Niña (Fig. 4b).  We see that for both El Niño and La Niña, the variance over North 
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America is indeed primarily composed of E2E noise (term 4, right middle panels), with the 

largest values occurring over the southeastern U.S. and along the west coast extending from 

California north to Alaska.  Also, for both El Niño and La Niña, the composite signal (Term 

2) is considerably weaker and confined to a narrow region of the southeast U.S as well as 

along the west coast.  The E2E signal (Term 3) is overall similar in both coverage and 

magnitude compared to that of the composite signal, although it has a greater regional extent 

over the southeast.  There do appear to be some rather subtle differences between El Niño 

and La Niña, with La Niña showing somewhat greater spatial extent in the southeast 

composite signal (term 2, Fig. 4b), and El Niño showing an E2E signal maximum (term 3, 

Fig. 4a) that is more focused on the southeast including Florida (in the case of La Niña the 

maximum is located further to the west centered on Alabama).  Similarly, for the E2E noise 

(Term 4), the maximum for La Niña is shifted somewhat to the west and north compared to 

that for El Niño, which is more centered on the southeast (cf. middle right panels of Figs. 

4a and 4b).  It is noteworthy that the magnitude of the composite noise (term 1), while small 

compared to the E2E noise (term 4), is similar in magnitude to that of the composite and 

E2E signals for both El Niño and La Niña.  Overall, the total precipitation variance over 

North America is well simulated by the model for both El Niño and La Niña (bottom panels 

of Figs. 4a and 4b).  In fact, there is remarkably little difference between the El Niño and 

La Niña precipitation variability over North America for both the model and MERRA-2, 

with some evidence of somewhat stronger variability over the southeastern U.S. for El Niño.  

This is surprising, given the substantial differences between El Niño and La Niña seen 

(particularly for the MERRA-2) for the eddy height and zonal wind variance just upstream 

of and over North America (Figs. 1 and 2). 

Turning next to T2m over North America (Figure 5), we see that again (as for precipitation), 

the variance is dominated by E2E noise variability for both El Niño and La Niña (term 4, 

middle right panels of Figs 5a and 5b). The E2E noise is, for both warm and cold events, 

largest along a band extending from Alaska, across Canada, and into the eastern U.S., 

though it is somewhat larger and extends farther into the southeast U.S. for La Niña.   These 

El Niño versus La Niña differences in the noise are reflected in both the model and the 

MERRA-2 total variances, though the model total variances are generally larger than the 

MERRA-2 values.  The E2E signal (term 3) is spatially rather uniform (increasing to the 

north) but overall weak for both El Niño and La Niña (left middle panels of Figs. 5a and 

5b).  In contrast, the composite signal (Term 2) is somewhat larger but confined to the 

southeastern U.S. and northwest Canada and Alaska (top right panels of Figs. 5a and 5b).  

Surprisingly, the composite signal tends to be larger for La Niña than for El Niño (we will 

come back to that in section 4.2).  Overall, the total variance (bottom panels of Figs. 5a and 

5b) is reasonably well simulated but is somewhat larger than observed, with some evidence 

for somewhat larger values for La Niña compared with El Niño. 

Comparing the results for precipitation and T2m, we see evidence of spatially more 

extensive and larger (relative to the noise) signals for T2m (see also sections 4.3 and 4.4).  

This is consistent with numerous studies that show greater forecast skill for T2m than 
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precipitation on subseasonal and seasonal time scales over the U.S. (e.g., Wang and 

Robertson 2018).  This is, however, not a universal result, with, for example, Chen et al. 

(2017) finding greater skill in the North American Multimodel Ensemble (NMME) 

probability forecasts of the boreal winter composite ENSO precipitation patterns than found 

for the forecasts of temperature patterns.  It is also noteworthy that while there is evidence 

for generally greater noise (primarily from E2E variability) during La Niña compared with 

El Niño for T2m (consistent with greater predictability for El Niño), this is not the case for 

precipitation, for which, if anything, the opposite seems to be the case.  

Further insights into the quality of the M2AMIP variance budget, as well as insights into 

the reasons for the seemingly contradictory results of previous studies (mentioned above) 

concerning the relative skill of predicting precipitation and T2m over North America, can 

be gained by a more detailed look at the individual terms in the variance budget.  As such, 

we next take a closer look at the composite (section 4.2) and E2E (section 4.3) variability, 

focusing in particular on comparisons with analogous results from MERRA-2.   
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Figure 1a: The variance decomposition of the 250mb eddy height for El Niño events 

that occurred during 1980-2016, averaged over the months December through 

March, with terms defined in eq. 2.1.2. See text for details.  Units are m2.  
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Figure 1b: Same as Fig. 1a, but for La Niña. 
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Figure 2a: The variance decomposition of the 250mb u-wind for El Niño events that 

occurred during 1980-2016, averaged over the months December through March, 

with terms defined in eq. 2.1.2. See text for details.  Units are m2/s2.  
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Figure 2b: Same as Fig. 2a, but for La Niña. 
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Figure 3a: The variance decomposition of the precipitation for El Niño events that 

occurred during 1980-2016, averaged over the months December through March, 

with terms defined in eq. 2.1.2. See text for details.  Units are mm2/day2. 
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Figure 3b: Same as Fig. 3a, but for La Niña. 
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Figure 4a: The variance decomposition of the precipitation over North America for 

El Niño events that occurred during 1980-2016, averaged over the months 

December through March, with terms defined in eq. 2.1.2. See text for details.  Units 

are mm2/day2. 
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Figure 4b: Same as Fig. 4a, but for La Niña. 

 

 

 



31 

 

 

 

Figure 5a: The variance decomposition of T2m over North America for El Niño 

events that occurred during 1980-2016, averaged over the months December 

through March, with terms defined in eq. 2.1.2. See text for details. Units are °K2. 
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Figure 5b: Same as Fig. 5a, but for La Niña. 
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4.2 The composite variance 

In section 2.1 we showed that the model’s total variance of the composite mean is the sum 

the composite noise and the composite signal (2.1.6), and furthermore that it is this sum that 

is the appropriate quantity to compare with the composite variance estimated from 

MERRA-2.  In the case of MERRA-2, this is just the square of the single composite mean 

anomaly, whereas for M2AMIP this is the ensemble mean of the square of the composite 

mean anomalies computed from the individual ensemble members (2.1.11). 

Figure 6 shows the composite variance for the 250mb eddy height for both El Niño (top 

panels) and La Niña (bottom panels).  The results for both the model (left panels) and 

MERRA-2 (right panels) reflect the well-known response to the tropical Pacific SST 

associated with ENSO, with the strongest anomalies occurring over the North Pacific and 

North America. There are however important differences between the model results and 

those based on MERRA-2.  MERRA-2 shows generally stronger composite variance for El 

Niño compared with La Niña over the North Pacific and North America: the composite 

variance for La Niña is especially weak and disorganized over North America.  This is in 

contrast with the model results (right panels), which shows remarkably similar variances 

for El Niño and La Niña, including over North America.  As such, the model appears to 

produce a too strong wave response to ENSO over North America, especially for La Niña, 

though we must keep in mind that this conclusion is based on a limited number of ENSO 

events. We will come back to this in Section 4.5, where we show this leads to a mismatch 

between skill and signal strength in this region. Furthermore, the overall 

(southwest/northeast oriented) structure of the wave response over the North Pacific in the 

model (versus a more north/south orientation in MERRA-2) is suggestive of a too strong 

response to SST in the western tropical Pacific warm pool region.  These results again 

reflect a level of linearity in the model’s extratropical response to El Niño and La Niña that 

is inconsistent with the observations. 

