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Abstract 22 

Like all reanalysis efforts the Modern Era Retrospective Analysis for Research and 23 

Applications (MERRA) must contend with an inhomogeneous observing network.  Here we 24 

examine the effects of the two most obvious observing system epoch changes, the Advanced 25 

Microwave Sounding Unit-A (AMSU-A) series in late 1998 and, to a lesser extent, the earlier 26 

advent of Special Sensor Microwave Imager (SSMI) in late 1987.  These sensor changes affect 27 

model moisture and enthalpy increments and, thus, water and energy fluxes since the latter result 28 

from model physics processes that respond sensitively to state variable forcing.  Inclusion of the 29 

analysis increments in the MERRA dataset is a unique feature among reanalyses that facilitates 30 

understanding the relationships between analysis forcing and flux response. 31 

In stepwise fashion in time, the vertically integrated, global mean moisture increments 32 

change sign from drying to moistening and heating increments drop nearly 15 Wm-2 over the 30+ 33 

years of the assimilated products.  Regression of flux quantities on an El Nino / Southern 34 

Oscillation (ENSO) sea-surface temperature (SST) index analysis reveals that this mode of 35 

climate variability dominates interannual signals and its leading expression is minimally affected 36 

by satellite observing system changes. Conversely, precipitation patterns and other fluxes 37 

influenced by SST changes associated with Pacific Decadal Variability (PDV) are significantly 38 

distorted.  Observing system changes also induce a non-stationary component to the annual cycle 39 

signals.    40 

Principal Component Regression is found useful for identifying artifacts produced by 41 

changes of satellite sensors, and defining appropriate adjustments.  After the adjustments are 42 

applied, the spurious flux trend components are largely eliminated.  Time series of the adjusted 43 

precipitation and the Global Precipitation Climatology Project (GPCP) data compare favorably 44 
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on a global basis. The adjustments also provide a much better depiction of precipitation spatial 45 

trends associated with PDV-like forcing. The utility as well as associated drawbacks of this 46 

statistical adjustment and the prospects for future improvements of the methodology are 47 

discussed. 48 

  49 
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1. Introduction 50 

Steady improvements in assimilated products has produced a legacy of important 51 

contributions regarding atmospheric dynamics (Dole, 1989; Simmonds and Keay, 2000; 52 

Thompson and Wallace, 1998, 2000; Thompson et al., 2000; Hoskins and Hodges, 2002), 53 

tropical water and energy fluxes, and climate variability on interannual time scales (Trenberth et 54 

al., 2000; 2001; 2008; Bove et al., 1998; Wang, 2002).  Yet, as a tool for capturing decadal scale 55 

variability and detection of trends, the reliability of reanalysis products has yet to be realized 56 

(Bengtsson et al., 2004; Sterl, 2004).  In part this is due to the fact that water, energy (and other) 57 

fluxes produced by the assimilation procedure are subject to uncertainties in the physical 58 

parameterizations.  Perhaps more importantly, because our satellite observing system has been 59 

characterized by an evolving capacity to correct model state variables of heat, moisture and 60 

momentum on which the physical parameterizations critically depend, the fluxes determined 61 

from reanalyses contain variability that arises as a result of these discreet, aperiodic observing 62 

system improvements.  In this paper we will examine how these observing system changes have 63 

affected the depiction of climate variability within the thirty plus year period covered by 64 

MERRA.   65 

Bias correction methods developed since initial reanalysis efforts have significantly 66 

improved the consistency of more recent products.  Dee and Todling (2000) used rawinsonde 67 

humidity data to correct slowly evolving background guess systematic error in the forecast 68 

model component of the GEOS data assimilation system.  Andersson et al., (2005) were able to 69 

diagnose a posteriori the incompatibility of ECMWF model background dry humidities in cloud 70 

free areas with satellite moisture retrievals which ultimately resulted in increased rainout of 71 

assimilated water vapor and unrealistically high precipitation in the ERA-40 reanalysis.  More 72 
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exacting demands to accommodate the monitoring of decadal climate signals and the growing 73 

but ephemeral mix of remotely–sensed data have spurred great progress in so-called “bias-74 

aware” methodologies (Dee, 2005).  Variationally-constrained bias estimation strategies have 75 

been developed (Derber and Wu, 1998; Dee, 2004) which embed the correction within the cost 76 

function minimization process (i.e. reconciling observations with the background guess).  This 77 

allows the detection of time-dependent biases from the entire suite of observing systems (e.g. 78 

Dee and Uppalla, 2009). Like the JRA-25 and EC-Interim reanalyses (Onogi et al., 2007; 79 

Berrisford et al., 2009) the MERRA employs this bias correction approach.   80 

Despite these advances, additional improvement in bias correction of data sets and models is 81 

still required as evidenced by the results of Trenberth et al. (2009) and Bosilovich et al., (2010) 82 

who highlight uncertainties in water and energy fluxes among the most recent reanalysis efforts.  83 

For example, net downward energy flux at the surface over oceans is approximately 14 Wm-2 for 84 

MERRA (but -18 Wm-2 for JRA) over the period 2000-2004 where modern remote sensing 85 

measurements should have the greatest impact.  Global precipitation trends in MERRA exceed 86 

0.5 mmd-1 or nearly 20% of the climatological global amount over this period, similar to the 87 

older ERA-40 reanalysis.  In contrast, the EC-Interim reanalysis exhibits a decrease in rainfall of 88 

about 0.3 mmd-1 since 1990.  Clearly, there are remaining issues not only with model physics 89 

inadequacies, but also their interactions with constraining data sets whose bias properties are 90 

varied and time dependent in nature. 91 

 92 

Bosilovich et al. (2010) have presented a comparative summary of MERRA fluxes with those 93 

of other recent reanalyses and also highlighted the relationship between the MERRA trends and 94 

the initial availability of AMSU-A data.  The goal of this paper is to provide a more detailed 95 
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characterization of these time-dependent biases and explore the efficacy of a statistical correction 96 

strategy to reduce these artificial trends in water and energy fluxes.  After reviewing the data 97 

used in the study (section 2), we begin by analyzing the temporal variability of the water vapor 98 

and heat budget increments and relate these forcings to the step-wise evolution in passive 99 

microwave sensing associated with AMSU-A and SSMI (section 3).  Section 4 provides some 100 

diagnostics on what aspects of climate variability within the 30-year period survive or are 101 

distorted by these artifacts.  We then use principal component analysis to characterize space-time 102 

variability of the increment terms.  In section 5 we show how applying a statistical regression 103 

methodology to identify and eliminate trend artifacts associated with satellite sensor changes 104 

provides an effective correction.  An assessment of the adjusted fluxes is presented in section 6 105 

along with concluding remarks.   106 

2.  MERRA data and diagnostics 107 

All data used in this study are monthly mean assimilated products taken from the MERRA 108 

collection archived at NASA Goddard Earth Sciences Information and Services Center, GES 109 

DISC, (http://disc.sci.gsfc.nasa.gov/).  These include monthly mean vertical integrals of heat and 110 

water budget components (tavgM_2d_int_Nx and tavgM_2d_int_Nx )  and individual radiative 111 

flux components (tavgM_2d_rad_Nx) for the period 1979 through 2009.  These quantities at 112 

their native resolution (0.50o lat x 0.67o lon) were regridded via box averaging to a 2.5o lat x lon 113 

grid to facilitate computing covariance statistics.  More detailed documentation on the quantities 114 

in these data sets can be found in the MERRA File Specification Document (Suarez et al. 2010). 115 

From these data we can reconstruct the MERRA budget for enthalpy, H ≡ cpTv , written as  116 

 117 
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 119 

where cp is the heat capacity of dry air at constant pressure and Tv is the virtual temperature. 120 

