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Abstract

This document describes the climate of version 1 of the NASA-NCAR model devel-

oped at the Data Assimilation Office (DAO). The model consists of a new finite-volume

dynamical core and an implementation of the NCAR climate community model (CCM-
3) physical parameterizations. The version of the model examined here was integrated

at a resolution of 20 latitude by 2.50 longitude longitude and 32 levels. The results

are based on a simulation that was forced with observed sea surface temperature and

sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and
various other observational data sets. The results include an assessment of seasonal

means, subseasonal transients including the Madden Julian Oscillation, and interan-

nual variability. The quantities include the zonal and meridional winds, temperature,

specific humidity, geopotential height, stream function, velocity potential, precipitaion,

sea level pressure, and cloud radiative forcing.
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1 Introduction

The NASA-NCAR GCM is part of the next generation Data Assimilation System (DAS)

currently being developed within the Data Assimilation Office (DAO) of the Goddard LaboJ

ratory for Atmospheres. It is the follow-on to the GEOS GCM development - see the DAO's

Algorithm Theoretical Basis Document (DAO 1996) for a description of the GEOS-2 DAS.

The main characteristics of this new model-analysis system are described in da Silva and

Lin (2001).

The NASA-NCAR GCM is being developed jointly by the DAO and the Climate and Global

Dynamics Division (CGDD) at NCAR. The model is based on the finite-volume dynamical

core developed at the DAO (Lin and Rood 1996, Lin and Rood 1997, Lin 1997, Lin and

Rood 1998), with physical parameterizations from the NCAR CCM (Kiehl et al. 1996).
The main features of the model are summarized in the next section.

This document describes the climate of the initial version of this model (internal version

number 1.1.2d) consisting of the finite-volume dynamical core and an implementation of

version three of the NCAR climate community model (CCM-3) physical parameterizations.

The model was integrated at a resolution of 2 ° latitude by 2.5 ° longitude and 32 levels. The

results are based on a single simulation for the period 1979-1995 forced with observed sea

surface temperature and sea ice (Reynolds and Smith 1994). All output from the simulation

was saved every 6 hours as instantaneous fields. All quantities presented here are based on

daily mean values (the average of the four times daily values).

1.1 The NASA-NCAR Model

The finite-volume dynamical core has a horizontal discretization builtupon the Flux- Form

Semi-Lagrangian (FFSL) transport algorithms (Lin and Rood 1996; Lin and Rood 1997).

The vertical structure is based on the Lagrangian control-volume concept of Lin (1997) and

Lin and Rood (1998). This physically based dynamical core allows circumventing many

of the problems associated with sigma, pressure, or isentropic coordinates, increasing the

physical integrity and computational efficiency of the model. The novel attributes of the

dynamical core can be summarized as follows:

Terrain-following Lagrangian control-volume vertical coordinate with a monotonicity-

preserving and mass-, momentum-, and total energy-conserving mapping algorithm
to the "fixed" Eulerian reference coordinate.

Two-dimensional conservative flux-form semi-Lagrangian transport between two bound-

ing "horizontal" Lagrangian surfaces that define the finite control-volume.

Accurate representation of the terrain. Accurate and physically consistent finite-

volume integration of pressure gradient force for the terrain-following Lagrangian
control-volume.



• Highlyadaptableandcomputationallyefficientalgorithmdesignfor vectoror RISC-
basedparallelcomputers.

The vertical coordinateconsistsof a hybrid sigma-pressurecoordinate.The approximate
pressurelevelsof themodelusedherearegivenin Table1. Wenotethat, whilethis version
of themodelhas32levels,morerecentversionsof themodelhaveadditionallevelsto better
resolvethe stratosphere.

Table1: Approximatepressurelevelsof the32-layermodel

mb_-] mb
1 0.7000 2 1.5000
5] 8.1500 6 12.5500
9 32.9000 10 41.0750

13 72.2925 14 85.4390
17 139.1150 18 163.6615
21 266.4789 22 313.4988

25 510.4555 26 600.5238

29 867.1572 30 929.6455

_-_ mb _ mb

3 2.8500 4 5.0000

7 18.3500 8 25.3000

1t 50.i000 12 60.5613

15 100.5145 16 118.2502

19 192.5410 20 226.5135

23 368.8161 24 433.8927

27 696.7930 28 787.7000

31 970.5525 32 992.5550

The NCAR physical parameterizations represent a set of processes with a long history of

development and documentation (Kiehl et al., 1996 for CCM3, Hack et al., 1993 for CCM2).

