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Abstract

This article is a theoretical basis for the software implementation of the Physical�
space Statistical Analysis System �PSAS� that is used for atmospheric data analysis at
the NASA Data Assimilation O�ce �DAO�� The PSAS implements a statistical algo�
rithm that combines irregularly spaced observations with a gridded forecast to produce
an optimal estimate of the state of the atmosphere� Starting frommodels for the forecast
and observation errors� the PSAS �version v������ uses a factored�operator formulation
for the error covariance matrices� This formulation determines how the observational
data� and their attributes� as well as the error covariance matrices are managed during
the life cycle of the algorithm	 this is the main source of software complexity of the
PSAS� This is mainly due to the diversity of data types and sources� as well as the use
of the multivariate formulation as described in the text� The coordinate systems and
data types used in the PSAS analysis are described� The PSAS univariate forecast error
covariance models are introduced� and the multivariate upper�air and sea�level coupled
height�wind and decoupled wind forecast error covariance models are derived from the
univariate height forecast error covariance models� The factorization of these multi�
variate covariance models into a product of matrices is described� Observation error
covariances used in the PSAS are brie
y discussed� Finally� we discuss the structure
of the matrices in the software implementation of the PSAS and some related software
issues�

An on�line version of this document can be obtained from

ftp���dao�gsfc�nasa�gov�pub�office�notes�on�����	v����ps�Z 
postscript�

Visit also the Data Assimilation O�ce�s Home Page at

http���dao�gsfc�nasa�gov�
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� Preface

The purpose of this article is to describe at a symbolic level the software representation
of error covariance matrices used in the Physical	space Statistical Analysis System �PSAS��
The articles describing the PSAS are as follows�

�� da Silva A� and J� Guo ����� Documentation of the Physical	Space Statistical
Analysis System �PSAS� Part I� The Conjugate Gradient Solver Version PSAS	�����
DAO O�ce Note ��	��

�� Guo J� J� W� Larson G� Gaspari A� da Silva and P� M� Lyster ���
� Documenta	
tion of the Physical	Space Statistical Analysis System �PSAS� Part II� The Factored	
Operator Formulation of Error Covariances� DAO O�ce Note ���	
�

�� Larson J� W� J� Guo G� Gaspari A� da Silva and P� M� Lyster ���
� Documenta	
tion of the Physical	Space Statistical Analysis System �PSAS� Part III� The Software
Implementation of the PSAS� DAO O�ce Note ���	��

�� da Silva A� M� Tippett and J� Guo ����� The PSAS User�s Manual� To be published
as DAO O�ce Note ���XX�

�
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� Introduction

Operational data assimilation systems and numerical weather prediction centers have re	
cently replaced older optimal interpolation �OI� systems that localize the analysis problem
by so	called global analysis systems that use all observations available at a given synoptic
time� The change to global analysis systems was driven partly by the need to improve
analyses by eliminating the e�ects of local approximation and data selection inherent in OI
systems �Cohn et al� ���
��

Global statistical analysis systems now in place at the U�S� National Centers for Envi	
ronmental Prediction �NCEP� Parrish and Derber ����� and at the European Centre for
Medium	Range Weather Forecasts �ECMWF� Courtier et al� ���
 Rabier et al� ���
 An	
dersson et al� ���
� are variational analysis schemes formulated directly in spectral �spher	
ical harmonic� space rather than in physical space like OI schemes� The Physical	space
Statistical Analysis System �PSAS� developed at the Data Assimilation O�ce �DAO� is
a global statistical analysis system formulated directly in physical space� The design ob	
jectives of the PSAS and the relationship between the PSAS OI and the aforementioned
spectral variational schemes are summarized in DAO ����� Secs� ����� and ����� cf� Cohn
et al� ���
��

For computational e�ciency spectral analysis systems rely explicitly on the assumption
that covariance matrices are diagonal in spherical harmonic space i�e� are obtained from
correlation functions that are isotropic in physical space �Cohn et al� ���
 Sec� ����� cf�
Gaspari and Cohn ���� Theorem ������ Since the PSAS models error covariances directly
in physical space �ow	dependent anisotropic covariance functions can be incorporated
into the statistical analysis� The ability to incorporate such covariances into the PSAS
should result in improvements to the analyses �Cohn et al� ���
�� In addition compactly
supported covariance functions can be incorporated in physical space �Gaspari and Cohn
������ The PSAS exploits this fact to induce sparsity in covariance matrices thereby
reducing computational complexity in the statistical analysis�

The potential to improve analyses in the PSAS through better covariance modeling is a
factor motivating many recent research e�orts and much of the operational development
at the DAO� One important goal of this article and of Larson et al� ����
� is to provide
an interface between covariance modeling theory developed for the PSAS and its practical
implementation in the PSAS software�

Covariance models arise in the PSAS in the following statistical analysis equations�

The innovation equation�
�HP fHT � R�x � wo �Hwf � ���

and

The analysis equation�
wa �wf � P fHTx� ���

where P f is an n � n forecast error covariance matrix R is a p � p observation error
covariance matrix H is a p� n matrix that maps gridded forecast vectors to observations
on an unstructured grid wo is a p�vector of observations wf is an n�vector of the gridded
forecast and wa is an analysis n�vector� The right hand side of Eqn� ��� is called the
innovation vector or the observed�minus�forecast �OMF� residual and the left hand side of
Eqn� ��� is called the analysis increment �AI�� Equation ��� is solved using a pre	conditioned
conjugate gradient �CG� algorithm �Golub and van Loan ��
� cf� da Silva and Guo ������
With the current system �n � ��� and p � ��� are the approximate values� setting up
and solving Eqn� ��� costs about half the computational e�ort in the PSAS� The remaining
e�ort is taken by the transformation in Eqn� ��� of x from observation to state space �Cohn