Overbars denote a vertical integration over the mass of the atmosphere and the subscript H 121 

denotes reference to the virtual enthalpy budget.  The first two terms on the right hand side of (1) 122 

represent the convergence of enthalpy and the release of total potential energy, the global 123 

integral of the latter being equivalent to the generation of kinetic energy.  The other tendencies 124 

involve moist processes (MSTH, which is essentially precipitation), radiative heating (RAD), and 125 

turbulent diffusion (i.e. sensible heat flux, SENS). The analysis increment (ANAH) is the 126 

tendency that is added to the prognostic budgets due to the observational analysis. ResH is a 127 

small value that includes the gravity wave drag and a residual that results from maintaining 128 

energy balance in the presence of numerical dissipation, each of which are also included in the 129 

output diagnostics (Suarez et al., 2010).  130 

 131 

The vertically integrated radiation heating term, RAD, can be expanded further into the 132 

difference of top of the atmosphere, TOA, and surface shortwave fluxes (SWT and SWS, 133 

respectively) minus the sum of outgoing longwave radiation at TOA (OLR) and the net 134 

longwave flux to the surface, LWS: 135 

 136 

��� � ����  ��!"   �#$� �   $�!".,       (2) 137 

 138 

The MERRA vertically integrated total water vapor budget can be written as: 139 

 140 



8 

 

�&'

��

����
 �   (�	
��
����������������  �  ���& � �)�* � ���& � ���& ,     (3) 141 

  142 

where the change of water vapor is related to the dynamical convergence of water vapor, the net 143 

moist physical processes, MSTq, essentially the negative of the sum of convective, large-scale 144 

and frozen precipitation since precipitation is a sink of water vapor, and evaporation, EVAP. 145 

Here the subscript q denotes reference to the water vapor budget.  Note that –(L/cp)MSTq = 146 

MSTH. Two non-physical terms affect the moisture budget.  ANAq represents the analysis 147 

increment of water vapor and Resq represents a very small amount of negative filling, ensuring 148 

positive water vapor content. 149 

  150 

3. MERRA T, q increments and their evolution 151 

In this section, we examine the statistical properties of the MERRA vertically-integrated 152 

moisture and temperature increments, focusing in particular on signatures of satellite impacts. 153 

Climatological mean maps of the moisture and heating increments are presented in Figure 1.  It 154 

should not be surprising that the moistening and heating increments have systematic spatial 155 

structure to them since model physics deficiencies vary as a function of climate regime.   In 156 

general, positive moisture increment values maximize over the tropics, most notably in the NH 157 

Summer warm pool areas (western Pacific, northern Indian Ocean, and Inter-American Seas).  158 

These are preferred areas of deep moisture and frequent convection (Adler et al., 2003) and the 159 

added moisture from the increments is acting to systematically increase precipitation (not 160 

shown).  There are also positive values in oceanic subtropical ridge locations in eastern ocean 161 

basins where precipitation is quite small but the transition from stratocumulus to trade wind 162 

cumulus regimes are found.  In the eastern Pacific a region of negative increments (drying) just 163 
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south of the equator forms a pronounced dipole structure with the positive values lying 164 

immediately to the south.  In the region of negative moisture increments boundary layer air over 165 

the cold upwelling water off the coast of South America is systematically too wet in the 166 

background field.  Presumably these features indicate that the delicate interplay between 167 

subsidence drying and shallow convective moistening of the equatorward moving airmasses is 168 

not handled as well in the model as it should be.   169 

 170 

Heating increments are predominantly positive over the continents and adjacent waters with 171 

an equatorially symmetric cooling pattern over the  central subtropical Pacific.  The fact that the 172 

moisture and heating increments have such different spatial patterns indicates that dynamical 173 

transports of heat and moisture significantly affect the thermodynamic adjustments.  The off-174 

equatorial cooling pattern is reminiscent of Rossby modes emanating from forced heating over 175 

the western Pacific (Gill, 1980; Hoskins and Karoly, 1981) where ANAq has a relative 176 

maximum.  One possible explanation for this structure is that the precipitation and associated 177 

Gill-like dynamical heating response, poleward and downstream of the heat source, is somewhat 178 

excessive compared to reality.  This is consistent with the comparisons to GPCP precipitation 179 

shown by Bosilovich et al., (2010).  The extra heating would then require a systematic cooling 180 

increment in order for the analysis to match satellite radiances. 181 

Given a uniform observing system, ANAH and ANAq would be essentially stationary in a 182 

statistical sense with some constant bias owing to model physics deficiencies†. Unfortunately, 183 

                                                           
†
 Complicating this is the fact that we also expect the analysis increments to have some sensitivity to climate variability.  In 

section 5 we will see that ENSO may systematically perturb the GEOS-5 model climate and thus introduce some systematic 

variation in the flux bias.   
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this is not the case in reality due to the significant stepwise evolution of the satellite observing 184 

system.  Figure 2 presents Hovmoeller plots of zonally-averaged ANAq and ANAH anomalies for 185 

the 1979-2009 period.  (Henceforth, all anomaly quantities are understood to be departures from 186 

their monthly-varying seasonal climatology defined by the period 1979-2009.) From this 187 

perspective discontinuities in the increments resulting from the discreet changes in the observing 188 

system  are now evident, particularly for ANAq.  The most obvious of these is the abrupt change 189 

to positive moisture forcing in November 1998 when the assimilation of NOAA15 AMSU-A 190 

radiances begins.  This moistening is prominent at tropical latitudes and also over the Southern 191 

Oceans.  Also apparent is the effect of the SSMI sensors whose data begin in late 1987 and 192 

which tend to decrease  the drying from other observations in the tropics, but dry the high 193 

latitudes, particularly in the SH.  The increasing amplitude of the apparent SSMI-induced 194 

changes over the Southern Ocean likely results from the increasing number of those sensors 195 

deployed with time during the 1990s.  Presumably the SSMI and AMSU-A effects in the NH are 196 

muted because of the far denser conventional observing system there compared to the SH and 197 

tropics.   198 

 199 

The ANAH change associated with the onset of AMSU-A data ingest is prominent, 200 

particularly in the equatorial region and in the southern hemisphere.  It is evident that as the 201 

moisture forcing increases with time in these regions, heating increments generally trend in the 202 

opposite direction; less heating is needed to keep the analyzed temperature consistent with 203 

observations.  Beyond this first order change in ANAH with time series, other features are also 204 

noted such as the presence of “blockiness” or discontinuities of multi-year duration in the 205 

northern hemisphere, particularly poleward of 30o N.  It is not clear why these shorter duration 206 
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features should occur in a relatively data rich portion of the globe.  It is possible that surface 207 

emissivity uncertainties affecting the assimilation of the 50.3 GHz window channel (MSU CH1 208 

and AMSU-A CH 1-3 and 15) could vary from sensor to sensor in such a way as to affect the 209 

inference of atmospheric temperature, but the explanation of these patterns will require more in-210 

depth analysis.    211 

The presence of annual cycle power in both increments despite the removal of the respective 212 

mean values over the reanalysis is also striking and indicates variations both in amplitude and in 213 

phase.  After the buildup of SSMI sensors beginning in 1987 the increments near 50o S have a 214 

maximum drying in SH Winter (JJA); yet after the AMSU-A ingest begins, a dramatic SH 215 

Winter moistening is evident.  A summer heating / winter cooling cycle in ANAH centered south 216 

of  45o S also reverses phase after the start of AMSU-A data.  Another shift in the annual 217 

variation of ANAH begins in the northern hemisphere in 1998 and strengthens substantially in 218 