Fig. 7 is the same as Fig. 6, but for the 250mb zonal wind.  We see that the model does an 

overall reasonable job of reproducing the main features of the composite zonal wind 

variance throughout the North Pacific and North America.  Here we point out in particular 

the verisimilitude of the regions of relatively large variance over the Great Lakes region, 

and along northern Mexico and the southern tier of states.  There is some evidence for 

somewhat larger composite zonal wind variance for El Niño than for La Niña over these 

regions for both MERRA-2 and the model, though the model results are again more linear 

than those based on MERRA-2. 

Turning next to the composite precipitation variance (Fig. 8), we see that the model tends 

to produce excessive composite variance in the intertropical convergence zone (ITCZ) at 

the eastern edge of the tropical Pacific warm pool region (near the dateline just north of the 

equator), but fails to reproduce the MERRA-2 increased variance south of the equator—a 

variance that (as mentioned previously) is likely associated with changes in the SPCZ.  It 
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appears plausible that both the model’s more southwest/northeast oriented structure of the 

eddy height variance over the North Pacific (versus a more north/south structure for 

MERRA-2), and the excessive composite eddy height variance over North America 

mentioned previously, is a response to the excessive ITCZ composite precipitation variance 

in the western tropical Pacific warm pool region.  Furthermore, it appears that the excessive 

total precipitation variance in the tropical Pacific discussed in Section 4.1 is at least in part 

the result of excessive composite variance, which we know from Fig. 3a is primarily made 

of the composite signal.  We will look more into the contribution of the E2E variance to the 

excessive tropical Pacific total precipitation variance in the next section. 

Focusing on the composite precipitation variance over North America (Fig. 9), we see that 

the model does a reasonable job of reproducing the composite variability for both El Niño 

(top panels) and La Niña (bottom panels), with the largest values occurring on the west 

coast and the southeast.  In the southeast, the model tends to produce a somewhat more 

expansive region (compared with MERRA-2) of variability for both El Niño and La Niña, 

though much of that is associated with composite noise (cf. the top panels of Figs 4a and 

4b). 

In the case of the T2m over North America (Fig. 10), we see that the model substantially 

overestimates the composite variability.  This is especially true for much of the eastern U.S., 

and in the case of La Niña, also much of Canada.  Looking back at Figs. 5a and b (top 

panels) we see much of this overestimate in the T2m composite variance is tied to the 

composite signal.  Furthermore, to the extent that the T2m composite variability is tied to 

the upper level circulation, this appears to reflect the unrealistically large composite 250mb 

eddy height variance over North America discussed above (also primarily consisting of the 

composite signal, cf. the top panels of Figs 1a and b).  Recall that this overestimate in the 

composite eddy height variance is especially evident for La Niña (cf. the bottom panels of 

Fig. 6). 

The above results provide some clues as to the aforementioned (section 4.1) apparently 

contradictory results concerning the relative skill of predicting precipitation and T2m over 

North America.  The model clearly produces unrealistically large T2m composite signals, 

while the signals are more realistic for precipitation.  We speculate that this is the result of 

the T2m variability being more strongly linked to the upper tropospheric eddy height (the 

large-scale waves), while the precipitation variability is more strongly tied to the zonal wind 

variability (e.g., the changes in weather transients linked to the extension/retraction of the 

jet along the southern tier of states).  The model does a much better job in reproducing the 

composite zonal wind variability than the composite eddy height variability.  As such, even 

though the T2m has a stronger signal relative to the noise compared to that for precipitation 

(more on that in Section 4.4), this is a false signal in that it reflects the model’s excessive 

tropospheric wave response to ENSO SST over North America (see also Lim et al. 2020).  

The impact on actual prediction skill will be addressed in section 4.5.  
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Figure 6:  The variance of the 250mb eddy height composite mean based on MERRA-

2 ( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top 

panels are for El Niño, and bottom panels are for La Niña events that occurred during 

1980-2016. Units: m2. 
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Figure 7:  The variance of the 250mb U-wind composite mean based on MERRA-2 

( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels 

are for El Niño, and bottom panels are for La Niña events that occurred during 1980-

2016. Units: m2/s2. 
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Figure 8:  The variance of the precipitation composite mean based on MERRA-2 

( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  Top panels 

are for El Niño, and bottom panels are for La Niña events that occurred during 1980-

2016. Units: mm2/day2. 
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Figure 9:  The variance of the North American precipitation composite mean based on 

MERRA-2 ( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  

Top panels are for El Niño, and bottom panels are for La Niña events that occurred 

during 1980-2016. Units: mm2/day2. 
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Figure 10:  The variance of the North American T2m composite mean based on 

MERRA-2 ( 𝑌′2, left panels) and M2AMIP ( {𝑋′2}, right panels).  See 2.1.11 in the text.  

Top panels are for El Niño, and bottom panels are for La Niña events that occurred 

during 1980-2016. Units: °K2  
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4.3 The Event-to-Event (E2E) variance 

We are especially interested in the E2E component of the variance budget since, as 

discussed in the Introduction, it is presumably the ability to predict the E2E signal that 

distinguishes the performance of sophisticated climate models from that of statistical 

models.  We look at that component of the variance in more detail here.  In particular, we 

compare in Figs. 11-15 the total E2E variability from the model with that estimated from 

MERRA-2 (eq. 2.1.12).  Furthermore, the model ensemble allows us to distinguish between 

the signal (term 3) and noise (term 4) components of the total E2E variability (eq. 2.1.5).  

The hope is that comparisons with the observations (MERRA-2) for the total E2E variability 

can provide some insights into whether the model is providing realistic estimates of the 

individual components (signal and noise) of the E2E variability (note that these are already 

shown in the middle panels of Figs 1-5).  As such, to better quantify the relative 

contributions of the signal and noise to the E2E variance, we include in Figs. 11-15 the ratio 

of the E2E signal to the E2E noise, defined as (see eq. 2.1.2): 

 

S/N =  〈{𝑋̂}
2

〉 /{〈(𝑋∗ − 〈𝑋∗〉)2〉 }       4.2.1 

 

Figure 11 shows the E2E variance for the 250mb eddy height field for El Niño (left panels) 

and La Niña (right panels).  Comparing the M2AMIP total E2E variance with the MERRA-

2 values for El Niño (top left and middle left panels of Fig. 11), we see that the model tends 

to overestimate the total E2E variance, especially in the North Pacific and over North 

America.  This would indicate (given the dominance of the noise term in this region, see 

Fig. 1) that the model is very likely substantially overestimating the E2E noise during El 

Niño in the North Pacific.  In addition, (as we saw for the total variance, bottom panels of 

Fig. 1) the model also places the maximum E2E variance in the North Pacific to the west of 

the observed maximum.  In the North Atlantic, the model also appears to overestimate the 

total E2E variance just south of Greenland, with MERRA-2 showing the largest variance 

further to the northeast, roughly centered over Iceland.  In contrast, the model appears to do 

a much better job of reproducing the total E2E variance during La Niña events (cf. the top 

right and middle right panels).  This reflects a substantial increase in the variance (compared 

with El Niño) in the MERRA-2 values, as the model’s variance differs little between El 

Niño and La Niña events.  As such, it would appear that the model underestimates the 

potential predictability associated with E2E variability over much of the Northern 

Hemisphere for El Niño events (E2E noise is too large), though it likely provides a more 

realistic estimate of the predictability for La Niña events.   