The components of the CCM3 physics that are implemented in the initial version of the

NASA/NCAR model consist of the following:

• Moist physics: M

- deep convection (Zhang and McFarlane 1995) with updrafts and downdrafts

- mid and shallow convection (Hack 1998)

- large-scale condensation (Sundqvist 1988)

- rain evaporation

• Radiation and clouds: R

- Kiehl et al. 1994;1996

- long wave computation includes CO2,O3,CH4,N20,H20,CFCll,CFC12

- short wave computation includes a background aerosol (0.14 optical depth)

- diagnostic clouds are a generalization of Slingo (1987)

• Land and Ocean surface: S

- Land Surface model (Bonan i996)
±: :: :

- Prescribed sea surface temperature

2



• PlanetaryBoundaryLayer:T

- first orderclosurescheme

- localandnon-localtransport(ttoltslagandBoville1992)

• Gravity wavedrag:W

- McFarlane1987

In the current setupof the model the dynamicsand the physicalparameterizationsare
operator-splitasfollows:

Wn+ 1 -_ W(T(S(R(M(D(wn)))))) (1)

where w represents the prognostic variables (the state vector), D the finite-volume dy-

namical core, M the moist physics packages (cumulus convection with both updrafts and

downdrafts, mid and shallow convection, and the large-scale condensation and rain re-

evaporation), R the cloud and radiation packages (diagnostic clouds; short and long wave

radiation schemes), oc the surface models (prescribed sea-ice and SST; the land surface

model), T the PBL mixing/turbulence parameterization, and W is the gravity wave drag

parameterization. The model is effectively two-time-level with each operator (from D to W

in alphabetic order) performing instant "adjustments" to the state vector w.

The next generation of CCM parameterizations (CCM4) will include prognostic cloud wa-

ter, a revised radiation scheme, a new moist convection scheme, and the common land

model (CLM). In addition, to allow higher vertical resolution, an improved cloud overlap

specification scheme will be incorporated.

1.2 Verification Data

The upper air prognostic fields and their statistics are compared with the NCEP/NCAR

reanalysis (Kalnay et al. 1995) averaged for the same period as the model simulation.

The precipitation fields are compared with the combined gauge and satellite estimates of

Xie and Arkin (1997).

Outgoing long-wave radiation (OLR) is compared with the satellite estimates from the Na-

tional Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite,
Data and Information Service. The OLR estimates have been computed for June 1974 to

the present (Gruber and Kruger 1984) based on theoretical and empirical relationships be-

tween total flux and the 11 #m window radiance measurements. The measurements are

from the scanning radiomenter in the NOAA 2-5 advanced very high radiation radiometer

(AVHRR) instrument on TIROS-N and NOAA 6-10.

Cloud forcing is compared with estimates from the Earth Radiation Budget Experiment

(ERBS) based on measurements from the ERBS, NOAA 9 and NOAA 10 satellites between



November1984andFebruary1990.Welimit our comparsionto theyears1985-1989.More
informationonERBE maybeobtainedfrom
(http:/ /asd-www.larc.nasa.gov/erbe/ ASDerbe.html).

Estimates of total precipitable water (TPW) are those generated by Wentz (1992) from the

Special Sensor Microwave Imager (SSM/I) measurements. The radiative transfer algorithm

uses three channels of microwave measurements (22V, 37V, 37H) and a model that accounts

for absorption and emission in the atmosphere. The model uses a surface emissivity value

over oceans appropriate for a wind roughened sea surface. The model does not account for

scattering by raindrops or by frozen hydrometers and is, therefore inaccurate for high rain

rates. No calculation is done over land or sea ice, because of the complexity of the surface

emissivity. These data are available starting in June 1987.

2 Results

In the following we present some selected results from the 17-year model simulation and

compare them with observations and NCEP/NCAR analysis data. The discussion is meant
to serve as a baseline evaluation of this version of the model, and to highlight those aspects

of the simulation that require improvement. For some quantities, our verification data cover

only a subset of the 17 years. In that case, the comparison with the model simulation is

restricted to only those years. This is noted in the Figures.