2002.  Clearly, the changes in sensors are associated with changes in the required annual cycle of 219 

forcing.  For purposes of climate analysis this is a complicating factor. 220 

 221 

All of these structures noted here emphasize the important interactions of a changing 222 

observing system interacting with a model having its own specific hydroclimatic biases.  To 223 

explore the origin of these discontinuities further we turn first to monthly mean statistics of 224 

observation-minus forecast (OMF) and observation-minus analysis (OMA) residuals for the 225 

various AMSU-A channels of the NOAA polar orbiting suite.  Simulated radiances based on the 226 

model 6h forecast and analyzed fields are generated using the forward observation operator of 227 

the CRTM (Han et al., 2006).  The difference between the monthly mean values of OMF and 228 

OMA residuals, in turn, provides an estimate of the monthly mean contribution of the radiance 229 
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increments (AMF) in observation space.  Figure 3 shows time mean maps of AMF from 1999 to 230 

2002 for NOAA 15 AMSU-A Channel 15, one of the AMSU-A window channels (1, 2, 3, 15) 231 

sensitive to water vapor and liquid water emission, and for Channel 5, the oxygen absorption 232 

channel sensitive to mid- and lower-tropospheric temperature and surface temperature and 233 

emissivity.  It is primarily through the window channels that the AMSU-A instrument can affect 234 

the water vapor increments.  Over ocean the Channel 15 AMF pattern shows a strong 235 

resemblance to various features of climatological moisture increment pattern in Figure 1 with 236 

significant amplitude over the northern Indian Ocean / Warm Pool region, along the South 237 

Pacific Convergence Zone, and around the Gulf of Mexico and surrounding regions.  The AMF 238 

values in Channel 5 have a pattern of cooling over the NH Summer warm pool position—239 

consistent with the heating increment Hovmoeller plot in Figure 2.   240 

Over land, where the window channels are sensitive to surface emissivity variations, the 241 

signals of both channels are quite large.  In MERRA, the window channels are assimilated over 242 

land also, but only for footprints which can be classified as having a single surface type (i.e. 243 

mixed land / water or ice-covered / ice-free points are eliminated).  We suspect that because of 244 

the far denser conventional observation network over land, the increment contributions from 245 

these channels end up having much less impact on the increments ANAq and ANAH.  However 246 

as noted in the discussion of Figure 2, there is some evidence to suggest that their effects on 247 

temporal variations over land are not negligible.  248 

 249 

Confirmation of the central role AMSU-A window channels play in producing a change in 250 

the moisture increments is demonstrated in an assimilation experiment in which the window 251 

channel data are withheld from the assimilation (Figure 4).  Within two weeks of the onset of 252 
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AMSU-A data assimilation (Nov 2, 1998) the moisture increments in MERRA have led to 253 

systematically larger precipitation (~ 0.1 mm d-1) compared to the experiment in which these 254 

moisture-sensitive channels are withheld.  This result is comparable to that from an experiment 255 

in which all AMSU-A channels are withheld (not shown).    Accounting for the radiometric 256 

warming of the window channels by liquid water (after removal of likely precipitating footprints) 257 

is necessary to correctly interpret the observed radiances in terms of water vapor present.  A 258 

second experiment in which the window channels are retained but the standard bias correction 259 

for liquid water is eliminated results in an even larger forcing of precipitation than seen in 260 

MERRA.  This illustrates the importance of the liquid water correction and raises the question of 261 

whether the present correction in MERRA is sufficiently accurate.  Other possible causes of 262 

these artifacts might include differences in the way the cross-track scanning AMSU-A and the 263 

conical scanning SSMI instruments detect vertical moisture structure, or perhaps its ensuing bias 264 

correction.  A full analysis of these issues is beyond the scope of the present paper but is the 265 

subject of ongoing investigation.  Regardless of the ultimate cause, there is strong evidence here 266 

that the problem begins with non-physical moisture forcing changes leading to condensation and 267 

heating increment changes. 268 

4. Modes of variability in MERRA 269 

a. Globally-averaged time series 270 

The presence of these discontinuities in the ANAq and ANAH forcing, and their demonstrated 271 

relationship to the microwave components of the satellite observing system, naturally raises 272 

concerns regarding the ability to detect real variability in the climate system from MERRA.  In 273 

this section, we present an analysis of the major modes of variability in the vertically-integrated 274 
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MERRA water and energy budget variations in terms of global means over separate ocean and 275 

land areas (Figures 5 and 6). The water vapor increment and precipitation‡ in Figure 5 are 276 

strongly correlated over ocean and are the largest terms in the moisture balance equation.  Note 277 

that the time-mean moisture increment is small over ocean but the increment changes sign 278 

dramatically beginning in Nov1998 when N15 AMSU-A assimilation begins.  Moisture 279 

convergence and evaporation also respond in time with the increment and decrease over the 280 

oceans after AMSU-A enters the data stream in Nov1998.  Moisture transport from ocean to land 281 

thus increases at this time.  Over land the predominant balance is between increasing moisture 282 

convergence and precipitation anomalies with the increment playing a much smaller role.  The 283 

moisture increment correlates negatively with moisture convergence suggesting that over land 284 

the influence of the moisture transport from oceanic regions runs counter to the conventional 285 

observations over land.   286 

Especially prominent in the over ocean budget is an annual cycle component.  Despite the 287 

removal of a mean annual cycle over the 30-year record, Figure 5 provides evidence of non-288 

stationarity at this frequency.  These signals change phase over the 30-year period. 289 

The most prominent aspect of the enthalpy budget in Figure 6 is the negative correlation 290 

between the heating increment and precipitation over ocean.  This is consistent with the 291 

interpretation that as moisture increment forcing increases, it triggers more precipitation and so 292 

less net atmospheric heating is needed to force the model temperature to agree with the 293 

observations.  From this global perspective the stepwise increases in moisture increments appear 294 

                                                           
‡
 MST in the MERRA archived data is the net moisture source due to moist physics which is essentially precipitation 

and is negative in the moisture budget and positive in the heat budget.  Thus, the budget terms are all additive in 

the sense of contributing to positive qv and Tv tendencies. 
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to be the driving mechanism.  However, the enthalpy increment has a more complicated step-like 295 

structure than does the moisture increment and the upward precipitation steps in late 1987 and 296 

1998 are less obvious in the heating increment.  It is also possible that other factors such as inter-297 

calibration uncertainties of the MSU and AMSU temperature sounding channels may be 298 

inducing additional increment changes that complicate the signal.   299 

Like the precipitation heating, dynamical heat transport has strong variations with power at 300 

the one year time scale which results from heating increments that have changing phase and 301 

amplitude.  These are particularly dominant over land.  Note that for both moisture and heat, the 302 

increments over land are strongly anti-correlated with the dynamical transports, indicating that 303 

increment-induced precipitation heating changes over the ocean lead to circulations and 304 

transports that must be compensated over land to keep Tv and qv near observed values there.  305 

Sensible heat flux variations are small and unremarkable averaged over global domains but in the 306 

following section we will note significant regional variability.   307 

For averages taken over ocean and land areas at the global scale the trend and non-stationary 308 

annual cycle signals appear to completely dominate any physical variations that might be present 309 

on interannual and longer time scales. 310 

 311 

b. EOF Analysis 312 

For convenience as a diagnostic, we have also used principal component analysis (PCA) to 313 

extract major patterns of coherent variability in exploring the analysis increments, ANAq and 314 