The bottom panels of Fig. 11 show that the E2E S/N (4.2.1) of the 250mb eddy height is 

largest (values greater than 2) in the tropics between about 150W and 120W, with the largest 
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values for El Niño (bottom left panel of Fig. 11) straddling the equator, and with the La 

Niña maximum values (bottom right panel of Fig. 11) primarily located south of the equator.  

It is noteworthy that for the spatial domain shown here, the tropical S/N values outside the 

tropical Pacific are generally larger for La Niña than for El Niño.  In the NH extratropics, 

the values are considerably smaller than in the tropics (less than 1).  For El Niño, values 

greater than 0.3 occur over the Gulf of Alaska, the southern U.S. and northern Mexico 

(where values reach 0.6) and northeast Canada.  In contrast, for La Niña there is only a 

relatively small region over the southcentral US and northern Mexico where values exceed 

0.3.  The fact that the model overestimates the total E2E 250mb eddy height variability for 

El Niño (and assuming much of that is from the noise), it is likely we are underestimating 

the E2E S/N for El Niño over much of the North Pacific and North America. 

Figure 12 is the same as Figure 11, but for the 250mb u-wind.  The left panels (top and 

middle) highlight the disparity for El Niño between the total E2E variance from M2AMIP 

and that from MERRA-2 in the North Pacific.  MERRA-2 shows that the region of 

maximum variance is just off the west coast of North America, while the M2AMIP results 

have the maximum variance both larger and shifted further to the west, approximately 

centered on the dateline.  This appears to reflect both the E2E signal and E2E noise terms 

for El Niño being located too far west, though the noise is considerably larger than the signal 

in that region (cf. the middle panels of Fig. 2a).  For El Niño, the model also produces 

excessive E2E zonal wind variance over North America.  In the North Atlantic, the model 

tends to underestimate the E2E variance for both El Niño and La Niña (cf. the middle and 

top panels of Fig. 12).  Again (as we saw for the 250mb eddy height) , the model seems to 

produce more realistic E2E variability in the North Pacific during La Niña events than for 

El Niño events, with MERRA-2 showing substantial differences between El Niño and La 

Niña, and the model essentially producing the same variability during both warm and cold 

events.   

The E2E S/N for the 250mb zonal wind (bottom panels of Fig. 12) is again (as we saw for 

the 250mb eddy height) largest in the tropics, with the values for El Niño exceeding 3 over 

much of the tropical eastern Pacific.  In contrast, the values for La Niña over the tropical 

Pacific are considerably smaller, with peak values (<2) occurring south of the equator near 

130W.  In the NH extra-tropics, the El Niño values (bottom left panel of Fig. 12) are largest 

along the southern tier of states and northern Mexico (> 0.6), and over the Great Lakes 

region (>0.4).  The S/N in the NH extra-tropics is considerably smaller for La Niña than for 

El Niño, with values exceeding 0.3 only over northern Mexico and along coast of the Gulf 

states.  Again, we need to keep in mind that (as was the case for the 250mb eddy height), 

we are likely underestimating the true 250mb u-wind E2E S/N for El Niño over the North 

Pacific and North America, given that the model is likely producing excessive E2E noise 

variance over much of that region. 

Figure 13 shows the E2E variability for precipitation.  The results from MERRA-2 highlight 

the remarkable differences between El Niño and La Niña in the tropical Pacific E2E 
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variability (top panels), with relatively large variability during El Niño events extending 

across the Pacific, while during La Niña events the largest E2E variability is largely 

confined to the western Pacific, presumably reflecting the underlying cold SST in the 

eastern Pacific during La Niña events.  While M2AMIP generally shows similar differences 

between warm and cold events (middle panels of Fig. 13), the model clearly overestimates 

the tropical Pacific E2E variability associated with El Niño events, while it does a better job 

of reproducing the variability tied to La Niña events (though this variability is still excessive 

in the western tropical Pacific).  Coming back to the question posed earlier (what is the 

source of the large El Niño precipitation variability in the tropical Pacific?), it appears that 

the much of the excessive precipitation variance is tied to excessive E2E variability (more 

so than the excessive composite variability—Fig. 8), though it is unclear how much of that 

is signal and how much is noise since both contribute substantially to the E2E variance (see 

middle panels of Fig. 3a).  Turning now to the E2E S/N (bottom panels of Fig. 13), the ratio 

is largest in the eastern tropical Pacific (values > 2) for El Niño, while for La Niña the 

largest values occur over a smaller region of the tropical Pacific centered near 130W—

though that is a region with overall small E2E variance (see middle right panel of Fig. 13).  

During El Niño, there is also a band of relatively large S/N values (>0.6) centered between 

about 5-10°N throughout the tropical Pacific. 

Focusing on North America, Fig. 14 shows that M2AMIP generally does a good job of 

reproducing the overall geographical distribution of E2E precipitation variability, with the 

maximum variability occurring along the west coast and the southeastern U.S. for both 

warm and cold events (cf. the top and middle panels of Fig. 14).  There is even some 

evidence that the model reproduces some of the more subtle aspects of the geographical 

distribution of the E2E variability over the southeast, with warm events showing somewhat 

greater variability along the Gulf coast (including Florida) compared with cold events, and 

the largest variances in the southeast shifted further to the west for La Niña (cf. the middle 

left and middle right panels of Fig. 14).  On the other hand, M2AMIP appears to produce 

excessive variance over the mid-Atlantic states for both the warm and cold events.  The 

E2E S/N (bottom panels of Fig. 14) is overall quite small over North America, with values 

exceed 0.2 occurring mostly over the SE and primarily for La Niña, with also some values 

exceeding 0.2 along the US west coast for El Niño.  The somewhat larger E2E S/N for La 

Niña compared with El Niño in the southeast is surprising in light of the larger E2E S/N 

found for El Niño over North America for the 250mb eddy height and u-wind (cf. the bottom 

panels of Figs. 11 and 12).  On the other hand, there is a suggestion of somewhat larger 

overall S/N over North America for El Niño (values greater than 0.1), though these are 

likely not significantly different from the La Niña values.  As such, it is likely that the 

differences in the E2E S/N values for precipitation in the southeast between El Niño and La 

Niña are driven in part by factors other than the upper level circulation (e.g., low level 

circulation), though that will not be pursued further here. 

Turning next to T2m over North America, the results for MERRA-2 in Fig. 15 (top panels) 

show that there are substantial differences in the E2E variability between warm and cold 
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events.  The E2E variability during La Niña (top right panel) shows a broad swath of 

relatively large variability extending from Alaska southeastward through central Canada 

into the Great Lakes region.  That basic pattern is reproduced by M2AMIP (middle right 

panel).  In contrast, during warm events the variability (based on MERRA-2) is more 

confined to northern and central Canada (top left panel of Fig. 15).  This is not well 

reproduced by M2AMIP, which has a variance distribution during El Niño that is not very 

different from that of La Niña (cf. middle panels of Fig. 15).  The model tends to 

overestimate the E2E T2m variance for El Niño, including a tendency to produce an 

excessive variance over western Canada and much of the U.S..  The model does an overall 

better job in reproducing the E2E variance for La Niña (cf. the top right and top middle 

panels of Fig. 15), though it produces excessive variance over the western U.S..  The E2E 

T2m S/N (bottom panels of Fig. 15) is overall larger than that for precipitation (cf. the 

bottom panels of Fig. 14), with the largest values (>0.3) occurring for El Niño in the SW 

U.S. and northwestern Mexico and in northeast Canada (bottom left panel of Fig. 15).  A 

similar distribution occurs for La Niña (bottom right panel of Fig. 15) though with 

somewhat smaller values, and with the values in the U.S. more confined to the southcentral 

states. 

