DAO Office Note 97-05

Office Note Series on
Global Modeling and Data Assimilation

Richard B. Rood, Head
Data Assimilation Office
Goddard Space Flight Center
Greenbelt, Maryland

Design of the Goddard Earth
Observing System (GEOS) Parallel

Physical-space Statistical Analysis
System (PSAS)

P. M. Lyster*, J. W. Larson*, C. H. Q. Ding?,

J. Guot, W. Sawyer*, A. da Silva, I. Stajner*

Data Assimilation Office

NASA/Goddard Space Flight Center, Greenbelt, Maryland

Additional Affiliations:

* Joint Center for Earth System Science (JCESS), University of Maryland
7 General Sciences Corporation (a subsidiary of

Science Applications International Corporation).

s+« Universities Space Research Association.

1 National Energy Research Scientific Computing Center.

This paper has not been published and should
be regarded as an Internal Report from DAQ.

Permission to quote from it should be

obtained from the DAQ.

Goddard Space Flight Center
Greenbelt, Maryland 20771
February 1997

Abstract

The Physical-space Statistical Analysis System (PSAS) comprises the core
analysis scheme for the Goddard Earth Observing System (GEOS) atmospheric
data assimilation system. The Data Assimilation Office (DAO) of the National
Aeronautics and Space Administration (NASA) developed both GEOS and
PSAS, and are currently in the process of constructing a parallel implemen-
tation of GEOS. Here we discuss the progress in the parallel implementation
of PSAS, which has culminated in the construction of the prototype parallel
PSAS. This document derives from two week-long workshops that were con-
ducted at the NASA/Goddard Space Flight Center Data Assimilation Office
(DAO) on September 30 to October 4, and October 28 to November 1, 1996.
The purposed of these workshops was to review the requirements for the de-
velopmental parallel Physical-space Statistical Analysis System (PSAS) and to
lay the groundwork for the prototyping and design of the operational PSAS
that will be a part of the Goddard Earth Observing System data assimilation
system GEOS 3.0. This will use the Message Passing Interface (MPI) library,
with some heritage C and Fortran 77 code, and with an overarching Fortran 90
(f90) modular design.

il

Contents

Abstract 111
1 Introduction 1
2 The Scientific Algorithm 2
3 Requirements 4
4 The JPL Prototype Parallel PSAS 5
4.1 Summary of the algorithm oL 5
4.1.1 Parallel Partition 7

4.1.2 Matrix Block Partition 8

4.1.3 Solve Parallel Conjugate Gradient 10

4.1.4 Calculate Analysis Increment 10

4.2 Summary of Timings for PSASJPL 11

5 Developmental PSAS 2.1 and 3.0 13
5.1 Summary of PSAS 2.1o 13
5.1.1 Parallel Partition 14

5.1.2 Matrix Block Partition 16

5.1.3 Solve Parallel Conjugate Gradient 17

5.1.4 Calculate Analysis Increment 17

6 The Parallel Evaluation of Forecast Error Covariance Matrices 18
6.1 PSAS JPL, PSAS 2.1, and PSAS3.0 18
6.2 Issues for Evaluating P/ on the Analysis Grid 18

7 Optimization and Load Balance 21
8 Input/Output and the PSAS-GCM Interface 22
9 Parallel Quality Control 23
10 Reproducibility 23
11 Portability, Reusability, and Third-Party Software 25
Appendix A: List of Symbols and Definitions 29
Al List of Symbols o 29
A2 Definitions e 29
A.3 Versions of algorithms oo oL oo 30
A4 PSAS JPL Datatypes 30
A5 PSAS 2.1 Datatypeso 31
A.6 Data Attributes 31

v

Appendix B: PSAS JPL Data Structures
B.1: Obs_handle Structure
B.2: Gpt_handle Structure L oo
B.3: Vec_handle Structure
B.4: Grd_handle Structure
B.5: Gvec_handle Structure

Appendix C: GEOS 2.1 Data Types
C.l: ObsVect Type o o
C.2: StateVect Type o L
C.3: Anal Vec Type o o o