ANAH.  The leading five EOF patterns and principal components (PCs) for ANAq and ANAH are 315 

presented in Figures 7 and 8 and explain roughly 30 and 40%, respectively of the monthly 316 
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variance after the climatological mean plus annual cycle are removed.  (Note that the product of 317 

the EOF and principal component time series of a given mode produce the contribution of that 318 

mode to the total anomaly signal.)  The leading EOF of the moisture increment has as its primary 319 

signal the increase in water vapor forcing over the northern Indian Ocean, tropical Pacific, and 320 

inter-American Seas. Variations in the phase and amplitude of the annual cycle dominate the 321 

second mode and relate to the pre-SSMI and AMSU-A epochs.  The third mode most clearly 322 

captures the tropical moistening and southern ocean drying as the number of SSMI sensors 323 

grows after Aug 1987, and then the near reversal of this forcing with the beginning of AMSU 324 

data.  For the enthalpy budget, the leading trend mode carries the signal of decreased (increased) 325 

heating over the Warm Pool and western Pacific (eastern Pacific) with time.  Other modes 326 

modify the linearity of this trend. 327 

 In both ANAq and ANAH, each of the modes has superimposed on it signals of evolving 328 

departures from a mean annual cycle.  These features change both phase and amplitude between 329 

the pre-SSMI and ATOVS epochs as discussed in connection with Figure 2.  These signals of 330 

non-stationarity are also present to a smaller extent in the remaining modes we have not shown.  331 

Although most of the dominant signals in both increments are found over the global oceans, 332 

there are also significant centers of action over land.  The moisture increments over land are 333 

largely confined to the southern hemisphere while heating increments are present over northern 334 

hemisphere land areas as well.  Central Africa is an area of particular interest; Bosilovich et al. 335 

(2010) have shown that strong decreases here in MERRA precipitation, evaporation and 336 

moisture convergence occur after 1995 in conjunction with a change in equipment at radiosonde 337 

station Bangui, (Station ID 64650).  They also show that GPCP precipitation gives no indication 338 

of the drop seen in MERRA precipitation.  The leading mode of ANAq (Figure 7) indicates a 339 
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change in sign from negative to positive in moisture forcing in central African as the AMSU 340 

sensors become available after 1998.  We suspect that the onset of more moisture data with the 341 

window channels may enable the analysis to partially combat the erroneous drying produced by 342 

the radiosonde instrumentation change.   343 

While PCA is able to isolate a large fraction of the variability associated with sensor changes, 344 

one cannot say that a given mode reflects a specific sensor change. It is important to remember 345 

that, by construction, the orthogonality of the successive EOFs is purely a mathematical 346 

property.   Nevertheless, the PCA diagnostics presented here highlight the discrete temporal 347 

discontinuities in the MERRA budget terms and, by virtue of their coincidence with sensor 348 

changes, illustrate the dominance of the sensor-related artifacts in explaining the total variance of 349 

the increments.  350 

c. Interannual and near-decadal signals 351 

Given that a large fraction of the interannual to decadal variability in monthly mean flux 352 

anomalies can be explained by the effects of the AMSU-A and SSMI observations entering the 353 

data stream, what are the implications for the utility of MERRA in terms of climate variability 354 

within the period analyzed?  The El Nino / Southern Oscillation phenomenon is the largest 355 

globally coherent variability signal in the climate system.  To determine whether this signal can 356 

be extracted despite the trends in the data we have regressed the monthly flux anomaly fields 357 

against an ENSO SST index.  Our base SST time series is constructed using the Extreme Least 358 

Lag methodology (Chen et al., 2008a) which varies similarly in time with Nino 3.4 SST but also 359 

accommodates both positively and negatively lagged SST anomalies over the global oceans.  The 360 

results of regressing the moisture and heat flux anomalies against the time series of this globally 361 
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averaged index, normalized by its standard deviation of 0.061 K are shown in Figure 9.  Clearly, 362 

the precipitation patterns (-MSTq or MSTH) agree closely with well-known indices of ENSO 363 

induced rainfall anomalies (Ropeleski and Halpert, 1987; Curtis and Adler, 2000).  Increased 364 

precipitation over the equatorial central and eastern Pacific with suppressed precipitation over 365 

the Maritime continent and South Pacific Convergence Zone is well captured in the reanalysis.  366 

Teleconnected precipitation anomalies over the Amazon and Indian Ocean regions are also quite 367 

realistic.  Radiative heating anomalies associated with the precipitation patterns capture the 368 

anomalous heating in the precipitation regions and the increased energy loss via OLR in the 369 

surrounding subtropics and tropical region west of the dateline.  The former is due principally to 370 

increased greenhouse effects of water vapor and clouds while the latter is due to a warmer 371 

radiating atmosphere with somewhat enhanced aridity combining to enhance OLR in anomalous 372 

subsiding regions.   Both moisture and heating dynamics terms indicate the strong role in 373 

bringing moisture to regions of anomalously large precipitation and supporting the release of 374 

potential energy through anomalous vertical overturning.  The latent heat flux exhibits a complex 375 

pattern with double maxima in the eastern tropical Pacific and broadly negative values west of 376 

the dateline and over the subtropical North Atlantic Ocean.  Both changes in wind speed and 377 

near-surface moisture anomalies act to produce this complex pattern.  Sensible heat flux 378 

anomalies are largest over land and show elevated values in the Australasia region and Amazon 379 

basin; these are areas well-known to have excessive aridity during warm ENSO events. Reduced 380 

sensible heat fluxes are found in eastern equatorial Africa associated with elevated cloudiness, 381 

precipitation and reduced solar forcing during warm ENSO events.  Additional future studies can 382 

examine these gross patterns in more detail—e.g. aspects of the lag relationships between SSTs 383 

and fluxes, the asymmetry of warm and cold events, and details of energy transformations and 384 
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transports.  Our point here is just to show that despite the pronounced trend in many of the 385 

fluxes, coherent relationships between SST variations and the regional flux patterns on the 386 

interannual scale appear to remain intact.   387 

The relatively high frequency of ENSO (2-7 years) allows effective separation of the SSTs 388 

and flux signals from the trend signal; furthermore, in the case of ENSO the signal is well 389 

known, a priori.  For lower amplitude, lower frequency variations in fluxes the problem becomes 390 

more difficult.  For example, Pacific Decadal Variability (Zhang et al., 1997; Deser et al., 2004; 391 

Chen et al., 2008b; Burgman et al., 2008) is a well-known low-frequency mode of behavior that 392 

produces systematic variations in precipitation, radiation and circulation in conjunction with 393 

broad changes in SST structure over the Pacific basin. Figure 10 shows the leading SST EOF and 394 

PC after the ENSO signals have been removed from the data during the 1979-2009 period via the 395 

method of Chen et al. (2008a).  After performing an EOF analysis on this filtered SST data, the 396 

first mode contains the bulk of the PDV signal.  There is the characteristic trend of cooler water 397 

over the eastern Pacific and the horseshoe-like increase in SST in the western subtropics of both 398 

N and S hemispheres.  Note that some signature of the Atlantic Meridional Overturning 399 

(Schlesinger and Ramankutty, 1994; Enfield et al., 2001) and the cooling induced by the Mt. 400 

Pinatubo eruption are also present.  Some of the trend in this PC is also related to the century- 401 

scale rise in SST, but overall the PDV signal dominates regional trends.  Also shown in Figure 402 

11 are GPCP and MERRA precipitation anomalies regressed onto this PC.  The GPCP 403 

precipitation pattern is very similar to that reported by Burgman et al. (2008) in an observational 404 

analysis of PDV.  The MERRA patterns bear some similarity in the large scale patterns but 405 

notable differences such as those in the Indian and central Pacific Oceans are prominent.  Clearly 406 

the non-physical long-term trend signal in MERRA gets picked up in the regression procedure.  407 
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While no thirty-year reanalysis is long enough to truly quantify decadal scale variability, low 408 

frequency variability patterns within the satellite era are distorted in MERRA by the satellite-409 

related artifacts.   410 

5. A Statistical Adjustment Methodology 411 

Is it possible to adjust the fluxes in any defensible way, so as to minimize these artifacts?  412 