A recurring theme so far has been the inability of the model to reproduce the differences in 

the variances between cold and warm events.  As such, the model appears to be considerably 

more linear in its atmospheric response to ENSO SST anomalies than is warranted by the 

observations.  In addition, the model’s excessive precipitation variability in the tropical 

Pacific during warm events suggests that the model’s precipitation response is too sensitive 

to the ENSO-related SST anomalies in that region (likely resulting in excessive noise and 

perhaps excessive signal in the atmospheric response, especially for El Niño).  The other 

rather sobering result is the overall small E2E S/N ratios over North America for T2m and 

especially for precipitation, though these values are more than likely underestimates of the 

true values given the model’s excessive E2E variability, which we suggest is largely 

composed of noise.  

We note that while the above E2E S/N ratio is instructive in that it gives a clear indication 

of the fraction of the E2E variability that is potentially predictable (for this model), it is not 

a practical measure of the overall potential predictability—that requires measuring the 

strength of the signal with respect to the total variance, as we do next. 
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Figure 11:  E2E results for 250mb eddy height for El Niño (left panels) and La Niña 

(right panels) averaged over the months December through March for the events 

that occurred during 1980-2016. Top panel: E2E variance based on MERRA-2.  

Middle panel: E2E (Term 3 +Term 4) variance based on M2AMIP. Units: m2.  

Bottom panel: E2E signal (Term 3) / E2E noise (Term 4) based on M2AMIP.  
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Figure 12:  E2E results for 250mb u-wind for El Niño (left panels) and La Niña 

(right panels) averaged over the months December through March for the events 

that occurred during 1980-2016. Top panel: E2E variance based on MERRA-2.  

Middle panel: E2E (Term 3 +Term 4) variance based on M2AMIP. Units: m2/s2.  

Bottom panel: E2E signal (Term 3) / E2E noise (Term 4) based on M2AMIP.  
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Figure 13:  E2E results for precipitation for El Niño (left panels) and La Niña (right 

panels) averaged over the months December through March for the events that 

occurred during 1980-2016. Top panel: E2E variance based on MERRA-2.  Middle 

panel: E2E (Term 3 +Term 4) variance based on M2AMIP. Units: mm2/day2.  

Bottom panel: E2E signal (Term 3) / E2E noise (Term 4) based on M2AMIP.  
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Figure 14:  E2E results for precipitation over North America for El Niño (left panels) 

and La Niña (right panels) averaged over the months December through March for 

the events that occurred during 1980-2016. Top panel: E2E variance based on 

MERRA-2.  Middle panel: E2E (Term 3 +Term 4) variance based on M2AMIP. 

Units: mm2/day2.  Bottom panel: E2E signal (Term 3) / E2E noise (Term 4) based 

on M2AMIP.  
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Figure 15:  E2E results for T2m over North America for El Niño (left panels) and 

La Niña (right panels) averaged over the months December through March for the 

events that occurred during 1980-2016. Top panel: E2E variance based on MERRA-

2.  Middle panel: E2E (Term 3 +Term 4) variance based on M2AMIP. Units: °K2.  

Bottom panel: E2E signal (Term 3) / E2E noise (Term 4) based on M2AMIP.  
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4.4 The signal-to-total (S/T) variance ratio 

Here (Figs. 16-19) we examine the two different signal-to-total (S/T) variance ratios defined 

in section 2.  Recall that the S/T associated with individual ENSO events (the E2E variance) 

is given by 2.1.7, while that of the composite means is given by 2.1.8.  To be clear, the 

denominator is the same in both 2.1.7 and 2.1.8 (the total variance); only the numerator (the 

signal) differs depending on whether we are considering the signal associated with E2E 

(S/T |E2E) or the composite (S/T |composite).  

Focusing first on the precipitation (Fig. 16), there are several features of the S/T values 

worth noting.  Particularly evident is the generally broader spatial extent of the S/T|E2E 

coverage compared to the S/T|composite coverage (cf. left and right panels), with some 

evidence for a tendency for spatially complementary coverage, especially evident in the 

tropical Pacific for La Niña events (S/T|composite is largest where S/T|E2E is a minimum). Also, 

the stronger S/T|composite for La Niña in the central/eastern tropical Pacific (compared with 

El Niño) is striking (cf. left panels of Fig. 16)– reflecting in part the weak total variability 

(especially E2E) in that region during La Niña events (see middle panels of Fig. 3b).  On 

the other hand, the tropical/subtropical Pacific S/T|E2E is larger and covers a broader region 

during El Niño events compared with La Niña events (cf. right panels of Fig. 16). 

Turning next to the 250mb eddy height (Fig. 17), we see a somewhat similar tendency for 

a spatially complementary coverage of the S/T|composite and S/T|E2E values.  The somewhat 

larger S/T|composite values in the central/eastern tropical Pacific for La Niña compared with 

El Niño (cf. left panels of Fig. 17) is consistent with the stronger S/T|composite values for the 

precipitation noted above.  Also noteworthy are the larger S/T|composite values (compared 

with those for El Niño events) over the tropical Atlantic.  In the NH extratropics, there is 

remarkably little difference between El Niño and La Niña in the S/T|composite values, though 

they are somewhat larger over the southeast U.S. for El Niño, and larger for La Niña just 

north of Hawaii.  There is a tendency for larger S/T|E2E values for El Niño (compared with 

La Niña) over the Gulf of Alaska, the southeast U.S., and northeastern Canada, though the 

values are relatively small (on the order of 0.2, cf. right panels of Fig. 17) compared to those 

in the tropics where they exceed 0.6.  In fact, the S/T|E2E values are generally quite small (< 

0.1) for La Niña over most of North America.  This again indicates that the circulation  

impacts of La Niña events over North America are on average not predictable beyond what 

can be achieved from predicting the canonical (composite) La Niña response, while there is 

some hope that we can predict event-to-event differences in the responses over North 

America for El Niño (cf. the right panels of Fig. 17). 

The results for 250mb u-wind (Fig. 18) are overall reflective of the results for the 250mb 

eddy height, with the S/T|composite maximum values occurring in zonal bands in the 

central/eastern tropical Pacific, in the NH subtropics extending from Hawaii to the 

southeastern U.S., over the northern U.S./southern Canada, and in the SH (near 25°S) 

extending from Australia eastward across the South Pacific.  The S/T|E2E values over North 



50 

 

America are again (as we saw for the 250mb eddy height) very small (0.1 or less) for La 

Niña events, while they are somewhat larger for El Niño events (greater than 0.2 over much 

of the eastern U.S.). 