The first section presents the seasonal mean fields, both as global maps and zonal means.

The seasons are defined by the calendar months December-January-February (DJF), March-

April-_.'lay (MAM), June-July-August (JJA), and September-October-November (SON).

The quantities consist of the zonal wind, eddy (deviations from the zonal mean) height,

eddy stream function, velocity potential, sea level pressure, precipitation, surface temper-

ature, short- and long- wave cloud forcing, total precipitable water, and outgoing long
wave radiation. The next section shows the interannual variability of the seasonal mean

fields, including the 50rob, 200mb, and 850rob zonal wind, the 300rob height, 200rob stream

function, 200rob velocity potential, sea level pressure, and precipitation. The subsequent

sections deal with variability on sub-seasonal time scales, including all sub-monthly, 2.5-6

day, and 10-30 day time scales. The quantities include, the height field, kinetic energy, and
northward momentum and heat fluxes. The last section of the results examines tropical

variability with time scales of 20-90 days. The analysis includes a complex empirical or-

thogonal function decomposition and a wavelet decomposition to help assess the ability of

the model to represent the Madden-Julian Oscillation (Madden and Julian 1972).

2.1 Seasonal Means

Overall the model does a good job in capturing the seasonal cycle of the zonal mean zonal

and meridional wind fields (Figures 1-6). The model does show some tendency to produce

too strong westerlies in the Southern Hemisphere and too strong tropical easterlies during

all seasons. The seasonal cycle of the zonal mean temperature and humidity (Figures 7-12)

is also generally reasonable, though the polar regions (especially the southern hemisphere)

4



aregenerallytoocold betweenabout400and 100rob.Themodelis consistentlydrier than
the reanalysisin theboundarylayer,andwetterthan thereanalysisin thetropicsabovethe
boundarylayer. It shouldbenotedthat for thereana]ysisdata,thequalityofboth thezonal
meanmeridiona]windandthespecifichumidityis suspectsincethesearehighlydependent
on the modelusedin the assimilationsystem,and thereforeimpactedby modelbias.The
maindifferencebetweenreanalysisandthesimulatedmassstreamfunction (Figures13-15)
is the tendencyfor the modelto havea strongerlowerand mid troposphericcirculation.

The zonal wind is well simulated at both 50rob (Figures 16-17) and 200rob (Figures 18-

19). At 200mb during DJF, the main deficiencies are a somewhat too strong westerly

saddle in the eastern tropical Pacific, and a North American jet that is too strong. During

the transition seasons, the east Asian jet is retracted compared with the reanalysis. Ill

the Southern Hemisphere, the stronger zonal mean westerlies mentioned earlier, manifest

themselves at 200rob as a more zonally elongated jet in the South Pacific, compared with the

reanalysis, especially during JJA and SON when it extends eastward across South America.

At 850rob (Figures 20-21) the Southern Hemisphere westerlies are generally too strong,

and the east Asian westerly summer monsoon flow does not extend far enough to the east

across Indo-China. Over the Pacific, the tropical easterlies tend to be too strong during all

seasons.

The model produces realistic stationary wave patterns during DJF and MAM (Figures 22-

23), though the amplitude of the east Asian trough tends to be somewhat weaker than in

the reanalysis. During JJA the high latitude wave one pattern is stronger than that in the

reanalysis. The 200rob eddy stream function (Figures 24-25) is generally well simulated.

The main difference from the reanalysis is the tendency for the model to produce weaker

anticyclones in the eastern hemispheres northern subtropics.

While the model generally reproduces the main features of the velocity potential field (Fig-

ures 26-27), the minimum over the Indonesia and the western tropical Pacific during JJA is

much too weak compared with the reanalysis. This would suggest a weak east Asian mon-

soon, and is consistent with the retracted low level monsoon westerlies mentioned earlier.

This problem is also evident during SON.

The simulation reproduces tile basic seasonal evolution of tile sea level pressure (Figures

28-29). During DJF the Aleution low is, however, somewhat weak and shifted to the west.

Also, the North Pacific and North Atlantic anticyclones during JJA tend to be too strong.