One might argue that simply removing the trend modes by means of the EOF analysis would be 413 

useful, but these modes explain only a portion of the detectable sensor change signal—it is not 414 

linear.  Furthermore, additional analysis of the EOF decomposition of the fluxes (not shown) 415 

indicated that for many terms the trends are mixed with real variability (e.g. the ENSO signals).  416 

Attempting to remove these modes would damage real signals of variability.   417 

A more viable approach is to use the leading modes of ANAq and ANAH discussed above to 418 

remove the artifacts in the fluxes by linear regression, that is, projecting the flux data onto the 419 

PCs of the individual increment modes and then removing these components from the fluxes.  420 

This technique is commonly referred to as principal component regression (PCR).  Conceptually, 421 

the vertically-integrated equation for moisture or enthalpy can be written as  422 

  
�,

��
�  ∑ ./ �  01

2
/34         (4) 423 

where X is moisture or enthalpy, Fi is any one of n physical terms (e.g. surface and TOA fluxes 424 

and dynamical transports), and Ix is the moisture or enthalpy increment.  All quantities are 425 

understood to be vertically-integrated, mass weighted departures from their respective monthly-426 

resolved climatologies. 427 

We can formulate an adjusted physical budget term as  428 
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  F6
7 �  F6   ∑ 896,:

;
:34 PC:

         (5) 429 

where the 896,: are the spatial vectors of regression coefficients of the ith budget term on the PCs 430 

of the m leading increment modes.  The PCs have only temporal variability.   431 

We also formulate a modified increment,  432 

  I?
7 �  I?   ∑ @9:

;
:34 PC:        (6) 433 

which is composed of the original increment minus the sum of m modes, each of which is 434 

composed of the EOF spatial vectors Ij multiplied by their respective principal components, PCj.   435 

The adjusted budget equation now reads 436 

  
�,

��
�  ∑ ./

7 � 2
/34 01

7        (7) 437 

where the modified increment and the physical terms are now free of the leading modes that 438 

relate to the satellite artifacts.    439 

Of course, one potential drawback to this procedure is that we are subjectively declaring 440 

which subset of increment modes are affected by artifacts.  In general, we cannot expect all of 441 

the artifact-related variability to be collected into just a few modes.  It is also likely that some 442 

physical variability will project to some extent onto the modes we select, mixing with the non-443 

physical signal.  As noted earlier, removing sensor change effects from the fluxes is complicated 444 

by the fact that we also expect the analysis increments to have some sensitivity to climate 445 

variability (e.g. ENSO or other events that systematically perturb the distribution and intensity of 446 

precipitation and radiation).   447 
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The methodology outlined here is closely related to Redundancy Analysis (von Storch and 448 

Zwiers, 1999; Wang and Zwiers, 2001; Bakalian et al., 2010), a variant of several techniques 449 

widely used to find covariability between two datasets.  Like canonical correlation analysis, 450 

CCA, Redundancy Analysis (RA) finds a hierarchy of paired modes, predictors and predictands, 451 

that maximize some metric of variability.  But rather than maximizing correlation, RA 452 

maximizes the explained predictand variance and associates that with a predictor mode.  We 453 

performed the analysis with both RA and PCR methods, with virtually identical results.   454 

Based on examination of the increment EOFs and PCs we selected five PCA modes from 455 

each of the increments to define the artifact signals.  These were the first four and the seventh 456 

moisture increment modes and the first five enthalpy increment modes.  Experimenting with 457 

variations on this selection showed that the first three modes of each increment are crucial and 458 

that using more than 10 modes began to weaken the retained variance noticeably.  459 

In centering the data for the regression analysis, we must define an annual cycle and mean 460 

values.  We have opted to use the entire record from 1979 onward to define the climatology, 461 

because choosing any shorter period might not yield adequate sampling of the annual cycle.  462 

Obviously this is subjective and one could argue that the most recent period with the most robust 463 

measurements from satellite, say 2000 onward, would be a more defensible choice. Given the 464 

uncertainties associated with the AMSU-A window channel effects on the assimilation of 465 

moisture, we believe this choice will remain ambiguous until specific satellite algorithm and bias 466 

correction issues are studied more thoroughly with numerical experimentation.   467 

6. Results and Discussion 468 

a. Adjusted  time series for heat and water budget terms  469 
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Figures 11 and 12 show area-averaged anomaly time series of the corrected budget quantities 470 

over separate global ocean and land domains.  By construction the large trends in the original 471 

moisture and heating increments as well as precipitation and evaporation are now absent after 472 

applying the PCR procedure. These reductions are substantial over ocean but much smaller over 473 

land (compare to Figures 5 and 6).  Perhaps the most notable result here is that, when averaged to 474 

global domains, the remaining increments are of the same size as the leading physical terms.  475 

Furthermore, whereas the unadjusted heating and moistening increments were also strongly 476 

correlated, they now have a much weaker relationship to each other.  These remaining 477 

increments should be due largely to model physics inaccuracies interacting with time-varying 478 

flows, as well as remaining observational error.  The latter may have both random and flow-479 

dependent components.  The moisture increments and evaporation are anti-correlated, as are the 480 

heating increments and dynamical heat transport.  This is not surprising since we have removed 481 

the variability in these fluxes that correlates with the part of the increment signal induced by 482 

satellite sensor changes.  But it also suggests that when moisture is added (or subtracted) by the 483 

increments to follow the observations, it acts to decrease (or increase) the near-surface humidity 484 

deficit and alter the evaporation accordingly.  Likewise, if enthalpy increments constraining the 485 

analysis to temperature observations are positive, the dynamical response to this heating should 486 

be that heat is exported to land areas and potential energy lost to kinetic energy. The opposite 487 

argument holds for negative increments. 488 

Bosilovich et al. (2010) noted significant changes in the increments, transports and fluxes 489 

over tropical continental regions between the decades before and since the availability of 490 

AMSU-A data.  Because the changes in radiosonde moisture measurements in central Africa also 491 
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result in a local step-like change in a data stream they also project onto the low-frequency 492 

variance of the leading increment and constitute a trend that gets removed. 493 

Ideally, the next step would be to “explain” as much as possible of the remaining increments 494 

in terms of statistical corrections to the model physics terms.  This is the objective that Schubert 495 

and Chang (1996) sought in their analysis of a much more limited data sample.  We leave this 496 

type adjustment for future work, but point out here the likely direction of such adjustments.  Note 497 

that the corrected moisture increment has some anti-correlation with ENSO signals, i.e., it is 498 

subtracting (adding) moisture when SST is warm (cold), as does precipitation.  If the moisture 499 

increment is used entirely to adjust the precipitation rate (i.e. Pq
* = - (MSTq +ANAq), the 500 

resulting global mean value agrees better with GPCP precipitation in terms of interannual 501 

variability (Figure 13).  There are some remaining departures in agreement between Pq
*and 502 

GPCP such as in the mid 1990s, but here the agreement with the Hilburn and Wentz (2008) 503 