We next focus on the S/T over North America for precipitation (Fig. 19, top 4 panels) and 

T2m (Fig. 19, bottom 4 panels).  Perhaps the most striking aspect of the S/T|composite for 

precipitation is that the values are very small (less than 0.1) over most of North America 

for both El Niño and La Niña (top two left panels).  The main exception is the La Niña 

composite in the S.E. U.S., especially Florida, where the relatively small noise (Fig. 4b) 

boosts the S/T|composite values. The distribution of the precipitation S/T|E2E for El Niño (top 

right panel of Fig. 19) is, in contrast, characterized by somewhat broader extent (along the 

west coast, northeastern Mexico, the U.S. southeast, north east Canada), though the values 

are overall quite small (0.1 – 0.2).  The S/T|E2E for La Niña is for the most part even smaller 

(less than 0.1), with somewhat larger values (greater than 0.15) largely confined to the 

southeastern U.S..   

In contrast with the overall weak S/T for precipitation, the S/T|composite for T2m (bottom two 

left panels of Fig. 19) shows values exceeding 0.3 over much of the southern U.S./northern 

Mexico and parts of northwest Canada for both El Niño and La Niña, though the values are 

somewhat larger and cover a greater area for the La Niña composite. In the case of S/T|E2E 

(bottom two right panels of Fig. 19), El Niño shows the largest values (greater than 0.2) 

over the southwest U.S. and western Mexico, over the northeastern U.S., and over 

northeastern and northern Canada.  In the case of La Niña (bottom right panel of Fig. 19), 

the T2m S/T|E2E is for the most part less than 0.15 except over northern Mexico and northern 

Canada.   

In summary, the S/T values over North America are overall quite small for precipitation, 

the main exception being over the extreme southeast U.S. (especially for La Niña), where 

the largest contribution to the signal comes from the composite variance.  In contrast, the 

S/T values are substantially larger and more widespread for T2m, with contributions from 

both S/T|composite and S/T|E2E.  Values tend to be larger and spatially more extensive for El 

Niño than for La Niña, with spatial distributions (and relative magnitudes) overall consistent 

with the S/T|composite and S/T|E2E values of the 250mb eddy height and zonal wind shown 

earlier.  As such, we would expect the skill of ENSO-related T2m forecasts to be larger than 

the skill of precipitation forecasts.  Here, however, we need to keep in mind that (as 

discussed earlier) the model’s tropospheric wave response to the ENSO SST over North 

America is too strong, producing an unrealistic strong (false) signal in T2m.  On the other 

hand, the precipitation signal over North America (though smaller) is more realistic, as it is 

more strongly tied to the response of the upper tropospheric zonal wind to the ENSO SST 

– something the model does relatively well.  The actual impact on forecast skill (correlations 

with the observations) is addressed in the next section. 
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Figure 16:  The signal-to-total variance ratios for precipitation for the composite 

mean (S/T |composite, left panels), and event-to-event variability (S/T |E2E, right 

panels).  Top row is for El Niño and the bottom row is for La Niña for the events 

that occurred during 1980-2016. See Section 2 for details. 
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Figure 17:  Same as Fig. 16, except for 250mb eddy height. 
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Figure 18:  Same as Fig. 16, except for 250mb u-wind. 
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Figure 19:  The signal-to-total variance ratios for precipitation (top four panels) and 

T2m (bottom four panels) over North America for the composite mean (S/T |composite, 

left panels), and event-to-event variability (S/T |E2E, right panels).  Top row in each 

set of four is for El Niño and the bottom row is for La Niña for the events that 

occurred during 1980-2016. See Section 2 for details. 
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4.5 Correlations with observations 

We next examine a more direct correspondence (the covariability) with the observations 

(MERRA-2) as defined in section 2.2.  We focus in particular on the decomposition of the 

conditional correlation into the terms associated with the composite mean and the E2E 

variability (see eq. 2.2.2).  Following Lim et al. (2020), we focus on the months of January 

and February for which the GEOS coupled model exhibits the greatest differences in skill 

over North America, with January characterized by having the poorest, and February the 

best skill in reproducing the observed El Niño precipitation response over North America.  

In fact, as mentioned in the Introduction, Chen et al. (2017) showed that the tendency for 

better ENSO-related skill over North America in February compared to the other winter 

months is a feature common to many coupled models and holds for both El Niño and La 

Niña, and for both precipitation and surface air temperature.  In light of those results, we 

show in Figs. 20-24 the correlations separately for January and February and, in order to 

allow a more direct comparison with the results of the previous sections, we also present 

the correlations averaged over the four months (December through March).  In the following 

we shall use the words skill and correlation interchangeably. 

Before showing the results, we think it is useful to briefly discuss how to interpret the two 

components of the correlations (eq. 2.2.2).  To do that, it is helpful to consider two different 

idealized cases.  The first case is one in which the ENSO response is constant so that there 

is no E2E variability (𝑌̂=𝑋̂ = 0).  Then the first term on the RHS of eq. 2.2.2 is zero, and 

the second term would take on a value of either 1 or -1, depending on whether the observed 

and simulated composite anomalies are of the same or of the opposite sign.  Note that in 

this case the variances are 𝜎{𝑋}
2 = {𝑋′}2, and 𝜎𝑌

2 = 𝑌′2.  The other case to consider is one in 

which the composite mean ENSO anomaly is zero (𝑌′=  𝑋′ = 0), so that 〈𝑋〉 = [𝑋], and 

〈𝑌〉 = [𝑌].  Then the second term on the RHS of eq. 2.2.2 is zero, and the first term on the 

RHS is simply the usual definition of a correlation between the two quantities 

({𝑋̂}, 𝑌̂), where the anomalies in the numerator and denominator are all computed with 

respect to the long-term mean, though of course the averaging is still done conditional on 

ENSO.  So, this hopefully makes it clear that the second term on the RHS of eq. 2.2.2 is 

simply providing information about similarity of the observed and simulated phases of the 

ENSO composites, while the first term on the RHS of eq. 2.2.2 is more of a traditional 

correlation term between two variates (involving the variations about the composite mean), 

though it differs from the usual definition in that the normalization terms in the denominator 

(the variances, 𝜎{𝑋}
2  and 𝜎𝑌

2) are computed with respect to means that are different from 

those used in computing the numerator, 〈{𝑋̂}𝑌̂〉:  the long term means versus the ensemble 

means. 

One other key issue to consider is the statistical significance of the correlations.  There are 

basically two sources of uncertainty.  The first involves the uncertainty in the model 

estimates arising from the fact that we do not have an infinite number of ensemble members 



56 

 

(we only have 15).  The second is due to the fact that we do not have an infinitely long 

climate record (we only have the years 1980-2016). We deal with the first source of 

uncertainty by taking a Monte Carlo approach, where we take a large number of subsets of 

10 ensemble members (in this case 400), and repeat the calculations for each to determine 

whether we can discount the null hypothesis (at 1% significance) that the correlations are 

in fact zero.  We note that while there is considerable overlap in the 10-member subsets 

(and we may therefore be underestimating that uncertainty), we are limited in reducing that 

number much further by fact that the ensemble mean would likely begin to diverge 

considerably from the 15-member mean for subsets much smaller than 10.   In any event, 

the second source of uncertainty is likely greater, and the more difficult problem to address.  