In the Southern Hemisphere, the climatological high pressure belt near 30 ° is somewhat too

zonal and has maximum pressures higher than those found in the reanalysis.

The simulated and observed precipitation (Xie and Arkin 1997) are shown in Figures 30 and

31, respectively. During DJF the simulated precipitation over the Indian Ocean and western

Pacific tends to lie north of the equator, while the observed maximum precipitation tends

to lie south of the equator. The model also appears to have excessive precipitation over

the Andes Mountains between the equator and 30°S during DJF. During JJA the model

has insufficent precipitation over Indochina, and much of the Pacific warm pool region,

consistent with the weaker velocity potential field noted earlier (this problem continues into

the next season, SON). Also, the heaviest east Asian monsoon precipitation extends too

far north across eastern China. During MAM the model produces a somewhat exaggerated
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split in the Pacific InterTropical Convergence Zone (ITCZ).

The overall distribution and seasonal evolution of the simulated shortwave cloud radiative

forcing is quite realistic (Figures 32-33). The model appears to capture the short wave

cloud forcing associated with the west coast marine stratus clouds. Some of the main

regional deficiences include insufficient DJF cloud forcing in the South Pacific Convergence

Zone, a weak Pacific ITCZ during MAM, and too much shortwave cloud forcing over the

subtropical anticyclones. The model longwave cloud forcing distribution is also quite good

(Figures 34-35). Tile main deficiencies are the weak cloud forcing over the Pacific warm

pool, and excessive cloud forcing over the western Indian Ocean during JJA. Similar results

are obtained from a comparison of the simulated and observed outgoing longwave radiation

(OLR) in Figures 36-37.

Figures 38-39 compare the simulated total precipitable water (TPW) against SSM/I for

July 1987 through January 1992. The model tends to be dry throughout much of the

tropics. The unrealistic split in the Pacific ITCZ during MAM mentioned earlier for the

precipitation is also evident in the TPW field.

2.2 Interannual Variability of Seasonal Means

In this section we present the global distribution of the interannual variability of selected

seasonal mean fields. At each grid point the unbiased estimate of the variance of a quantity

x is computed as

N

8]A= 1/(N- 1) (2)
i=1

where x is the mean over the N years.

Figures ,10-41 show the interannual standard deviation (s) in the 50rob zonal wind. Ttle

model shows no evidence of the relatively large tropical interannual variability evident in

the reanalysis during all seasons. At 200mb (Figures 42-43) the model produces realistic

DJF variability over the Pacific Ocean, though the region of maximum variability over the

North Pacific is displaced somewhat to the north and west of the reanalysis values. Also

for DJF, the model produces excessive variability over the eastern United States and the

Gulf of Mexico. During JJA, the model produces greater than observed variability over the

tropical eastern Pacific and Atlantic Oceans. At 850rob (Figures 44-45), tile model produces

excessive JJA zonal wind variance over the Indian Ocean, and unrealistically large variance

over and just west of central America. : :

The comparison of the 300rob height standard deviation (Figures ,16-47), indicates that the

model produces a reasonable spatial distribution and seasonal evolution of the variance.

The main discrepancy with the reanalysis data is the larger variance over the North Pacific,

North America and the North Atlantic regions during DJF. Similar results are obtained from

the comparison of the standard deviation of the 200rob streamfunction (Figures 48-49).



Theinterannualstandarddeviationof the velocitypotentialisshownin Figures50and51,
for the modeland reanalysis,respectively.The modelhasmuchlargervariancethan the
reanalysisoverthe easternPacificandwesternIndianOceanduringJJA and SON.Also,
the reanalysisshowsvariancemaximaover IndonesiaduringDJF, MAM and SON,that
aretoo weakin the model.The OLR variancefields(Figures52-53)showthat the model
tendsto producetoo muchvariabilitythroughoutthe tropics,duringall seasons.

Figures54-55comparethesimulatedandobservedinterannualstandarddeviationin precip-
itation. Thegeneralpatternof highvariabilityin the tropicsis reasonablywell reproduced
by the model. DuringDJF and MAM the model,however,tendsto extendthe regionof
hightropicalPacificvariability toofar east.Also,duringJJA themodelproducesexcessive
variabilityin the IndianOceansouthof the equator,whilethereis too little variability over
the Pacificwarm pool.