�
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et al� ���
�� A discussion of the computational complexity of the PSAS and the end	to	
end Goddard Earth Observing System Data Assimilation System �GEOS DAS� is given in
Lyster �������

This article is a theoretical basis for the software implementation of the PSAS that is
used for atmospheric data analysis at the DAO� Starting from models for the forecast and
observation errors �e�g� see Eqs� ���� and ����� the PSAS �version v������ uses a factored	
operator formulation for the error covariance matrices� This formulation determines how the
observational data and their attributes as well as the error covariance matrices are managed
during the life cycle of the algorithm� this is the main source of software complexity of the
PSAS� This is mainly due to the diversity of data types and sources as well as the use of
the multivariate formulation as described in the text� This article explains the algorithm
at a symbolic level� More speci�c details of the software implementation of the PSAS are
described in Larson et al� ����
��

Suppose that C is a matrix extracted from the left	hand	side of Eqn� ���� typical values
of C are P f  HP fHT � R P fHT  or R� In traditional OI systems such as GEOS	�
DAS �Pfaendtner et al� ����� C is explicitly formed elementwise as a matrix and the OI
analysis equations solved directly� In the PSAS C is represented implicitly using only the
information necessary to e�ect the transformation from a vector z to Cz� For instance at
the highest level the factored operator formulation is used to transform the n	vector x to
�HP fHT � R�x �Eqn� �� and to evaluate P fHTx in the analysis equation ����

The factored operator formulation has a number of desirable features that include�

� Because the factored	operator formulation is derived directly from the multivariate
error models it is extensible to observations such as wind speed or satellite radiance�

� Fewer �oating point operations are required to transform z to Cz when C is implicitly
represented as a factored operator instead of explicitly represented as a matrix� See
Appendix A for an example�

� Factoring an operator into a product of simpler operators aids the development of
modular software�

This article is organized as follows� Section � de�nes the data types used in the analysis and
establishes the coordinate system and notation used throughout the article� In Section � the
PSAS univariate forecast error covariance models are introduced� The multivariate upper
air coupled height	wind and decoupled wind forecast error covariance models are derived
from the univariate height forecast error covariance model� These multivariate covariance
models are then expressed in the so	called factored operator formulation� Observation error
covariances are discussed in Section �� Section � discusses the structure of the matrices in
the software implementation of the PSAS�

	 The PSAS Analysis

The PSAS v����� solves the statistical analysis equations for the same data types used in
GEOS	� DAS �Pfaendtner et al� ������ For reference these are�

� The univariate upper air water vapor mixing ratio �q� analysis�

� The multivariate sea level pressure �psl� and near surface winds �usl� vsl� analysis�

� The multivariate upper air geopotential height �h� and winds �u� v� analysis�

�



DAO O�ce Note �����	
 Version � Dated ���	�����

The univariate moisture forecast error covariance model is discussed in Sec� ���� The mul	
tivariate upper	air and sea	level forecast error covariance models are discussed in Secs� ���
and ��� of this paper�

��	 Forecast and Observational Data Attributes

The PSAS takes as input observed�minus�forecast �OMF� residuals wo�Hwf on an unstruc	
tured grid of observations �see Eqn� ���� and produces analysis increments �AI� �wa �wf �
as output on a regular grid �see Eqn� ����� The input OMF are accompanied by the following
attributes�

� The data type kt� currently from the list given above�

� The instrument class kx� e�g� rawinsonde TOVS and cloud	track winds � see da
Silva and Redder ������ and Larson et al� ����
� for a complete list�

� The latitude ��

� The longitude ��

� The pressure level in hPa�

� The sounding index ks�

This determines the location of distinct OMF�s in three	dimensional space�

��� Coordinates Used in the PSAS

Spatial locations are given in pressure coordinates ��� �� p�� The angles � and � are shown
in Figure � and p is pressure� The covariance functions we de�ne below are functions of
two points ��i� �i� pi� and ��j� �j � pj�� We often abbreviate these two points by i and j
respectively� The rest of this section establishes further basic notation used in the paper�

The unit vectors in the directions of r � and � are denoted by �er �el and �em respectively�
Note that our notation for the unit vectors �el and �em di�ers slightly from that typically
used in standard textbooks �cf� Arfken ���� p� 
��� Our notation emphasizes that �el is
a unit vector in the longitudinal direction and that �em is a unit vector in the meridional
direction�

The vectors in ��er��el��em� form a right	handed triple since

�er � �el � �em ���

�el � �em � �er� ���

�em � �er � �el� ���

The relation between the standard basis vectors �i �j and �k in Euclidean three	space and
�er �em and �el is given by�

�er � cos� cos��i� sin�cos��j� sin ��k ���

�em � � cos� sin��i� sin� sin��j� cos��k ���

�
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Figure �� The spherical coordinate system used in PSAS�

�el � � sin��i � cos��j� �
�

We de�ne the following di�erential operators�

�l ��
�

cos�

�

��
���

and

�m ��
�

��
� ����

These operators rotate the radial unit vector �er into the other unit vectors �el and �em�

�l �er � �el ����

�m �er � �em� ����

Given the right	hand triples ��eri ��eli��emi
� and ��erj ��elj ��emj

� at points i and j respectively

�
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we de�ne the polarity index between �exi and �eyj as the dot product

�xyij �� �exi � �eyj
� ����

where x and y belong to the set fr� l�mg� Since �er �el and �em are mutually orthogonal
we have that

�
xy

kk � 	xy � k � i� j� x� y � fr� l�mg ����

where 	xy is the Kronecker delta�

Abbreviate the polarity index between �eri and �erj by

�ij �� � rrij �� �eri � �erj� ����

Observe that �ij is the cosine of the angle between �eri and �erj  i�e� the great circle distance
on the unit sphere� We use the polarity index to parameterize correlations in what follows
�cf� Gaspari and Cohn ���� Sec� ��b�� The following relations hold�

�mr
ij �� �emi

� �erj � �mi
�ij ����

� lrij �� �eli � �erj � �li �ij ����

� rmij �� �eri � �emj
� �mj

�ij ��
�

� rlij �� �eri � �elj � �lj �ij ����

�mm
ij �� �emi

� �emj
� �mj

�mi
�ij ����

�ml
ij �� �emi

� �elj � �lj�mi
�ij ����

� lmij �� �eli � �emj
� �mj

�li �ij ����

� llij �� �eli � �elj � �lj�li �ij � ����

� Forecast Error Covariance Models

The terms in Eqs� ��� and ��� that involve the forecast error covariance matrices �e�g�
P f  HP fHT  or P fHT � are modeled as functions of the locations i and j� The covariance
functions that are used in the PSAS v����� restrict the horizontal dependence to �ij  i�e�
they are based on the assumption of isotropy at each pressure level �see Gaspari and Cohn
������ For example the general multi	level univariate forecast error covariance function for
the variable type z is P z��ij� pi� pj� which we often abbreviate as Pij

z � The matrices used
in the PSAS are grid evaluations of the covariance functions� For instance in the case of
point observations such as rawinsondes �cf� Sec� � below� the matrix HP fHT is formed by
evaluating the forecast error covariance function on the Cartesian product of the observation
locations� Similarly P fHT is formed by evaluating the forecast error covariance function
on the Cartesian product of the analysis and observation locations� Section � provides a
pedagogical example of how such a matrix may be formed� As stated in Section � the
implementation of the PSAS does not form a stand	alone matrix and details of this are
presented in Larson et al� ����
��

�



DAO O�ce Note �����	
 Version � Dated ���	�����


�	 Univariate Forecast Error Covariances

A general multi	level univariate forecast error covariance function is de�ned by

P z
ij ��
 zizj �� ����

where 
� represents expectation and zk is the scalar error �eld at location k � i� j� In the
PSAS �DAO ����� this covariance function is modeled as�

P z
ij � �i

zzij�j
z � ����

where �k
z �i�e� �z��k� �k� pk�� is the forecast error standard deviation in variable z at

k � i� j and zij �i�e� 
z��ij� pi� pj�� is the correlation function� In this expression and for

rest of the paper we usually do not show the arguments of the functions for notational
convenience� In the PSAS Eq� ���� pertains to the case where z is mixing ratio q height
h or sea	level pressure psl� The analysis of mixing ratio observations is univariate but the
height and sea	level pressure observations are treated with associated winds in a multivariate
analysis whose forecast error covariance formulation we now describe�


�� Multivariate Upper�air Forecast Error Covariances

The multivariate upper air analysis uses height �h� and horizontal wind �u� v� observations�
We review the following derivation of modeled coupled height	wind error and decoupled
wind errors to illustrate the ensuing discussion � see also DAO ����� Sec� �������

The upper	air �ua� forecast error covariance function is de�ned as a �� � matrix�

Pua
ij ��
 �� uai �� uaT

j �� ����

where �� uak �k � i� j� is the upper	air forecast error �eld� The error �eld is comprised of
three terms

�� uak �� �� h
k � �� �k � �� �k � k � i� j� ����

where

�� hk ��

�
��
hk
uhk
vhk

�
�� � k � i� j� ��
�

is a vector of height forecast error �hk� and height	coupled wind errors �u
h
k v

h
k�

�� �k �

�
��
�

u�k
v�k

�
�� � k � i� j� ����

and

�� �k �

�
��
�
u�k
v
�

k

�
�� � k � i� j� ����

are height	decoupled wind forecast errors associated with a scalar stream function forecast
error �eld �k and a scalar velocity potential forecast error �eld �k �see Section �������

Under the assumption that hk  �k and �k are mutually independent the cross terms in
Eq� ���� are zero and we have

P ua
ij �� Ph

ij � P�
ij � P�

ij � ����

�



DAO O�ce Note �����	
 Version � Dated ���	�����

where

Ph
ij �� 
 �� hi ��

hT
j �� ����

P�
ij �� 
 �� �i ��

�T
j �� ����

P
�
ij �� 
 ��

�
i ��

�T
j � � ����

The following two sections derive error covariance models of Eqs� ���� ���� and ���� that
are used in the software implementation of the PSAS�

����� Coupled HeightWind Forecast Error Covariances

We describe the multivariate height	wind model for the error covariances in the context of
the upper air analysis� The sea	level covariances are treated separately in Sec� ���� The
coupled wind errors are modeled in terms of the height error by assuming the following
linear relationship described in DAO ����� Sec� �������������

uhk �
g

��a
��umk

�mk
hk � �ulk�lkhk� ����

vhk �
g

��a
��vmk

�mk
hk � �vlk�lkhk� � k � i� j� ����

where g is the acceleration due to gravity � is the Earth�s rotational angular velocity a
is the Earth�s radius and the coe�cients �umk

 �ulk  �vmk
 and �vlk are tunable spatially

dependent parameters�

Substituting Eqs� ���� and ���� into Eq� ��
� gives the matrix formula

�� hk �� ��k�g
�
dkhk� k � i� j� ����

where

��k �

�
��
� � �
� �umk

�ulk
� �vmk

�vlk

�
�� � k � i� j� ��
�

�g �

�
��
� � �
� g

��a �
� � g

��a

�
�� � ����

and where
�
dk is the operator de�ned as follows�

�
dkf��k� �k� ��

�
��

f��k� �k�
�mk

f��k� �k�
�lkf��k� �k�

�
�� � k � i� j� ����

Using Eqn� ���� Ph
ij �a �� � matrix not to be confused with Eqn� ����� can be written as

Ph
ij � ��i�g

�
d i�

�
d j 
 hihj ��

T

�g��Tj � ����
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where we have taken the expectation inside the constants and the di�erential operators
and