Here we have to acknowledge that having only on the order of 10 events (9 for La Nina and 

11 for El Nino) necessitates that the correlations we produce here be viewed with caution, 

in particular for the E2E-related correlations (the first term on the RHS of eq. 2.2.2), and 

especially those shown for the individual months of January and February.  Note that with 

10 events and employing a t-test with a significance level of 5%, the critical values are +/- 

0.63, though these values are for the total correlation in eq. 2.2.2 rather than for the 

individual terms.  On the other hand, the statistical significance of the second term on the 

RHS of eq. 2.2.2 is really a question about the statistical significance of the composite 

means and could be addressed with a separate t-test of those means.   We, however, do not 

pursue such tests here, as our focus in this report is on highlighting the basic approach rather 

than on making definitive statements about the various statistics presented here.  In fact, it 

is likely that significance issues can only be resolved with longer climate/model prediction 

records.  We do, however, also show the average correlations (averaged over the 4 months), 

which should decrease the uncertainty, though it is not clear how independent the results 

from the individual months are.  In fact, there is evidence (as mentioned above and as we 

show next) that the correlations do evolve during the course of the winter. 

With those caveats in mind, we show in Figure 20 the correlations for the 250mb eddy 

height field.  Focusing on North America, for El Niño (Fig. 20a), we see that indeed the 

skill tends to be higher during February (middle panels of Fig. 20a) than during January 

(top panels of Fig. 20a).  This is primarily due to the differences in the E2E correlations (cf. 

the upper left and middle left panels of Fig. 20a). The correlation associated with the 

composite mean in fact shows little difference between January and February (cf. the upper 

right and middle right panels of Fig. 20a).  For La Niña (Fig. 20b), we see that the skill also 

tends to be higher over North America during February (compared with January).  In this 

case, the higher February skill is primarily coming from the composite mean (over much of 

the eastern U.S. and the northwest), with also some contribution (over the Great Lakes 

region) from E2E variability (middle panels of Fig. 20b).  This is in contrast with January, 

where there is essentially no skill (with northeast Canada being the only exception) tied to 

E2E variability and only a modest amount of skill (mostly less than 0.3) coming from the 

composite mean centered over northern Mexico and northwest Canada.  Considering the 

Dec – Mar average correlations we see overall weak correlations over North America 

(bottom panels of Figs 20a and 20b).  For El Niño (bottom panels of Fig. 20a) we find that 
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the skill over North America comes from both E2E and the composite variance.  For La 

Niña (bottom panels of Fig. 20b), the Dec – Mar average correlations are similar to those 

for El Niño, though the correlations (especially for E2E) are generally weaker over much 

North America.  For both El Niño and La Niña we see a tendency for the E2E and composite 

skill to have spatially complementary coverage (the maxima in one tending to be located in 

the minima of the other) over both North America and the tropics (bottom panels of Fig. 

20a and 20b).  Overall, the spatial distributions of the correlations are (not surprisingly) 

quite similar to those of the S/T ratios (cf. bottom panels of Figs. 20a and 20b with Fig. 17).  

That is, the correlations are largest in the regions with the largest S/T, and this is true for 

both El Niño and La Niña, and for both E2E and the composite correlations.  A key 

difference is the weaker composite correlations over the southeast U.S. than one would be 

expect based on the relatively strong composite S/T values in that region (cf. the bottom 

right panels of Figs. 20a and b with the left panels of Fig. 17). This presumably reflects the 

fact that the model produces an unrealistically strong eddy height composite signal in the 

southeast, as discussed earlier (Fig. 6). 

It is interesting that in the tropical eastern Pacific the differences in the composite skill are 

such that the January skill tends to be larger than the February skill (especially for La Niña, 

cf. top right and top middle panels of Fig. 20b). Also, regarding the strongest composite 

correlations in the tropical Pacific, the maximum for El Niño is centered near 160°W 

(bottom right panel of Fig. 20a), whereas that for La Niña is centered further east near 

140°W (bottom right panel of Fig. 20b).  This is surprising given that the location of the 

maximum composite precipitation variance in the tropical Pacific for La Niña is to the west 

of that for El Niño (cf. the left panels of Fig. 8). 

The correlations for the 250mb zonal wind are shown for El Niño in Fig. 21a and for La 

Niña in Fig. 21b.  Perhaps the most striking aspect of these results is the overall considerably 

stronger correlations over North America for the composite mean compared with those from 

the E2E variance (cf. the left and right panels of Figs. 21a and 21b).  This is especially true 

for La Niña, which, overall, has little correlation tied to E2E variance over North America 

(left panels of Fig. 21b) - a result that is consistent with the weak E2E S/T ratios there 

(bottom right panel of Fig. 18). The largest correlations associated with the composites 

occur (for both El Niño and La Niña) in zonally oriented bands with (in the Northern 

Hemisphere) one stretching from Hawaii eastward across Mexico and across the southern 

tier of the U.S., and the other stretching from the Aleutians across the northern U.S. and 

southern Canada.  This is again consistent with the regions of strongest composite S/T ratios 

(cf. the left panels of Fig. 18).  There is again, for both El Niño and La Niña, a tendency for 

the E2E and composite skill to have spatially complementary coverage, over both North 

America and the tropics (bottom panels of Fig. 21a and 21b).  There is also again a tendency 

for February to have higher skill than January over North America.  For La Niña this is 

primarily tied to the differences in the correlations tied to the composite mean (cf. the top 

right and middle right panels of Fig. 21b), whereas for El Niño, it appears to be due to both 
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the E2E and the composite having somewhat larger correlations in February (cf. the top and 

middle panels of Fig. 21a).  

Figure 22 shows the correlations for precipitation.  For El Niño (Fig. 22a), the average 

correlations (bottom panels) show that, not surprisingly, the highest correlations tend to 

occur in the tropics, although in the case of the composite some of the largest correlations 

in the Pacific occur well north of the equator in a broad swath from Indonesia to Hawaii, 

with another swath to the south of the equator in the region of the SPCZ.  There is also again 

a tendency for the patterns of higher correlations of the E2E and composite to be 

complementary throughout much of the tropics and subtropics.  In the extratropics, the 

correlations are generally small, though over the North Pacific and North America there is 

a general agreement between the regions of relatively higher E2E correlations (greater than 

0.2) and the regions of relatively higher E2E S/T (cf. bottom left panel of Fig. 22a and the 

top right panel of Fig. 16).  Comparing January and February (top and middle panels of Fig. 

22a), we see generally very similar results, though over the North Pacific and over North 

America the correlations are higher for February, consistent with the findings of Lim et al. 

(2020) and Chen et al. (2017).  In fact, it appears that the February values are the main 

contributors to the higher correlations seen in the Dec -Mar averages in the North Pacific 

and North America region (cf. middle left and bottom left panels of Fig. 22a).  For La Niña, 

the average precipitation correlations (bottom panels of Fig. 22b) are by far the largest in 

the central and eastern tropical Pacific for the composite (greater than 0.9) – though east of 

about 160W, the large precipitation correlations occur in a region of overall small variability 

(bottom panels of Fig. 3b).  The E2E correlations (bottom right panel of Fig. 22b) tend to 

be rather noisy, though again there is a tendency for the regions of relatively high 

correlations for E2E and the composite to be complementary.   