Figures56-57 show the simulated and observed interannual standard deviation in sea level

pressure. The basic regions of high variability are well simulated by the model. There is

some tendency to produce too much variability over the North Pacific and North Atlantic

during DJF.

2.3 Intra-monthly Variability

In this section we focus on sub-monthly variability. We begin by examining the total

variability with time scales less than one month (but greater than 1 day). The subsequent
subsection isolates the contributions to the sub-monthly variability coming from time scales

between 2.5 and 6 days, and time scales between 10 and 30 days. These frequencies are

isolated by applying band-pass digital filters similar to those of Blackmon (1976) to the

daily data (see also Schubert 1986).

2.3.1 Total

The total sub-monthly variability is computed for each season as

where

S2SM = 1/N _ 1/3 s2(j ,
i=l j=l ] i

(3)

M

s2(j) = 1/(M - 1) _-_(xk(j) - g(j))2.
k=l

(4)

Here xk(j) is the kth daily mean value for month j, g(j) is an average of x for month j, M

is the number of days in the month, and the subscript i indicates a sum over the N years.

The sum over j in (3) is computed for the 3 calendar months of each season.



ZonalMeans

Thezonalmeansubmonthlyvariability in the heightfield is quite good(compareFigures
58-59). The simulatedzonalmeantransientkinetic energy(Figures60-61)is alsoquite
good. The main differencefrom the reanalysisis a generaltendencyto underestimate
the maximain the northernhemisphere.The zonalmeannorthwardzonal momentum
transport (Figures62-63)is alsowell simulated,thoughthe modeltendsto overestimate
the peakvaluesin both hemispheres.The model reproducesthe reanalysiszonalmean
northwardsensibleheat transportquite well (Figures64-65).

GlobalDistribution

Thespatialdistributionof thesubmonthlyvariabilityin the300mbheightfieldiswell repro-
ducedbythemodel(Figures66-67).Themodelalsoproducesagoodoveralldistributionof
the 200robsub-monthlykineticenergy(KE, Figures68-69).ThesimulatedKE is, however,
somewhatweakoverthe northernmiddlelatitude oceansand the regionof maximumKE
overAustraliaandthe westernSouthPacificisplacedtoo far to theeastduring thecolder
seasons.Themodelproducesa goodoveralldistributionof thenorthwardzonalmomentum
transportat 200mb(Figures70-71).Themaindifferencefrom the reanalysisis a tendency
for too strongtransportsfromthe sub-monthlytransientsthroughoutthe middlelatitudes
of both hemispheres(seealsothe zonal meansin previoussubsection).The northward
sensibleheatflux at 850mbdueto tile sub-monthlytransients(Figures72-73)is alsogood.
Oneexceptionis the poorlydefinedsignatureof the NorthPacificstormtrack duringJJA
andSON.

2.3.2 Filtered Fields

In thissectionwetakea brieflook at someband-passstatistics.In this case,the variances
arecomputedasdefinein (3), however,the daily fieldsarefirst filteredto retainonly time
scalesbetweeneither 2.5to 6days,or 10-30daysasdescribedabove.

Figures74-75togetherwith Figures82-83showthat tile modeldoesagoodjob of partition-
ing ttle 300mbheightvariability betweensynoptic(2.5-6days)and low frequency(10-30
days)variability. Onediscrepancyis that duringDJF the modelunderestimatesthe 2.5-6
dayvariancemaximumassociatedwith theeastAsianstormtrack.

ComparingFigures75-76with Figures84-85,weseethat the modeldoesa reasonable
job in partitioning the 200mbkinetic energybetweenthe synoptic (2.5-6days)and low
frequency(10-30days) time scales.It is interestingthat at 2.5-6days,the modeltends
to underestimatethe KE in theNorthernHemisphere,but it overestimatesthe KE in the
SouthernHemisphere.Wealsoseethat thecoldseasoneastwarddisplacementof the region
of maximumKE overAustraliaandthe westernSouthPacificnotedearlieris primarily in
the lowerfrequencies.