�
d i�

�
d j 
 hihj ��

T

�

�
��


 hihj � �mj

 hihj � �lj 
 hihj �

�mi

 hihj � �mi

�mj

 hihj � �mi

�lj 
 hihj �

�li 
 hihj � �li�mj

 hihj � �li�lj 
 hihj �

�
�� �

����

Now using the same form as Eq� ���� we model the expectation as


 hihj �� �hi 
h
ij�

h
j � ����

where �hk is the forecast height error standard deviation and where 
h
ij is the forecast height

error correlation function�

By applying the product rule we obtain�

�
d i�

h
i 

h
ij � �hi

�
��

�
�mi

�li

�
�� hij � hij

�
��

�
�mi

�li

�
���hi � ����

which can be rewritten in matrix form as

�
d i�

h
i 

h
ij � ��hi

�
d i

h
ij � ����

where

��hi ��

�
��

�hi � �
�mi

�hi �hi �
�li�

h
i � �hi

�
�� � ����

Substituting Eqns� ���� and ���� in Eqn� ���� yields�

Ph
ij � ��i�g��

h
i

�

d i�
�
d j 

h
ij�

T

��hTj �g��Tj � ����

We now develop an explicit form for the correlation matrix
�

d i �
�

d j
h
ij�

T

in expression �����
First using the chain rule and identities ���	��� for the polarity index �ij  we obtain�

�
d i

h
ij �

�
��

hij
hij

�
�mr
ij

hij
�
� lrij

�
�� � ��
�

where we denote

hij
�
��

�hij
��ij

� ����

We are assuming here and in all our multivariate models that the covariance functions
are di�erentiable� Appendix B presents an illustration of how the di�erentiation may be
evaluated termwise in a Legendre series�

�



DAO O�ce Note �����	
 Version � Dated ���	�����

Substitution of Eqn� ��
� in
�
d i �

�
d j

h
ij�

T

and use of the identities in Eqns� ���	��� yields�

�
d i�

�
d j

h
ij�

T

�

�
��

hij hij
�
� rmij hij

�
� lrij

hij
�
�mr
ij hij

��
� rmij �mr

ij � hij
�
�mm
ij hij

��
� rlij �

mr
ij � hij

�
�ml
ij

hij
�
� lrij hij

��
� rmij � lrij � hij

�
� lmij hij

��
� rlij �

lr
ij � hij

�
� llij

�
�� �

����

We �nally normalize this correlation matrix by writing

�
d i�

�
d j

h
ij�

T

� �nhi �c
h
ij�n

h
j �

����

where �nhk �diag
h
�� nhk � n

h
k

i
 and

nhk ��
q

�
��
h��� pk� pk�

���
���

� k � i� j� ����

Appendix B shows that the argument of the square root is positive in the case that h is
nonconstant�

Now Eqn� ���� can be written as a factored height	wind forecast error covariance function�

Ph
ij � ��i��

h
i �c

h
ij ��

hT
j ��Tj � ����

where ��i is given by Eq� ��
� and

��hk � �g��hk �n
h
k �

�
���

�hk � �
g�mk

�h
k

��a
gnh

k
�h
k

��a �
g�lk

�h
k

��a �
gnh

k
�h
k

��a

�
��� � k � i� j� ����

The normalized correlation matrix is

�chij �

�
��

chhh chhm chhl
chmh chmm chml

chlh chlm chll

�
�� � ����

where

chhh �� hij ����

chmh �� ��mi
hij��n

h
i � hij

�
�mr
ij �nhi ����

chhm �� ��mj
hij��n

h
j � hij

�
� rmij �nhj ��
�

chlh �� ��li
h
ij��n

h
i � hij

�
� lrij �n

h
i ����

chhl �� ��lj
h
ij��n

h
j � hij

�
� rlij �n

h
j ����

chmm �� ��mi
�mj

hij��n
h
i n

h
j � �

h
ij

��
� rmij �mr

ij � hij
�
�mm
ij ��nhi n

h
j ����

chlm �� ��li�mj
hij��n

h
i n

h
j � �

h
ij

��
� rmij � lrij � hij

�
� lmij ��n

h
i n

h
j ����

chml �� ��li�mj
hij��n

h
i n

h
j � �

h
ij

��
� rlij �

mr
ij � hij

�
�ml
ij ��n

h
i n

h
j ����

chll �� ��li�lj
h
ij��n

h
i n

h
j � �

h
ij

��
� rlij �

lr
ij � hij

�
� llij��n

h
i n

h
j � ����
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By construction chhh � chmm � chll � � when i � j� Following the discussion in Appendix B
nhk is positive i�e� there is no division by zero in Eqs� ���� 	 �����

For the Optimal Interpolation algorithm of GEOS	� DAS the equivalent matrix elements of
Eq� ���� are evaluated explicitly �see Eqs� ���	��� ����	���� and ����	���� of Pfaendtner
et al� ������

P h
ij and �c

h
ij are � � � matrices of functions of ��ij� pi� pj� ��k and ��

h
k are � � � matrices of

functions of ��k� �k� pk� 
h
ij is a function of ��ij � pi� pj� and nhk is a function of pk�

For the PSAS v����� the horizontal gradients of the forecast error standard deviation are
neglected i�e� the implemented ��hk is diagonal� Also tunable parameters in ��k vary only
in the latitude and pressure coordinates�

����� Decoupled Wind Forecast Error Covariances

Following the treatment in DAO ����� Sec� ���������� the remaining terms in the forecast
error �eld Eq� ���� arise from wind errors that are decoupled from the height �eld� The
height	decoupled wind errors are formulated in terms of scalar stream function ��k� and
velocity potential ��k� error �elds as follows�

u
�

k � ��
g

��a
��mk

�k ����

v�k � �
g

��a
��lk�k ����

u�k � �
g

��a
��lk�k ����

v�k � �
g

��a
��mk

�k� k � i� j� ��
�

where �k and �k are normalized to meters �i�e� the same units as the height error �eld��

We follow closely the development after Eq� ���� and �nd considerable economy of notation�
The decoupled wind error �elds �Eqs� ���� and ����� may be written�

�� �k �� ���g
�
d k�k� ����

��
�

k �� ���g
�
d k�k � k � i� j ����

where �g is given by Eq� ����
�
dk by Eq� ���� and

�� �

�
��
� � �
� �� �
� � �

�
�� � ����

�� �

�
��
� � �
� � �
� � �

�
�� � ����

The factored decoupled wind forecast error covariance functions are found in a manner
similar to the previous section�

P
�
ij � �����i �c

�
ij��

�T
j
��T � ����

P�
ij � �����i �c

�
ij ��

�T
j ��T � ����

��
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The error covariances of the stream function and velocity potential error �elds are modeled
similar to Eq� �����


 �i�j � � ��i 
�
ij�

�
j � ����


 �i�j � � ��i 
�
ij�

�
j � ����

where ��k and ��k are the forecast error standard deviation of the stream function and the

velocity potential error �elds and where �ij and �ij are the corresponding forecast error
correlation functions�

In terms of the quantities in Eqs� ���� and ���� the matrices ���k and ��
�
k are given in the

same form as Eq� ���� with superscripts h replaced by � and � respectively� Similarly the

correlation matrices �c
�
ij and �c

�
ij have the same form as Eqs� ���� to ���� with superscripts h

replaced by � and � respectively� By construction only the lower right � � � submatrices

of P�
ij and P�

ij are nonzero�

For the PSAS v����� the horizontal gradients of the forecast error standard deviations are

neglected i�e� the implemented ���k and ��
�
k are diagonal� For this case only the lower right

�� � submatrices of �c�ij and �c
�
ij are needed �and hence implemented� in the PSAS �Larson

et al� ���
�� This will have to be modi�ed when horizontal gradients in the error standard
deviation �elds are implemented�


�� Multivariate Sea�level Forecast Error Covariances

The multivariate sea	level �sl� analysis is similar to the upper	air analysis with a coupled
sea	level pressure and sea	level wind component �cf� Sec� ������ and a decoupled sea	level
wind component that uses the same algorithm as the upper	air analysis �cf� Sec� �������

The sea	level forecast error covariance function is de�ned as a �� � matrix�

P sl
ij ��
 �� sli �� slT

j �� ����

where �� sl
k �k � i� j� is the forecast sea	level error �eld which is comprised of three terms

�� slk �� �� pk � �� �k � �� �k � k � i� j� ��
�

where

�� p
k
��

�
��

pk
upk
vpk

�
�� � k � i� j� ����

is a vector of sea	level pressure forecast error �pk� and surface	pressure coupled wind forecast

errors �upk u
p
k� and ��

�
k and �� �k are given by Eqs� ���� and �����

The sea	level covariance formulation is linked to the upper	air analysis by using the hydro	
static balance condition to relate the pressure error �eld to the height error �eld�

pk � �ghk� k � i� j� �
��

where hk is the height error �eld at the sea surface� Once again taking pk �i�e� hk� �k and
�k to be mutually independent�

P sl
ij �� P p

ij � P�
ij � P�

ij � �
��

��
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where
P p
ij ��
 �� pi ��

pT
j �� �
��

and the decoupled sea	level wind forecast error covariance functions P�
ij and P

�
ij are de�ned

in Eqs� ���� and ����� The factored operator models for P�
ij and P

�
ij are Eqs� ���� and ����

hence it is only necessary to derive the factored operator model for P p
ij �

Following Eqs� ���� and ���� and the subsequent analysis we derive the sea	level wind error
�elds in terms of the height error �eld at sea	level

upk �
g

��ak
��umk

�mk
�khk� � �ulk�lk�khk�� �
��

vpk �
g

��ak
��vmk

�mk
�khk� � �vlk�lk�khk�� � k � i� j� �
��

Continuing almost the same analysis as in Section ����� we obtain the sea	level pressure	
wind forecast error covariance model�

P p
ij � ��i��

p
i �c

h
ij ��

pT
j ��Tj � �
��

where ��k is given by Eq� ��
� �c
h
ij is given by Eqs� ���� to ���� and

��pk �

�
���

gk�
h
k � �

g�mk
��k�k

h�
��a�k

gnh
k
�h
k

��a �
g�lk

��k�hk �

��a�k
�

gnh
k
�h
k

��a

�
��� � �
��

For the PSAS v����� the horizontal gradients in Eq� �
�� are neglected i�e� the implemented
��
p

k is diagonal �cf� Sec� ������� Also the sea	level air densities k are approximated by
� � ���� kg�m	 and ��k  ��

p
k  and �c

h
ij are evaluated at the ���� hPa level�

The matrices ��k ��
h
k  ��

�
k  ��

�
k  �c

h
ij  �c

�
ij  and �c

�
ij are common to the upper air and the sea	level

analyses� In the implementation of the PSAS the actual values of the parameters that are
input to these quantities are level dependent and this is how the sea	level quantities are
di�erent from their upper	air values�


 Observation Error Covariance Models

The observation error covariance matrix R in Eq� ��� is implemented using univariate co	
variance models� There are three classes of models�

Class I� The observation errors are independent� Given observations at i and j the entry
in the observation error covariance matrix is�

Rij � �oi�oj	ij � �
��

where 	ij is the Kronecker delta and �ok for k � i� j is the observation error standard
deviation� Examples of observations that are independent include�

��
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� Surface station observations

� Cloud	track winds

� Aircraft observations�

Class II� The observation errors are vertically correlated within the same pro�le�

Rij � �oui�ouj�ou�pi� pj�	kti�ktj	kxi�kxj	ksi�ksj � �

�

where 	kti�ktj  	kxi�kxj  and 	ksi�ksj are Kronecker deltas over the data type data source
and pro�le indices respectively� The subscript u indicates that these observations are
horizontally uncorrelated� The quantity �ou�pi� pj� is the vertical correlation coe�cient�
Examples of observations in this class include�

� Rawinsonde observations

� Rocketsonde observations

� Dropwinsonde observations�

Class III� The observation errors consist of two components one of which is horizontally
uncorrelated�

Rij � �oui�ouj�ou�pi� pj�	kti�ktj	kxi�kxj � �oci�ocjoc��ij� pi� pj�	kti�ktj	kxi�kxj � �
��

where the subscript c indicates a horizontal correlation between i and j� Currently the only
observation class processed by the PSAS that uses this covariance model is TOVS satellite
heights data�

� Implementation of the PSAS

In this section we will outline the software implementation of the PSAS drawing attention
to the form of the factored matrices and commenting on the implications for computa	
tional and software complexity� The discussion will describe the matrices of the PSAS
but it should be noted that actual matrices are never formed in the PSAS rather they are
implemented in operator form as outlined in Appendix C� This is described in greater detail
in Larson et al� ����
��

��	 Decomposition of the PSAS Grids

The structure of matrices in the PSAS is dictated by the speci�c decomposition of the
observational and analysis grids within the software� We describe this decomposition in
this section�

For the PSAS v����� the innovation vectors are sorted according to the following hierarchy
of their attributes�

� region index kr

��
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� physical variable class kt

� instrument class kx

� latitude �

� longitude �

� pressure level kz

The �rst two levels of this hierarchy � sort over kr�kt � are relevant to the present discussion�
Analysis grid points are sorted over kr�kt�

Currently the region index kr for a point is based its latitude and longitude� For the
innovations the surface of the sphere is divided into 
� regions through an icosahedral
partitioning scheme with each region corresponding to a value of kr �Pfaendtner ������
Thus the error covariance matrices are each divided into ���� regions� The analysis grid
points have an equal area regional decomposition with 
� regions�

Sorting the globe into Nr regions for innovations and analysis grid points yields�

wo �

�
��

wo
�
���

wo
Nr

�
�� x �

�
��

x�
���

xNr

�
�� wa �

�
��

wa
�
���

wa
Nr

�
�� � ����

If wo�x � IRp and wa � IRn then wo
i�xi � IRpi  where

PNr
i�� pi � p and wa

i � IRni 

where
PNr

i�� ni � n� Within each of the regional vectors wo
i xi and w

a
i the elements are

sorted by kt�

��� Formulation of HP f
H

T and P f
H

T

The forecast error covariance matrix appears in the innovation equation as HP fHT  and
in the analysis equation as P fHT � The analysis equations of the PSAS are solved for
three di�erent groups of observations �relevant equation numbers from the text are given
in parenthesis��

� Mixing ratio analysis� P z
ij  z � q ����

� Sea	level pressure	wind analysis� P p
ij �
�� P

�
ij ���� P

�
ij ����

� Upper	air height	wind analysis� P h
ij ���� P

�
ij ���� P

�
ij ����

The general form for the components of HP fHT or P fHT for the multivariate sea	level
and upper	air analysis is�

P � �L LC 
T
R�

T
R� ����

where the matrices �L  L �R and  R are block	diagonal matrices and C is �in principle�
dense� These matrices are grid evaluations of the component matrices de�ned in Eqns� ����
���� ���� ���� and �
�� �i�e� from the above list�� For the case P fHT  the matrices �L
��R� and  L � R� are nkt � nkt �pkt � pkt� and C is nkt � pkt where pkt is the number
of observations depending on whether the analysis is sea	level or upper	air and nkt is the
number of analysis grid points� For the case HP fHT  the matrices �L �R  L  R and

��
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C are pkt� pkt� For the upper	air height	wind analysis the global forecast error covariance
matrix is the sum of height	wind and decoupled wind matrices of the form �����

Pua � P h � P� � P�

� �hL 
h
LC

h hT
R �hTR � ��L 

�
LC

� �T
R ��TR

� �
�
L 

�
LC

� 
�T
R �

�T
R

� ����

The � matrices are regional �kr� block	diagonal�

� �

�
������

�� 
 � � � 




� � �

� � �
���

���
� � �

� � � 


 � � � 
 �Nr

�
������
� ����

where each kr block is formed of � � � �kt�kt� sub	blocks� For the height	wind analysis
the data are sorted over type in the order �h� u� v�� With this the ith kr block of �h is�

�hi �

�
����������������������

� � � � � � � � � � � � � � �
���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���

�
�� � � �

� � � � �
� � � �

�
�� � � �um�

� � � � �ul�
� � � �

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���

�
�� � � �

� � � �umsi
�

� � � �ulsi

�
�� � � �vm�

� � � � �vl�
� � � �

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���
� � � � � � � � � �vmsi

� � � � �vlsi

�
����������������������

� ����

where si is the number of �h� u� v� members in the region i and the grid	evaluated elements
are for instance �umq � �um��q� �q� pq� see Eqs� ���� and ����� The ith kr blocks of ��

and �� are�

��
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��i �

�
����������������������
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���
� � �

� � �
� � �

� � �
� � �

� � �
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�� � � �
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� � �
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� � �
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�� � � �
� � � �
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���
� � � � � � � � � � � � � � �
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����������������������

� ����

��i �

�
����������������������

� � � � � � � � � � � � � � �
���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���

�
�� � � �

� � � � �
� �� �

�
�� � � �

� � � � �
� �� �

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���

�
�� � � �

� � � � �
� �� �

�
�� � � �

� � � � �
� �� �

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���
� � � � � � � � � � � � � � �

�
����������������������

� ����

Like � the  matrices are block diagonal�

 �

�
������

 � 
 � � � 




� � �

� � �
���

���
� � �

� � � 



 � � � 
  Nr

�
������
� ����

where for the height	wind analysis the ith kr block of  h is�

��
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 h
i �

�
����������������������

�h� � � � � � � � � � � � � � �
���

� � �
� � �

� � �
� � �

� � �
� � �

� � �
���

�
� �� �hsi �

� � � � �
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A�m�
h
�

� � � � Anh��
h
�

� � � � �
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���
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� � �
� � �

� � �
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� � �
� � �

���

�
� �� A�m�

h
si

�
� � � Anhsi�

h
si

�
� �� �

A�l�
h
�

� � � � �
� � � � Anh��

h
�

� � � �
���

� � �
� � �

� � �
� � �

� � �
� � �

� � �
���

� � � � A�l�
h
si

� � � � � � � � � Anhsi�
h
si

�
����������������������

� ��
�

and  �
i and  

�
i are the same form as  h

i with h replaced by � and � respectively and
A � g����a��

The kr blocks ��hi  �
�
i  �

�
i   

h
i   

�
i  and  

�
i � are themselves sparse� This matrix repre	

sentation should not be confused with the software implementation which only loops over
non	zero elements�

The block matrix C is dense�

C �

�
�������

C��� C��� � � � C��Nr�� C��Nr

C��� C��� � � � C��Nr�� C��Nr

���
���

� � �
���

���
CNr���� CNr���� � � � CNr���Nr�� CNr���Nr

CNr�� CNr�� � � � CNr�Nr�� CNr�Nr

�
�������
� ����

where the ith � jth kr�kr block of Ch is�

Ch
ij �

�
�����������������������

Ch
h�h� � � � Ch

h�hsj
Ch
h�m� � � � Ch

h�msj
Ch
h�l� � � � Ch

h�lsj
���

� � �
� � �

� � �
� � �

� � �
� � �

� � �
���

Ch
hsih�
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hsihsj

Ch
hsim�

� � � Ch
hsimsj

Ch
hsil�

� � � Ch
hsilsj

Ch
m�h�

� � � Ch
m�hsj

Ch
m�m�

� � � Ch
m�msj

Ch
m�l�

� � � Ch
m�lsj

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���

Ch
msih�

� � � Ch
msihsj

Ch
msim�

� � � Ch
msimsj

Ch
msil�

� � � Ch
msilsj

Ch
l�h�

� � � Ch
l�hsj

Ch
l�m�

� � � Ch
l�msj

Ch
l�l�

� � � Ch
l�lsj

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

���
Ch
lsih�

� � � Ch
lsihsj

Ch
lsim� � � � Ch

lsimsj
Ch
lsil�

� � � Ch
lsilsj

�
�����������������������

� �����

where the grid	evaluated elements are for instance Ch
hqhr � chhh��qr� pq� pr� see Eqs� ����	

����� The matrix blocks C�
ij and C�

ij are the same form as Ch
ij with h replaced by � and �

�
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respectively�

The global sea	level forecast error covariance matrix is similar to the height	wind except
the data are sorted over type in the order �psl� usl� vsl��

By using appropriately scaled compactly	supported correlation functions �Gaspari and Cohn
����� blocks associated with regions separated by more than ���� km may be taken to
be zero �DAO ������ This introduces a coarse	grained sparsity into C that reduces the
computational complexity�

The univariate global mixing ratio forecast error covariance matrix is a trivial software im	
plementation of ���� illustrating that the traditional decomposition of a covariance function
into a product of standard deviation terms and a correlation function is the simplest form
of the factored operator approach�

P q �  q
LC

q qT
R � �����

In the PSAS the horizontally correlated part of the observation error covariance matrix R
�Eq� 
�� is treated the same as the univariate forecast error matrix software implementa	
tion� Independent observations �Class I� contribute only diagonal matrix elements while
observations with vertically correlated pro�les in Class II and III contribute matrix elements
that are derived from vertical correlation coe�cients�

Section ��� discusses the modi�cation to the above matrices for the case where observations
do not occur in triplets �h� u� v��

Two key consequences of sorting by kr�kt are�

� Sorting by kr enables coarse	grained sparsity to be applied to the correlation matrices
Ch���� using the ���� km cuto� which reduces the computational complexity�

� Sorting by kt within each region generates kt�kt sub	blocks whose software imple	
mentations use homogeneous data types thus enabling modular software �Larson et
al� ���
��

��� Dealing with Missing Data in Multivariate Observations

The height	wind and sea	level pressure	wind forecast error covariance models derived in
Section � and further discussed in Sections ��� and ��� assumed no missing data in the
triplets �h� u� v� and �psl� usl� vsl��

For the upper	air height	wind analysis let the bullet symbol ��� represent a missing obser	
vation� For a given point all the possible combinations of missing observations are�

h missing �

�
��
�
u

v

�
�� �����

u missing �

�
��
h
�
v

�
�� �����

v missing �

�
��
h
u

�

�
�� �����

��
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h� u missing �

�
��
�
�
v

�
�� �����

h� v missing �

�
��
�
u
�

�
�� �����

u� v missing �

�
��
h

�
�

�
�� � �����

For the PSAS v����� only cases ����� and ����� are implemented� the listing of the other
cases is for completeness�

Consider the contribution of P h
ij  Eq� ���� in the innovation equation ���� Blocks ��i and ��

h
i 

are a�ected only by missing observations at point i and the blocks ��j and ��
h
j  are a�ected

only by missing observations at point j� Table � summarizes the structure of the matrix
block ��i for the missing observation cases de�ned in ����	�����

A missing observation in the triple �h� u� v� at i or j corresponds to removal of the cor	
responding row or column respectively in �chij � A summary of the dimensions of �chij for
various combinations of missing observations is presented in Table �� Once again note that
the majority of the cases listed in this table are not implemented and are presented for
completeness�

� Discussion

This document describes the theoretical basis for the software implementation of the PSAS
v������ The software is used in the production GEOS DAS algorithm at the DAO� Versions
of PSAS under development include� forward observation operators advanced covariance
models advanced Fortran �� features and the ability to run on parallel distributed	memory
computers using the Message Passing Interface �MPI��

��
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Table �� E�ect of Missing Observations on the Matrix Block ��i�

Case ��i Dimensions Implemented!

huv

y

�
��
� � �
� �umi

�uli
� �vmi

�vli

�
�� �� � Yes

�uv

�
��
� � �
� �umi

�uli
� �vmi

�vli

�
�� �� � Yes

h � v

�
��
� � �
� � �
� � �vli

�
�� �� � No

hu�

�
��
� � �
� �umi

�
� � �

�
�� �� � No

� � v

�
��
� � �
� � �
� � �vli

�
�� �� � No

h � �

�
��
� � �
� � �
� � �

�
�� �� � Yes

�u�

�
��
� � �
� �umi

�
� � �

�
�� �� � No

��
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Table �� Dimensions of the Error Correlation Matrix Block �chij

huv �uv h � v hu� � � v h � � �u�

huv �� � �� � �� � �� � �� � �� � �� �

�uv �� � �� � �� � �� � �� � �� � �� �

h � v �� � �� � �� � �� � �� � �� � �� �

hu� �� � �� � �� � �� � �� � �� � �� �

� � v �� � �� � �� � �� � �� � �� � �� �

h � � �� � �� � �� � �� � �� � �� � �� �

�u� �� � �� � �� � �� � �� � �� � �� �

��
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Appendix A Comparison of Computational Complexity of the

Operator Approach versus Explicit Matrix Evaluation

To illustrate the di�erence between the computational complexity of the operator approach
versus explicit evaluation of the matrix we will consider a simple univariate example� Con	
sider the case of evaluating Px where P �  C T  where C is a dense p � p correlation
matrix and  � diag"��� ��� ���� �p#� Assume that the elements of C are precalculated�
Evaluating the �

�p�p� �� nonredundant elements of P directly takes p�p� �� �oating point

multiplies �i�e� Pij � �iCij�j�� It takes �p
� �ops �counting � and � each as a �op� to

evaluate Px for a total of �p� � p �ops� In contrast evaluating  Tx then C� Tx� then
 �C Tx� takes p �p� and p �ops respectively for a total of �p���p �ops� For this example
the operator approach saves approximately p� �ops�

Appendix B Di�erentiating a Correlation Function

Each di�erentiable function hij that represents a correlation function on the globe can be
expanded into a Legendre series�

hij �� hij��ij � pi� pj� �
�X

m�


am�pi� pj�Pm��ij�� �ij � "��� �# ���
�

where Pm is the m�th Legendre polynomial� If k �� i � j then am�pk� pk� � � for each m
and

�X
m�


am�pk� pk� � � �����

�cf� Gaspari and Cohn ���� Theorem ������ Termwise di�erentiation of Eqn� ���
� yields�

hij
�
��

�X
m�


am�pi� pj�Pm
���ij�� �ij � "��� �#� �����

Note that since Pm
���� � � and am�pk� pk� � � for each positive integerm we have 

h
kk

�
��� �

�� Since hij is nonconstant Eqn� ����� the fact that am�pk� pk� � � for each positive integer

m implies that al�pk� pk� � � for some l � �� Since Pl
���� � � and al�pk� pk� � � it follows

that hkk
�
� ��

Appendix C Applications of the Factored�Operator Formula�

tion in the Solver and the Analysis Equation

The innovation equation ��� is solved using a preconditioned conjugate gradient �PCG�
method �da Silva and Guo ���� Cohn et al� ���
�� Each step of the PCG solvers and CG
preconditioners evaluate matrix	vector products of the form �HP fHT �R�x� The analysis
equation ��� evaluates P fHTx� Following the discussion in Section � factored	operator

��
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expressions for HP fHT or P fHT for the three analyses of the PSAS v����� may be sum	
marized�

Upper�Air Height�Wind Analysis�

Pua � �hL 
h
LC

h hT
R �hTR � ��L 

�
LC

� �T
R ��TR

� ��L 
�
LC

� �T
R ��TR

� �����

Sea�Level Pressure�Wind Analysis�

P sl � �pL 
p
LC

p pT
R �

pT
R � ��L 

�
LC

� �T
R ��TR

� ��L 
�
LC

� �T
R ��TR

� �����

Upper�Air Mixing Ratio Analysis�

P q �  q
LC

q qT
R

� �����

The observation error covariance is of the form

R � Ru �Rc

�  o
uC

o
u 

oT
u �  o

cC
o
c 

oT
c

� �����

For each of the analyses of PSAS the quantity �L LC T
R�

T
Rx is evaluated in the following

steps each of which corresponds to a di�erent subroutine�

xa � �TRx
xb �  T

Rx
a

xc � Cxb

xd �  Lx
c

xe � �Lx
d�

�����

The operations P qx �moisture analysis� and Rcx are similar to Eq� ����� but take three
stages�

The solver for the innovation equation has three levels of preconditioners as follows�

� The regional preconditioner uses only the regional diagonal blocks of the correlation
matrices C�

� The regional	univariate preconditioner uses only the regional	univariate blocks of C�

� The sounding	diagonal preconditioner performs a direct Cholesky solve using sounding	
diagonal blocks of C�

For the innovation equation the left and right matrices �L�R and  L�R are constructed from
parameters evaluated at observation locations and the correlation matrices C are evaluated
on the Cartesian product of the observation locations� For the analysis equation the matri	
ces �L and  L are constructed from parameters evaluated at analysis grid locations while
�R and  R are constructed from parameters evaluated at observation locations� The cor	
relation matrices C are evaluated on the Cartesian product of the analysis and observation
locations�

��
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