Focusing on the precipitation over North America (Fig. 23), we see overall small and 

spatially scattered correlations for both El Niño and La Niña.  Nevertheless, there are some 

larger regions of higher correlations.  In general, the Dec-Mar mean values (bottom panels 

of Fig. 23a and 23b) tend to be largest along the southern tier of the U.S., in northern 

Mexico, and along the west coast.  Also evident are the relatively higher February 

correlations for E2E throughout much of North America for El Niño (left middle panel of 

Fig. 23a), with some of the highest correlations (greater than 0.6) occurring over the 

southern tier of the U.S. and along the east and west coasts.  In contrast, La Niña tends to 

have the highest correlations associated with the composite, with the largest values confined 

to northern Mexico and the southern tier of the U.S., especially the southeast (right panels 

of Fig. 23b).  We note that the relatively strong composite-related correlations in the 

southeast U.S. for La Niña and the strongest E2E correlations occurring on the west coast 

and southeast for El Niño are generally consistent with the distributions of the S/T (cf. 

bottom left panel of 23a and top right panel of Fig. 19;  and cf. the bottom right panel of  

Fig.23b and the second row left panel of Fig. 19). 
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Finally, we turn to an examination of the correlations for T2m over North America (Fig. 

24).  Looking first at the results for El Niño (Fig. 24a), we see that the average correlations 

(bottom panels) are largest (greater than 0.3) for the composite over northern Mexico, along 

the southern tier of the U.S., and over northwestern Canada.  For the E2E variance, the 

largest correlations (though weaker than for the composite) occur primarily over the western 

U.S., western Mexico, and northeast Canada.  These regions of relatively high E2E 

correlations are remarkably consistent with the regions of relatively high E2E signal to total 

(S/T) variance (cf. right panels of Fig 19).  Comparing the mean composite correlations 

(bottom right panels of Figs. 24a and 24b) with the corresponding composite S/T ratios (left 

panels of Fig. 19) we do see a mismatch, with the correlations being much more confined 

to northern Mexico and the southern tier of the U.S., whereas the largest S/T values 

encompass much of the eastern U.S.  Similar to what we found for the eddy height (see 

discussion of Figs. 20a and b above), this mismatch presumably reflects a model bias in the 

T2m composite (a false signal) over North America (see Fig. 10). 

Overall, the El Niño correlations (both composite and E2E) for T2m tend to be higher for 

February than for January (cf. top and middle panels of Fig. 24a).  For La Niña, we find 

somewhat larger average correlations for E2E (bottom left panel of Fig. 24b) compared with 

El Niño, though these correlations are overall quite small (~0.1) and are likely not 

statistically significant.  The largest values (> 0.4) occur in northeastern Canada.  The 

somewhat larger correlations for La Niña compared with El Niño are surprising given the 

overall weak S/T values for the upper level circulation during La Niña events (e.g., bottom 

right panels of Fig. 17 and 18).  For La Niña, the largest average correlations for the 

composite are confined to the eastern tier of U.S. states, northern Mexico and the west coast 

(bottom right panel of Fig. 24b), with less overall spatial coverage than found for El Niño 

(cf. bottom right panel of Fig. 24a).  These again appear to reflect the larger February 

correlations (cf. the top and middle right panels of Fig. 24b).  The La Niña E2E correlations 

for January and February (top and middle left panels of Fig. 24b) are unusual in that, while 

they show a monthly distinction in the spatial coverage of the largest values, there is no 

clear difference in the overall strength of the correlations.  In fact, the areas with the largest 

mean correlations for E2E are not very consistent with the areas of the largest S/T values 

(cf. bottom left panels of Fig. 24b with the bottom right panel of Fig. 19), though both 

metrics tend to be small over much of North America.  
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Figure 20a: The El Niño January (top panels), February (middle panels) and average 

of January through March (bottom panels) conditional correlations between 

MERRA-2 and M2AMIP for the 250mb eddy height field for the events that 

occurred during 1980-2016.  The correlations are decomposed into the terms 

associated with event-to-event (E2E) variability (left panels) and the composite 

mean (right panels).  Values not significant at the 1% level based on a Monte Carlo 

approach to assess ensemble uncertainty and/or correlations with absolute values 

less than 0.2 are masked out. Positive values are contoured. 
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Figure 20b: Same as Fig. 20a except for La Niña. 
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Figure 21a:  The El Niño January (top panels), February (middle panels) and average 

of January through March (bottom panels) conditional correlations between 

MERRA-2 and M2AMIP for the 250mb u-wind field for the events that occurred 

during 1980-2016.  The correlations are decomposed into the terms associated with 

event-to-event (E2E) variability (left panels) and the composite mean (right panels).  

Values not significant at the 1% level based on a Monte Carlo approach to assess 

ensemble uncertainty and/or correlations with absolute values less than 0.2 are 

masked out. Positive values are contoured.  
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Figure 21b: Same as Fig. 21a except for La Niña. 
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Figure 22a:  The El Niño January (top panels), February (middle panels) and average 

of January through March (bottom panels) conditional correlations between 

MERRA-2 and M2AMIP for precipitation for the events that occurred during 1980-

2016.  The correlations are decomposed into the terms associated with event-to-

event (E2E) variability (left panels) and the composite mean (right panels).  Values 

not significant at the 1% level based on a Monte Carlo approach to assess ensemble 

uncertainty and/or correlations with absolute values less than 0.2 are masked out. 

Positive values are contoured. 
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Figure 22b: Same as Fig. 22a except for La Niña. 
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Figure 23:  The conditional correlations between MERRA-2 and M2AMIP for 

precipitation over North America for El Niño (a) and La Niña (b) events that 

occurred during 1980-2016.  In each set of six panels, the results are shown for 

January (top panels), February (middle panels) and average of January through 

March (bottom panels). The correlations are decomposed into the terms associated 

with event-to-event (E2E) variability (left panels) and the composite mean (right 

panels).  Values not significant at the 1% level based on a Monte Carlo approach to 

assess ensemble uncertainty and/or values with absolute correlations less than 0.2 

are masked out. Positive values are contoured. 

  

(a) (b) 
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Figure 24:  The conditional correlations between MERRA-2 and M2AMIP for T2m 

over North America for El Niño (a) and La Niña (b) events that occurred during 

1980-2016.  In each set of six panels, the results are shown for January (top panels), 

February (middle panels) and average of January through March (bottom panels). 

The correlations are decomposed into the terms associated with event-to-event 

(E2E) variability (left panels) and the composite mean (right panels).  Values not 

significant at the 1% level based on a Monte Carlo approach to assess ensemble 

uncertainty and/or correlations with absolute values less than 0.2 are masked out. 

Positive values are contoured. 

(a) 

(b) 
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5.  Summary and Discussion 

We have presented here a decomposition of the variance and covariance of a recurring 

climate phenomenon that isolates the contributions from the composite mean and the 

variability about that composite mean (the event-to-event or E2E variability).  The 

decomposition is further tailored to isolate the signal and noise contributions of each (both 

the composite mean and the E2E variability), taking advantage of the existence of large 

ensembles of climate model simulations or predictions.  As such, the decomposition 

provides an important metric of model quality, one that focuses on the quality of the model’s 

simulation/prediction of second moments associated with specific recurring climate 

phenomena.  While the decomposition has its roots in “analysis of variance”, we believe 

that there are several important differences from how that is usually applied in the context 

of statistical regression (where the variance is separated into the explained and unexplained 

components).  First, here we deal with two sources of variability: climate and ensemble.  

Second, the statistics are conditional on the occurrence of a specific phenomenon. Third, 

we also decompose the covariances, allowing the separation of the skill of a model 

prediction into that coming from the composite mean and that coming from the E2E 

variability. 