Turningto the zonalmomentumfluxes,the modelha.stoo muchsouthwardtransport in
the SouthernHemisphereat 2.5-6days(compareFigures78and79), though,overall,the
simulatedmomentumtransportsare reasonablein both frequencyranges(seeFigures78,



79,86and87). Thesimulated850robnorthwardsensibleheatfluxesalsoshowa veryreal-
istic partitioningbetweenthesynopticandlowfrequencysubmonthlytime scales(compare
Figures80-81with 88-89).

2.4 The Madden-Julian Oscillation

The Madden-JulianOscillation(MJO) is the dominantmodeof subseasonalvariability in
thetropics,andoccurson timescalesofabout30-60days.TheMJO is clearIy evident in the

velocity potential field as a large-scale (zonal wave number 1) eastward propagating mode,

that occurs in conjunction with eastward evolving convective anomalies in the tropical

eastern hemisphere. The MJO has substantial impacts on short-term climate variability

throughout the tropics and subtropics, and these may extend into middle latitudes.

In this section, we isolate that part of the variability in the 200rob velocity potential field

that is largely tied to the MJO by filtering in both time and space. For the former we

employ a Fourier transform to retain time scales between 20 and 90 days. For the latter,

we employ a complex empirical orthogonal function (CEOF) decomposition (see below).

The time series of the dominant CEOF is decomposed using a wavelet analysis. Various

other fields are composited during a typical cycle of the first CEOF. The composites are

computed over those times when the modulus of the first CEOF of the 200rob velocity

potential exceeds one standard deviation.

2.4.1 Data processing

The data used in this analysis consist of the daily 200 mb velocity potential, 200mb stream-

function, outgoing longwave radiation (OLR) and total precipitable water. A Fourier spec-

tral transform was used to remove time scales shorter than 20 days and longer than 90

days.

The CEOF decomposition is done following (Pfeffer et al. 1990). For a time series, ¢(x, y, t),
we obtain

1
_(_k(Y, t)c -_kx _*+ k(y,t)eikx), (5)
k--1

where x is the longitude, t is time, k is the wavenumber, 2I( + 1 is the number of equally

spaced points around the longitude circle at which g) is specified in y, _k (Y, t) is the Fourier

transform of _(x, y, t) and the asterisk denotes a complex conjugate. We then seek orthog-

onal function expansion of k_k(y, t) of the form

N

• = A,(t)C,(y,k), (6)
p----1

N

in which we impose the condition, E Cp(y,k)C_(y, k) = 5p,q for orthonormality of the
n(k,y)

basis functions. Here, 5p,q is the Kronecer delta. Ap(t) are determined by projecting _k(Y, t)



onto Cp(y, k), then we have

N

Ap(t)= _ q2k(y,t)C_(y,k). (7)

Wc determine Cp(t) by maximizing the variance of the largest component subject to the

eigenvalue problem
N

Z C ,mCp(m)= (8)
rn=l

where Cn,m = qdk(Y,t)_'k(Y,t)is the covariance matrix and the eigenvalue ),p is real and

the eigenvector Cp(n) is the complex empirical orthogonal function (EOF). We may express

_/,(x, y, t) as follows:

1 N

¢(x,y,t) = -_ _-_[Ap(t)B;(x,y) + A*p(t)Bp(x,y)].
p=l

(9)

where
K

Bp(x,y) = _ C;(y,k)e ik_. (10)
k:l

By expressing the complex functions Ap(t) and Bp(y, k) in terms of their moduli and phases,

we may write (9) in the form

N

_(x, y, t) = _ a,p(t)/3p(x, y)cos( Op(x, y) - _p(t) ), (11)
p----1

here Ap(t) = c_p(t)e iCp(t) and Bp(t) = tip(X, y)e i°p(x'_). The expression of the phase angles,

(Op(x) - Cp(t)) determines only to within an arbitrary constant which can be added to

one and subtracted from the other without changing their difference. Each component of

(11) may be thought of as representing a wave with shape cosOp(x, y) and time dependent

phase Cp(t), the amplitude of which is modulated in phase space by I3p(x, y) and in time by

ap(t). At a fixed position (x, y), the number of highs or lows per unit time is a measure of

local frequency dCp(t)/dt. At a fixed time t, the number of highs or lows of this function
per increment of longitude is a measure of the local wavenumber dOp(x, y)/dx. ¢p(x, y, t)

depicts the shape and motion of the wave and the spatial and temporal modulations of its

amplitude, wavenumber and frequency.