Appendix D: GEOS 3.0 Proposed Data Types
D.1: Gpt-handle £90

Appendix E: Notes on the JPL Parallel PSAS Code
E1l. Where the JPL Parallel PSAS is Archived
E.2 About the Source Code for the Parallel PSAS
E.3 Building the Executable JPL Parallel PSAS
E.4 Running the JPL Parallel PSAS
E.5 Procedures for Modifying the Source Code

E.6 Sample Input Parameter File param.in
Appendix F: Workshop Participants

Appendix G: Figures

32
32
34
35
38
40

42
42
42
43

44
44

45
45
45
46
47
48
51

52

53

1 Introduction

The Physical-space Statistical Analysis (PSAS) algorithm is a significant part of the
GEOS atmospheric data assimilation system that is used by the Data Assimilation
Office (DAO). Apart from the considerable technology surrounding the data 1/0O,
storage, transmission to and from data facilities, and data visualization, the core
components of GEOS are an atmospheric general circulation model (GCM), a cou-
pler that interpolates the GCM output onto the observation grid and calculates the
difference between the forecast and observation (known as innovations), a data quality
control (QC) system that checks these innovations for suspect values, and the analysis
scheme PSAS (Figure 1). These are compute-intensive algorithms that, because of
the nature of the underlying physical models, are highly coupled.

The DAO is preparing to move its data assimilation system to advanced comput-
ing platforms. This will be part of its regular operation, although an important role
is expected for the Mission to Planet Earth (MTPE) system in the coming years.
Key components of the gridpoint-based GCM (Takacs et al. 1996) have been paral-
lelized, and are expected to be incorporated into the system in the coming year. In
1994, the core components of the developmental serial version of PSAS were taken
over by computer scientists at the Jet Propulsion Laboratory (JPL) as part of the
High Performance Computing and Communications (HPCC) project. The algorithm
(PSAS JPL) was parallelized using distributed-memory Single Program Multiple Data
(SPMD) message-passing approach (Ding and Ferraro 1995).

The workshops that are summarized in this document were intended to first sum-
marize the requirements (Stobie 1996) and to initiate the prototyping and design for
the parallel system GEOS 3.0. It should be noted that the current scientific (serial)
versions PSAS 2.0 and parallel PSAS JPL have diverged considerably since 1994.
This was the result of a conscious decision that was made at the time because it was
known that the serial code was undergoing considerable scientific development and
change. It is our intention to merge the parallel technology with the newest version
PSAS 2.1 and generate the first unified parallel algorithm that we designate PSAS
3.0. Thereafter the development of parallel code will not diverge from the scientific
production code. In order to plan the message-passing methodology, the approach
we took was to review the JPL parallel code (the first week September 30 to October
4) and then study the data life cycle in the serial PSAS 2.1 (October 28 to November
1). PSAS JPL is written in C (approximately 15,000 lines of code) that uses the
Message Passing Interface (MPI) library, and calls low-level Fortran 77 subroutines

(7,500 lines). We are most interested in how this technology will transfer to the
environment that is planned for PSAS 2.1, which uses {90 extensively and MPI. Key
issues are the efficiency of on-processor code and message-passing functions, and the
load balancing of the new algorithm. To do this, both the software constructs (f90
types) and the physical layout of memory need to be considered; the latter is espe-
cially important for RISC-based processors such as the ones the DAO is likely to be
using. The difficult task of Configuration Management which will specify the process
of merging PSAS JPL with PSAS 2.1 to generate PSAS 3.0 will be left to the GEOS
3.0 Design Team.

2 The Scientific Algorithm

Four Dimensional Data Assimilation (4DDA) is the process whereby a state forecast
and observations are combined to form a best estimate, or analysis, of the state (Daley
1992). A forecast is derived from a model (e.g., GCM) of the system. The data for
an analysis are up to 150,000 observations over a six hour period. 4DDA may be
used to provide the initial conditions for a weather forecast. 4DDA is also used at
the DAO and other institutions to perform reanalyses of past datasets in order to
obtain a continuous, gridded, best estimate of the atmosphere for key state variables
(e.g., height, wind, surface pressure, and moisture). The DAO also provides support
for measurement instrument operation. DAQO will provide software for an operational
reanalysis 4DDA system by the year 1998 under the Mission to Planet Earth (MTPE).