As an example of the decomposition, we have focused here on ENSO as represented in an 

ensemble of 15 climate simulations produced with the NASA GEOS AGCM forced with 

observed SST for the period 1980-2016.  Results are presented separately for El Niño and 

La Niña, focusing on the extended boreal cold season consisting of the months December - 

March.  Results are presented for 250mb eddy height, 250mb zonal wind, and precipitation, 

covering a large part of the globe where ENSO impacts are known to be important, together 

with a more detailed look at North America (focusing on precipitation and T2m).  In the 

following, we summarize our findings. 

The decomposition separates the total variance about the long-term mean into four 

contributions consisting of the composite signal, the composite noise, the E2E signal and 

the E2E noise.  Here, the noise contributions are associated with the (unpredictable) intra-

ensemble variability, and the signals are associated with the ensemble mean – the part of 

the variance that is presumably predictable if the SSTs are known (specified as in this case, 

or more generally if they are predicted).  In general, we find that for both El Niño and La 

Niña the largest contribution to the variance in the NH extra-tropics is the E2E noise, 

highlighting the challenge of predicting E2E differences in extra-tropical ENSO response.  

We found that the E2E noise is smaller for El Niño than for La Niña, especially for the 

250mb eddy height over the North Pacific and parts of North America, indicating that E2E 

variability may be more predictable for warm events in those regions.  Overall, the E2E 

signal tends to be somewhat weaker than the composite signal, though it tends to be spatially 

more extensive.  The contribution to the variance from the composite noise tends to be 

small, reflecting the overall stability of the ensemble mean ENSO response (i.e., the 

composite mean ENSO response differs little between individual ensemble members). 
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Focusing on the fraction of the total variability associated with the composite and E2E 

signals (S/T), we found that the circulation impacts for La Niña events over North America 

appear not to be predictable beyond that which can be achieved from predicting the 

canonical (composite) La Niña response, while there is some hope that we can predict event-

to-event differences in the responses over North America for El Niño.  Here, the larger E2E 

(S/T) values for El Niño reflect the smaller E2E noise (mentioned above) rather than a larger 

E2E signal (compared with La Niña) for warm events.  We also find little difference 

between El Niño and La Niña in the magnitude of the composite mean variance, which, if 

anything, is slightly larger for La Niña over North America.  This appears to be inconsistent 

with Frauen et al. (2014), who showed that the higher signal-to-noise ratios for El Niño 

events are associated with a stronger El Niño response (signal) compared with the La Niña 

response.   The lack of a stronger signal for El Niño in the current results appears to reflect 

a bias in this model’s ENSO response over North America, which exhibits a remarkable 

(but unrealistic) degree of linearity (we find little difference between El Niño and La Niña 

in the strength of the response). 

The decomposition of the covariances (specifically the correlations with the observations) 

into the contributions from E2E and the composite mean allows a direct assessment of the 

extent to which a model is capable of making predictions that are more skillful than simply 

predicting the composite mean response of a particular phenomenon.  In fact, this 

assessment was one of the main motivations for developing the decomposition approach.  

Specifically, as highlighted in the Introduction, even for a much-studied and understood 

phenomenon such as ENSO, there are still concerns about the ability of current state-of-the-

art climate models to predict event-to-event differences in the responses (e.g., WMO, 2015).  

Here, in addition to an assessment of the Dec-Mar average results, we also looked separately 

at the results for January and February—motivated by studies of Chen et al (2017) and Lim 

et al. (2020), who found that ENSO impacts over North America tend to be more skillful 

for February than for the other winter months (especially January). 

The results of our analysis show, first, that we indeed do find evidence of greater skill over 

North America for February compared with January.  This is especially clear for the 250mb 

eddy height and zonal wind, for which, for El Niño, the higher February skill is primarily 

the result of the higher skill associated with E2E variability (rather than the composite).  In 

contrast, for La Niña (which exhibits little skill over North America associated with E2E 

variability) the greater skill in February (compared with January) is tied to differences in 

the skill of the composite responses.  These results are also reflected in the skill of the 

precipitation responses over North America, though less so for T2m.  Another interesting 

and somewhat unexpected result is the complementary nature of the spatial coverage of the 

correlations (or skill) for the two signals—the E2E impact tends to be larger in regions 

where the composite impact is smaller, and vice versa.  This complementarity presumably 

reflects the fact that the E2E variability is in part tied to spatial shifts in the underlying 

composite ENSO response—something that would presumably focus the more predictable 

components of the E2E impacts on the edges of the composite responses where the gradients 
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are largest.  In the tropical Pacific, we found considerably higher skill (correlations greater 

than 0.9) in reproducing the composite precipitation response for La Niña, compared with 

El Niño.  In contrast, during El Niño events there is greater skill in reproducing the 

precipitation associated with E2E variability; indeed, for La Niña there is very little skill 

overall in reproducing E2E precipitation variability throughout the tropics and extra-tropics.  

Turning next to an assessment of the quality and generality of the model results, we 

highlight a number of potential problems that must be kept in mind.  First, it is clear that 

the model produces excessive circulation (250mb eddy height and 250mb zonal wind) 

variability over much of the North Pacific and North America, and this is very likely 

primarily associated with excessive E2E noise.  This is especially true for El Niño, for which 

the observations show much reduced variability (compared with La Niña) over the North 

Pacific; the model, in contrast, shows roughly the same level of variance for both El Niño 

and La Niña.  As noted above, this seems to reflect a greater linearity of the model’s 

response to El Niño and La Niña than is warranted by the observations.  Another important 

model deficiency is the excessive composite signal over North America for both El Niño 

and La Niña.  This deficiency, especially evident in the 250mb eddy height and T2m fields, 

results in unrealistically large signal-to-total variance ratios in these quantities over the U.S. 

that are inconsistent with the relatively low skill (correlations with observations) there.  In 

the tropics, the model produces excessive tropical Pacific precipitation variability, 

especially for El Niño.  In fact, it is quite likely that this is a key factor in producing the 

excessive E2E noise variability in the extratropical circulation over the North Pacific and 

North America. 

Finally, we turn to possible future work regarding the decomposition described here.  The 

statistical significance of the results is clearly a concern.  Given the somewhat complicated 

nature of the decomposition, a Monte Carlo approach is likely the most straightforward 

approach to assessing the uncertainty associated with the finite ensemble size, rather than 

attempting a more theoretical (parametric) assessment that would involve making various 

distributional assumptions. We indeed employ such a Monte Carlo approach in this study.  

Of course, with larger ensembles such concerns will become less of an issue.  It is also 

important to note that the estimates of the various quantities involving the ensemble mean 

(the signal) presented here are not unbiased estimates.  We have not attempted to derive 

unbiased estimates here, and it would indeed be a useful thing to pursue, though again that 

problem would also be alleviated as we increased the ensemble size, since the bias in the 

estimated signal is itself reduced with increasing ensemble size (e.g., Rowell et al. 1995). 

Perhaps a more difficult issue to address concerns the estimates of the observed E2E 

variability, as such estimates are more fundamentally limited by (and presumably sensitive 

to) the length of the observational record.  It would certainly be helpful to have more ENSO 

realizations than are currently available for the satellite era (since about 1980 or so).  Model 

simulations/predictions that start in the middle of the 20th century would help, but there are 

of course concerns about the quality of the SST observations during that earlier period, and 
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(for initialized predictions) the quality of the atmospheric and land observations.  Finally, it 

is not clear that ENSO statistics are stationary in a warming world.  Accordingly, nature 

itself might put a limit on the robustness of the statistics involved in the decomposition 

described here. 
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