The above CEOF decomposition provides an efficient spatial representation of a traveling

disturbance such as the MJO. Since the MJO tends to occur episodically and on a broad

range of time scales, the temporal behavior of the MJO is best represented in terms of a

Wavelet decomposition. The wavelet transform-(e:g. Weng and Lau 1994)is based on the
convolution of a time series, f(t), with a set of functions derived from a prototype ¢(t). If

g,(t) is admissible and f(t) is square integrable, the continuous wavelet transform, IV] (a, r),

is defined as, :_::;:

Iv](a, r) f(t) ¢_,,(t)dt , (12)
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wherea, r are real and a >0, a is the scale parameter and 7- is the translation parameter.

The ¢*,_(t) is the conjugate of the transformed and dilated "basic wavelet" which is given

by

1=

where the constant _a is used for energy normalization.

The basic wavelet used in this study was designed by Morlet (1983) and has since been used

in many studies
#,(t) = e i¢°t e -t2/2, (14)

where _o equals 7r(2/In2) 1/2 in order to satisfy the admissibility condition. In Fourier space,

this wavelet is given by,

1 e_(___o)_/2 (15)=

In our application the input function f(t) to the wavelet transform is the complex time

series associate with the first CEOF of the 200rob velocity potential field.

2.4.2 Results

We begin by showing in Figure 90 the variance of the 20-90 day filtered 200rob velocity

potential averaged over all seasons for 1979-95. The simulated variability is considerably less

than that found in the reanalysis, especially west of the dateline over the Pacific warm pool

region and the Indian Ocean. Figure 91 shows the spatial pattern and eastward propagation

of the first CEOF of the 20-90 day filtered 200mb velocity potential from the reanalysis and

model simulation. The figure shows the evolution of CEOF 1 as it goes through one complete

cycle, though note that the zero and positive lags are basically a repeat of the negative lags

with reversed sign. The model produces a reasonably good simulation of the zonal wave 1

structure and eastward propagation. The reanalysis, however, shows a stronger east-west

asymmetry with anomalies over the Indian Ocean and Indonesia that are stronger than

those over the western hemisphere. Also, the first mode explains 3/4 of the filtered variance

in the reanalysis, while the first mode explains about 1/2 the variance for the model.

Figures 92 and 93 show the modulus of the wavelet decomposition of the first CEOF for the

model and reanalysis. The results show clearly the episodic nature of the MJO. The results

from the reanalysis shows, as expected, that the MJO tends to have much of its power on

time scales between 30 and 60 days, though there are clearly times when it has both shorter

and longer time scales. For the model CEOF 1 has less of a preference for 30-60 days, and

tends to have more variability at shorter time scales as is common for many AGCMs.

Figures 94-96 show composites of various quantities using the amplitude of the first velocity

potential CEOF time series as an index. Only time periods when the amplitude exceeds

one standard deviation (the MJO is considered active) contribute to the composites. Figure

94 shows the composite evolution of the OLR. The reanalysis/observations show a strong

coupling between the velocity potential and OLR over the Indian Ocean and wetsern Pacific.

The simulation shows a much weaker coupling. The composite evolution of the TPW
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(Figure95)shows,for the reanalysis,a clearsignalof enhancedmoistureon the leading
edgeof the regionof risingmotion (negativevelocitypotentialanomaly): this apparently
contributesto theeastwarddevelopmentof theMJO.Themodelresultsshowlessorganized
moistureanomalieslinkedto the evolutionof thefirst CEOF. Finally, Figure 96 shows the

model and reanalysis composite evolution of the 200rob stream function associated with the

first velocity potential CEOF. This shows, for the reanalysis, a substantial Rossby wave

component associated with the MJO, while for the simulation it is rather weak. This is not

surprising in view of the model's weak coupling with convection in the western Pacific and

Indian Oceans associated with the first CEOF (see Figure 94).

3 Conclusions

The results presented in this atlas shows that, overall, the FV-CCM3 model produces a very

good simulation of the seasonal mean climate and its variability. The model does particu-

larly well at simulating the zonal mean and spatial distrution of the subseasonal transients,

the seasonal mean cloud radiative forcing, and the seasonal mean upper tropospheric/lower

stratospheric zonal wind.