SSMI precipitation over ocean (not shown) is better, underscoring the fact that significant 504 

uncertainties remain with precipitation retrievals.   505 

b. Component Radiative Fluxes 506 

Another interesting aspect of the PCR adjustment is that, although the radiative heating term 507 

in the atmospheric heat budget, RAD, has no large global trend in the raw MERRRA data this is 508 

decidedly not so for the individual SW and LW fluxes at TOA and the surface.  Significant 509 

corrections through the PCR procedure are made to these component fluxes.  Figure 14 shows 510 

time series of these quantities before and after the correction.  Except for OLR, significant step-511 

wise trends are present in each flux component.  The strong correlation between TOA and 512 

surface SW variations is present as expected (Ramanathan, 1986; Cess etal., 1991). 513 
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Selected non-ENSO EOFs of the unadjusted MERRA radiative flux components that 514 

dominate their trend and annual cycle behavior are shown in Figure 15.  The leading SW mode 515 

corresponds to broadly increased precipitation-driven cloudiness over the warm pool region, the 516 

eastern Pacific, and the Southern Ocean.  Mode three of the TOA net SW captures a change in 517 

annual cycle phase that maximizes at higher latitudes.  The second OLR mode shows a decrease 518 

with time consistent with increasing cloudiness over the warm pool.  Surface LW increases are 519 

ubiquitous over the global oceans and the PC of the leading mode correlates well with column 520 

water vapor increases (not shown) suggesting that the onset of SSMI and eventually N15 and 521 

N16 AMSU-A moisture data have a dominant impact on surface downward LW.  It is notable 522 

that the largest surface LW signal is present over central Africa where the decreasing moisture 523 

convergence associated with the evolving rawinsonde signal in the unmodified MERRA data 524 

projects strongly and indicates the effects of lower tropospheric drying. 525 

The opposition of SW and LW fluxes and the significant correlation between SW at the 526 

surface and TOA in Figures 13 and 14 have consequences for net atmospheric radiative cooling 527 

and warming.  The increase in water vapor increments with time sustains higher water vapor in 528 

the lower troposphere which, in addition to enhancing downward LW at the surface, supports 529 

more condensation and cloudiness.  The subsequent SW reduction at the surface from the 530 

increasing cloud fraction more than offset the increase in LW there and, in fact, results in the 531 

decreasing net radiation to the surface of about 5 Wm-2.  High cold cloudiness associated with 532 

increased tropical precipitation induced by increasing water vapor increments acts to reduce 533 

OLR and offsets the increasing longwave loss to the surface.  So, the net adjustments in SW and 534 

LW brought about by the changing increments of water vapor (and temperature) are near-535 

canceling in terms of atmospheric radiative loss.  But as in the case of surface changes, the 536 
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increased TOA SW cloud reflection overcomes the OLR signal to produce a net decrease of 537 

about 5 Wm-2 in net radiation absorbed by the earth-atmosphere system which would be felt by 538 

the ocean in a coupled system.    539 

Adjustments derived from the PCR procedure are effective in identifying the step functions 540 

in the fluxes related to the SSMI and AMSU-A data stream changes (Figures 11 and 12).  Net 541 

surface and TOA fluxes now have essentially no trend.  Although the net effects of SW on the 542 

atmosphere are small even before the correction, the spurious decrease in SWnet at the surface of 543 

~ 10 Wm-2 is removed by the PCR procedure. Of course the opposing LWnet trend of about half 544 

that magnitude is also removed.  In light of the mean 13.8 Wm-2 net energy flux bias to the ocean 545 

in the 2000-2004 period noted by Bosilovich et al. (2010), the order 5 Wm-2 net ocean surface 546 

radiative flux decrease over the 30-year MERRA period could mean significant biased forcing 547 

for ocean and land models forced off line using these unadjusted fluxes.  The signals associated 548 

with ENSO events are now readily identifiable in the individual LW components with elevated 549 

(suppressed) atmospheric LW cooling to space and to the surface during warm (cold) SST 550 

events.  551 

c. Regional decadal signals  552 

 553 

With the removal of global mean trends from the fluxes there is concern that any long term 554 

climate signals may also have been removed.  The statistical nature of the PCR procedure is 555 

incapable of distinguishing a physical trend in the fluxes from that induced by one or more step-556 

like artifacts in the increments. However, this does not necessarily mean that regional trends or 557 

variability that does not project on a near-global domain is removed.  Here, we re-examine the 558 

PDV signal in MERRA to see how the PCR adjustment has affected the realism of this feature. 559 
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Figure 16 shows the regression of original and corrected precipitation, evaporation, and TOA net 560 

SW flux onto the PC.  There are striking differences between the adjusted and original quantities.  561 

In the adjusted data, there is a distinct decrease in precipitation over the equatorial western 562 

Pacific and increases in the eastern equatorial Pacific and over the western Pacific subtropics 563 

which agree well with the result using GPCP precipitation (Figure 10) and with the results of 564 

Burgman et al., (2008) who used SSMI retrievals from Remote Sensing Systems (Hilburn and 565 

Wentz, 2008).  These features are distorted in the unadjusted MERRA data.  The net radiative 566 

heating, RAD, responds to cloudiness changes and mirrors the effects of the PCR adjustments 567 

over the western Pacific, but it also indicates the substantially different response in the 568 

cloudiness in the eastern Pacific.  The unadjusted evaporation pattern is essentially the same as 569 

that for its leading EOF (not shown) whereas after the correction much of the same structure 570 

remains, but with smaller amplitude.   571 

Because the PDV SST signal used in the regression is to first order a trend, any other signal 572 

having a trend will be picked up to some extent, whether or not it is physically related to the 573 

PDV mechanism.  We see that in central Africa, the downward trend in precipitation and 574 

evaporation that is likely erroneous (Bosilovich et al., 2010) has also been greatly reduced.  This 575 

has occurred because of the temporal coherence between the analysis increment, ANAq, and the 576 

physical budget terms which oppose the increment as noted in section 4b.  It is perhaps fortuitous 577 

that AMSU-A timing of data availability and the change in rawinsonde instrumentation both 578 

induce low frequency trends components of opposite sign. 579 

Clearly the PCR procedure has resulted in significant differences.  Based on the better 580 

precipitation comparisons, it appears that the PCR adjustments enable a much clearer picture of 581 
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the low frequency behavior of fluxes during the MERRA period.  More analysis is needed to 582 

confirm the degree to which this is so.   583 

7. Conclusions 584 

Like all reanalysis efforts MERRA has to contend with an inhomogeneous observing 585 

network.  From a climate perspective, the satellite era (~ 1979 onward) arguably presents the 586 

largest challenges to assimilation efforts because of the significant but discreet advances in 587 

remote sensing of water vapor and clouds.  Here we have addressed the two most obvious 588 

observing systems epoch changes, the AMSU-A series in late 1998 and, to a lesser extent, the 589 

earlier advent of SSMI in late 1987.  More specifically, the window channels of AMSU-A have 590 

been found to produce a strong influence on MERRA water vapor increments that changes their 591 

global mean sign from negative to positive. By virtue of the moisture increment influence on net 592 

condensation (precipitation), the heating increment anomalies turn negative.  The total increment 593 

of heating (climatological mean plus anomaly) thus falls to its smallest positive magnitude 594 

during the post-1979 period. The dominant pattern of variability for the moisture increment is the 595 

stepwise increase in moisture over the tropical oceans, particularly the warm pool and inter-596 

American Seas during NH Summer.  Drying of the Southern Ocean region during the tenure of 597 

SSMI is reversed with the onset of AMSU-A data.  As tropical ocean precipitation increases in 598 

response to this additional moisture, the heating increment anomalies change from warming to 599 

cooling over the western Pacific and much of the Indian Ocean while remaining positive over 600 

land areas. 601 

We also find that aspects of the annual cycle are affected by the sensor changes.  Removing a 602 

mean annual cycle defined over the entire period leaves signals in the fluxes that still have power 603 
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at the annual time scale, indicating that a non-stationary the annual cycle has been induced by the 604 

satellite changes.   This leads to the question of what period should be regarded as the one over 605 

which the climatological mean is defined.  One would logically expect the most recent era from 606 