The primary deficiencies are in the simulation of the JJA divergent circulation and precip-
itation associated with the south Asian summer monsoon. Most notable is the deficient

precipitation over the Pacific warm pool region. Like many GCMs, this model has insuf-

ficient interannua[ variability in the tropical lower stratosphere, and it is deficient in the

representation of MJO and its coupling with convection over the western Pacific and Indian
Oceans.

Despite these deficiencies, we feel this initial version of the model is a very good system

with which to carry out data assimilation and climate simulation studies. It also serves as

a valuable benchmark for assessing the impact of on-going model improvements such as the

current implementation of the next generation (CCM-4) of physical parameterizations.
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SEASONAL MEAN GLOBAL MAPS

50mb zonal wind

200mb zonal wind

850mb zonal wind

300mb eddy height

200mb eddy stream function

200mb velocity potential

Sea level pressure

Precipitation

Shortwave cloud forcing

Longwave cloud forcing

Total precipitable water

Outgoing longwave radiation
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INTERANNUAL VARIABILITY OF SEASONAL MEANS

50mb zonal wind

200mb zonal wind

850rob zonal wind

300mb height

200mb stream function

200rob velocity potential

Sea level pressure

Precipitation
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ZONAL MEAN INTRA-MONTHLYVARIABILITY

Heightfield

Kinetic energy

n_v _

v'T'
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GLOBAL MAPS OF INTRA-MONTHLY VARIABILITY
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200mb kinetic energy
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THE MADDEN-JULIANOSCILLATION

200mbVelocityPotential\rariance(20-90days)
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WaveletDecompositionof CEOF1
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Composite200mbVelocityPotentialand TPW

Composite200robStreamFunctionandOLR
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Figure 90:200 mb velocity potential variances (20-90 days) a.) for the model, b) for the reanalysis.
The contour interval is 2× 1012 m 4 s -2. Values larger than 4×10 _= m 4 s -2 are shaded.
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Figure 91: The first complex EOF of the 200 mb velocity potential filed from the model (left

panels) and the reanalysis (right panels). The numbers in ther upper right correspond to the

phase angle. Negative values are dashed.
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Figure 92: Time-frequency representation of the modulus of the the complex Morlet wavelet
coefficients based on the first complex EOF of the 200 mb velocity potential filed from the

model. The left ordinate is frequency in octive, and the right ordinate is period in day.
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Figure 93: Time-frequency representation of the modulus of the the complex Morlet wavelet
coefficients based on the first complex EOF of the 200 mb velocity potential filed from the

reanalysis. The left ordinate is frequency in octive, and the right ordinate is period in day.

121



20N

EQ

20S

20N-

EQ-

20S -

20N

20S

20N

EQ
20S

20N

EQ
20S

20N

EQ
20S

20N

EQ
20S

20N

EQ

20S

20N

EQ
20S

Model Reonalyeis

-,,<.. ..o:::<.'_.',,_,_ u _2 2,%a2,1Rll IJ)/d / III

"---:-. _- _. _ "---"_ ,, ,' _:'_ - ; __':->.'.': 1_,.%,_)/71,
0 60E 120E 180 120W 60W 0 60E 120E t 80 120W 60W 0

"20-16-14-i2-10 "8-6-4-2 2 4 6 8 10 12 14 16 20

Figure 94: Composite anomalies of OLR and 200rob velocity potential at tin]es of amplitude

of the first component of 200mb velocity potential is larger than one standard deviation. The

contour is for the velocity potential and the negative values are dashed. Shading is for OLR.
Units are W m -2.
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Figure 95: Composite anomalies of TPW and 200mb velocity potential at times of amplitude

of the first component of 200rob velocity potential is larger than one standard deviation. The

contour is for the velocity potential and the negative values are dashed. Shading is for TPW.
Units are km m -2,
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Figure 96: Composite anomalies of OLR and 200rob streamfunction at, times of amplitude or

the first component of velocity potential at 200rob is larger than one standard deviation. The

contour is for the streamfunction and the negative values are dashed. Shading is for OLR. Units

are W m -z.
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