2000 onwards as having the most accurate data with which to constrain the GEOS-5 model.  But 607 

this choice carries the implicit assumption that the degrading effects of possible biases in the 608 

algorithm, instrument, or forward radiative transfer modeling are outweighed by the increased 609 

ability of the augmented observations to correct model physics- induced biases.  We do not 610 

believe this issue is settled, and we are currently analyzing diagnostics of the bias corrections to 611 

understand more fully the origin of the increased moisture increments from SSMI to AMSU-A.  612 

EOF analysis reveals that the increment artifacts are largely captured by approximately five 613 

modes (the first four plus the seventh in the case of the moisture budget, and the leading five for 614 

the heat budget).  Principal Component Regression was found useful in isolating and greatly 615 

reducing artifacts produced by changes of satellite sensors.  The method uses the patterns of 616 

variability contained within a subset of increment modes that capture the discontinuities in 617 

increment forcing to predict a corresponding sequence of modes in each of the flux terms.  We 618 

have shown that after the adjustments are applied, the spurious trend components related to the 619 

assimilationt of the SSMI and AMSU data are largely eliminated. Although the net radiative 620 

heating term in the enthalpy budget does not have nearly the trend amplitude compared to the 621 

precipitation term (or the forcing ANAH), the TOA and surface net SW and the surface net LW 622 

components do.  The adjustment process is effective in removing these spurious signals.  Perhaps 623 

the most encouraging evidence for the utility of this approach is present in Figure 13 where the 624 

corrected global mean precipitation anomalies were found to relate well to the variability in 625 

GPCP precipitation.  This also means that, to the extent of our confidence in global mean GPCP 626 
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values, the global area averaged time series of evaporation estimates recovered from the 627 

corrected MERRA are also more accurate.  It was also shown that simply using the raw 628 

assimilated fields from MERRA to diagnose Pacific Decadal Variability leads to distorted 629 

signals.  The patterns of precipitation covariance with the PDV SST mode obtained from the 630 

adjusted data were in much better agreement with recent diagnostics (Burgman et al., 2008) 631 

using independent satellite precipitation measurements from SSMI (Hilburn and Wentz, 2008).    632 

The PCR technique (and ultimately, any linear regression method) is not without problems as 633 

it is not possible to distinguish between trends associated with physical processes and those 634 

arising as a consequence of the step functions. The selection of those increment modes deemed 635 

to be associated with the satellite-induced artifacts is ultimately a subjective process.  As is 636 

frequently the case, individual EOFs and their PCs cannot usually be equated purely with 637 

physical modes.  Here too we cannot expect individual events where sensors change to be 638 

captured by a single mode of the increments.  Instead it takes several modes to effectively 639 

describe the collective effects of the sensor changes.  One might consider alternative strategies 640 

such as a regression of the fluxes on SST to recover the physical variability associated with 641 

climate variations.  In the case of ENSO, this is possible since the leading mode has very little 642 

trend.  In contrast, signals such as that of the PDV which dominates the global SST trend would 643 

end up retaining also the non-physical trends induced by stepwise increment changes.  While we 644 

have not attempted to quantify the error associated with the PCR procedure, a posteriori 645 

comparisons to independent observational data may provide the best assessment of how sensitive 646 

the results are to the selection of predictor modes.    647 

It is anticipated that the analysis of the MERRA fluxes and the statistical adjustments 648 

presented here will add to the utility of the MERRA data set in climate diagnostics studies.  649 
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Many types of studies using MERRA data should be largely immune to the problems of time 650 

dependent bias.  These would include, for example, compositing studies, various diagnostics on 651 

processes at the synoptic to intraseasonal scale, or any study in which the characteristic time 652 

scale is short compared to time intervals between significant sensor changes.  For studies of 653 

variability on interannual and longer time scale, the issues presented here should be considered 654 

when interpreting the results.  The degree to which our statistical adjustments can be taken a step 655 

further to partition the remaining systematic increment variability among the physical budget 656 

terms is currently under study.  The approach of Schubert and Chang (1996) provides one 657 

potential methodology.  But whether the assumptions made in that study which used 6h data over 658 

a limited region for several months can be extended to global, monthly data sets is unknown.   659 

An important complement to the adjustment strategy analysis presented here involves the use 660 

of multiple data withholding experiments to determine the contribution of each observing system 661 

change to the evolving time series of fluxes.  This avenue is actively being pursued.  Ultimately 662 

the answer to the problem of uncertainties induced via observing system changes lies both in 663 

reducing model errors, in more robust bias correction strategies and in more mature 664 

understanding of sensor retrieval algorithms that will be employed in future reanalysis efforts.  665 

These are ongoing challenges being addressedt at all institutions involved in data assimilation 666 

activities. 667 
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Figure Captions 794 

Figure 1.   Time mean (1979-2007) MERRA vertically integrated moisture (mm day-1) and   795 

heating increments (W m-2).  796 

Figure 2.   Zonal mean anomalies of moisture (mm day-1) and heating (W m-2) increments.  797 

Anomalies are departures from climatological mean seasonal cycle.  Onset times of 798 

data availability for the SSMI and AMSU-A sensors are Aug1987 and Nov1998, 799 

respectively. 800 

Figure 3.      Top: Analysis minus forecast NOAA15 AMSU-A CH15 (89 GHz, window channel) 801 

brightness temperatures (K) averaged over the period Jan1999 through Dec2002.  802 

Bottom:  Same except for  CH5 (53.6 GHz, lower-tropospheric channel).   803 

Figure 4.  Global mean precipitation time series from MERRA and two data withholding 804 

experiments starting 02 Nov 1998.  Experiment m98a withholds AMSU-A window 805 

channels (Ch 1, 2, 3 and 15) from the assimilation.  Experiment m98b keeps those 806 

channels but applies no cloud liquid water bias correction to them. 807 

 808 

Figure 5.      Global ocean and land area-average moisture budget anomalies (mm day-1).  Moist 809 

processes ≅ precipitation (green), evaporation (cyan), vertically-integrated moisture 810 

flux convergence (red) and moisture increment (black). Anomalies are departures 811 

from monthly mean climatological mean values  over the 1979-2009 period which 812 

are noted in their appropriate color. Shaded curve is Nino 3.4 SST anomaly x 0.10. 813 

 814 

Figure 6.       Same as Fig. 5 except for the virtual enthalpy budget with units Wm-2.   Time series 815 

of heating anomalies by moist processes (green), dynamics (red), radiative 816 

processes (blue), dynamical processes (red), turbulence or sensible heat flux (cyan), 817 

and analysis increment (black) are plotted with the climatological mean values also 818 

shown in their respective colors.  Shaded curve is Nino 3.4 SST anomaly x 5.0. 819 

Figure 7.    EOFs and principal components (PCs) for modes 1-4 and 7 of the vertically-820 

integrated moisture increment, ANAq.  Fractional variance explained refers to 821 

departures from the monthly varying annual mean defined by the period 1979-2009.  822 

EOFs carry the units of mm d-1 and scaling is such that the product of a PC and its 823 

EOF recover the contribution of that mode to the total increment anomaly.  824 

Figure 8.     Same as figure 7 except for modes 1-5 of the enthalpy increment ANAH.  Units of 825 

the EOFs are W m-2. 826 

Figure  9.   Regression slopes for flux terms in moisture budget (left column, units mm d-1) and 827 

enthalpy budget (right column, units W m-2) against the global skin temperature 828 

anomalies (Ts, top left) filtered to retain only ENSO-related signals.  Slopes are 829 

normalized to the SD (0.062 K) of the Ts time series. Values in parentheses are 830 

global means per SD. 831 
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Figure 10.  The leading SST PC (normalized) and EOF after the global ENSO signals have 832 

been removed.  Original MERRA and GPCP precipitation regressed against PC1 833 

with units of mm d-1. See text for details on the methodology.  834 

Figure 11.  Global ocean and land area-average moisture budget anomalies (mm day-1) after PCR 835 

removal of artifact signals.  Budget terms are:  Moist processes ≅ precipitation 836 

(green), evaporation (cyan), vertically-integrated moisture flux convergence (red) 837 

and moisture increment (black). Anomalies are departures from monthly mean 838 

climatological mean values over the 1979-2009 period which are also noted in their 839 

appropriate color. Shaded curve is Nino 3.4 SST anomaly x 0.05. 840 

 Figure 12.  Same as Figure 11 but for enthalpy budget.  Units are W m-2. Time series of heating 841 

anomalies by moist processes (green), dynamics (red), radiative processes (blue), 842 

dynamical processes (red), turbulence or sensible heat flux (cyan), and analysis 843 

increment (black) are plotted with the climatological mean values also shown in 844 

their respective colors.  Shaded curve is Nino 3.4 SST anomaly x 1.5 (over ocean) 845 

and x 5.0 (over land). 846 

Figure 13.  The quantity Pq* ≡ -1.0 x (MSTq + ANAq) averaged over the globe +/- 60o (black) 847 

compared to GPCP precipitation (dotted).  Units are mm d-1. 848 

Figure 14.  Radiative flux components (Wm-2): original (dashed) and corrected (solid).  Top: 849 

Surface  net LW (black) and net SW(red).  Middle: TOA OLR (black) and net SW 850 

(red).  Bottom: Net atmospheric cooling by LW (black) and SW (red). 851 

Figure 15.   Selected EOFs and PCs from analysis of individual component fluxes.  PCs are 852 

normalized so that EOFs carry the units of Wm-2. 853 

Figure 16.   Adjusted and original regression maps of MERRA fluxes on the PC in Figure 9:  854 

(Top) precipitation, mm d-1; (Middle) evaporation, mm d-1; (Bottom) net 855 

atmospheric radiative heating, Wm-2.   856 

  857 
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858 

 859 
 860 

Figure 1.  Time mean (1979-2007) MERRA vertically integrated moisture (mm day-1) and 861 

heating increments (W m-2). 862 

  863 
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    864 

 865 
 866 

Figure 2.  Zonal mean anomalies of moisture (mm day-1) and heating (W m-2) increments.  867 

Anomalies are departures from climatological mean seasonal cycle.  Onset times of data 868 

availability for the SSMI and AMSU-A sensors are Aug1987 and Nov1998, respectively. 869 

  870 
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 871 
Figure 3. Top: Analysis minus forecast NOAA15 AMSU-A CH15 (89 GHz, window channel) 872 

brightness temperatures (K) averaged over the period Jan1999 through Dec2002.  Bottom:  Same 873 

except for  CH5 (53.6 GHz, lower-tropospheric channel).   874 

875 
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 876 
 877 

Figure 4.  Global mean precipitation time series from MERRA and two data withholding 878 

experiments starting 02 Nov 1998.  Experiment m98a withholds AMSU-A window channels (Ch 879 

1, 2, 3 and 15) from the assimilation.  Experiment m98b keeps those channels but applies no 880 

cloud liquid water bias correction to them. 881 

  882 



45 

 

 883 

 884 
Figure 5.   Global ocean and land area-average moisture budget anomalies (mm day-1).  Moist 885 

processes ≅ precipitation (green), evaporation (cyan), vertically-integrated moisture flux 886 

convergence (red) and moisture increment (black). Anomalies are departures from monthly mean 887 

climatological mean values  over the 1979-2009 period which are noted in their appropriate 888 

color. Shaded curve is Nino 3.4 SST anomaly x 0.10. 889 

  890 



46 

 

 891 

892 
Figure 6.   Same as Fig. 5 except for the virtual enthalpy budget with units Wm-2.   Time series of 893 

heating anomalies by moist processes (green), dynamics (red), radiative processes (blue), 894 

dynamical processes (red), turbulence or sensible heat flux (cyan), and analysis increment 895 

(black) are plotted with the climatological mean values also shown in their respective colors.  896 

Shaded curve is Nino 3.4 SST anomaly x 5.0. 897 

  898 
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 899 
Figure 7.   EOFs and principal components (PCs) for modes 1-4 and 7 of the vertically-integrated 900 

moisture increment, ANAq.  Fractional variance explained refers to departures from the monthly 901 

varying annual mean defined by the period 1979-2009.  EOFs carry the units of mm d-1 and 902 

scaling is such that the product of a PC and its EOF recover the contribution of that mode to the 903 

total increment anomaly.  904 

   905 
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 906 
Figure 8.   Same as figure 7 except for modes 1-5 of the enthalpy increment ANAH.  Units of the 907 

EOFs are W m-2. 908 

 909 

 910 

 911 

  912 
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 913 
Figure  9.  Regression slopes for flux terms in moisture budget (left column, units mm d-1) and 914 

enthalpy budget (right column, units W m-2) against the global skin temperature anomalies (Ts, 915 

top left) filtered to retain only ENSO-related signals.  Slopes are normalized to the SD (0.062 K) 916 

of the Ts time series. Values in parentheses are global means per SD. 917 
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 918 
 919 

Figure 10.  The leading SST PC (normalized) and EOF after the global ENSO signals have been 920 

removed.  Original MERRA and GPCP precipitation regressed against PC1 with units of mm d-1. 921 

See text for details on the methodology.  922 

 923 

 924 
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925 
Figure 11.  Global ocean and land area-average moisture budget anomalies (mm day-1) after PCR 926 

removal of artifact signals.  Budget terms are:  Moist processes ≅ precipitation (green), 927 

evaporation (cyan), vertically-integrated moisture flux convergence (red) and moisture increment 928 

(black). Anomalies are departures from monthly mean climatological mean values over the 929 

1979-2009 period which are also noted in their appropriate color. Shaded curve is Nino 3.4 SST 930 

anomaly x 0.05. 931 

 932 

  933 
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934 
Figure 12.  Same as Figure 11 but for enthalpy budget.  Units are W m-2. Time series of heating 935 

anomalies by moist processes (green), dynamics (red), radiative processes (blue), dynamical 936 

processes (red), turbulence or sensible heat flux (cyan), and analysis increment (black) are 937 

plotted with the climatological mean values also shown in their respective colors.  Shaded curve 938 

is Nino 3.4 SST anomaly x 1.5 (over ocean) and x 5.0 (over land). 939 
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 941 
Figure 13.  The quantity Pq* ≡ -1.0 x (MSTq + ANAq) averaged over the globe +/- 60o (black) 942 

compared to GPCP precipitation (dotted).  Units are mm d-1.  943 
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 944 
Figure 14.  Radiative flux components (Wm-2): original (dashed) and corrected (solid).  Top: 945 

Surface  net LW (black) and net SW(red).  Middle: TOA OLR (black) and net SW (red). 946 

Bottom: Net atmospheric cooling by LW (black) and SW (red). 947 

  948 



 

949 
 950 

Figure 15.  Selected EOFs and PCs from analysis of individual component flu951 

normalized so that EOFs carry the units of Wm952 

55 

Figure 15.  Selected EOFs and PCs from analysis of individual component fluxes.  PCs are 
normalized so that EOFs carry the units of Wm-2.  

 

xes.  PCs are 
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 953 
 954 

Figure 16.  Adjusted and original regression maps of MERRA fluxes on the PC in Figure 9:  955 

(Top) precipitation, mm d-1; (Middle) evaporation, mm d-1; (Bottom) net atmospheric radiative 956 

heating, Wm-2.   957 