As mentioned in the Introduction, the core compute-intensive components are the
model GCM, the quality control QC, and PSAS. The complexity of the GCM is O(n),
where n is the number of gridpoints on the analysis grid multiplied by the number of
state variables. The analysis takes p observations that are inhomogeneously placed
in space and time and through a statistical interpolation modifies a forecast w/ € IR"
to form an analysis w® € IR". The approach of PSAS (da Silva et al. 1995) solves a

large matrix problem using the following formulation: The innovation equation

(HP'H' 4+ R)z = w° — Huw/; (1)

and the analyzed state is given by the analysis equation

w® = wf + PP ;. (2)

where w?(€ IRP) is the vector of observations; P/(IR" — IR"™) is the specified forecast

error covariance matrix; R(IR? — IRP) is the specified observation error covariance

2

matrix; H(IR" — IR?) represents a generalized interpolation from the analysis grid
to the observations; and x(€ IRP) is a vector of weights.

Multiple observations from an instrument at the same horizontal position are
called profiles, i.e., it is assumed for the current development that members of the
same profile (e.g., radiosonde or satellite measured radiances) are at the same position

of latitude and longitude. It is convenient to write

H=FT, (3)

where Z(IR" — IR®) interpolates from the analysis grid to the state grid which is
a grid whose horizontal locations are the locations of profiles and whose vertical loca-
tions are standard levels for a discretized forward operator. (i.e., a quasi-unstructured
grid). The observation operator F(IR® — IR?) models w® on the observation grid (an
unstructured grid) from the interpolated variables on the state grid. (i.e., F' acts
on individual profiles on the state grid to produce the corresponding profiles in the
observation grid). For the current formulation of PSAS, the first term HP/HT in
the innovation equation is evaluated as F'P{FT where P/ is the approximation of
IP/TT, evaluated directly on the state grid using specified forecast error variances
and a correlation model. The correlation model is implemented using lookup tables
whose coordinates are the appropriate horizontal and vertical coordinates. For PSAS
JPL there is no F' operator since only state variables are assimilated. One of the key
changes in PSAS 2.1 is the assimilation of non-state variables. For example (Lamich
and da Silva 1996) layer thickness, total precipitable water, and cloud-cleared ra-
diances will be directly assimilated. In these cases [is the tangent linear forward
model and is often obtained from instrument teams.

The innovation equation is solved using a preconditioned conjugate gradient al-
gorithm (Golub and van Loan 1989, da Silva and Guo 1996). This is an O(N;p*)
operation, where N; is the number of iterations of the CG solver. Typically, between
eight and twelve iterations are needed to produce a CG solution whose residual has
been reduced by at least two orders of magnitude. Experiments in which the residuals
are reduced by more than two orders of magnitude resulted in errors in = that much
smaller than expected analysis errors.

while solution of the analysis equation is an O(np) operation.

As mentioned earlier, the innovation matrix HPYH' + R is dense, although en-
tries associated with locations that are separated by several correlation lengths are
negligible (or zero for compactly supported correlation functions, Gaspari and Cohn

1996). In order to introduce some sparseness in [P/ HT + R and save computational

effort, the correlations beyond a preset cutoff distance are not included. For PSAS
JPL, with a 6,000 kilometer cutoff between centroids of regions the innovation matrix

is approximately 26% full, and this uses in excess of 5 gigabytes of storage.

3 Requirements

The scientific and software requirements are set out in the document: Data and
Architectural Design for the GEOS 2.1 Data Assimilation System Document Version
1 (Lamich and da Silva 1996), and GEOS 3.0 System Requirements (Stobie 1996). For
GEOS 3.0 we outline the following requirements that pertain to the parallelization
effort:

o The parallel PSAS 3.0 will be prototyped and designed along with the serial
version PSAS 2.1. In particular, the code is being developed using {90, and will
handle non-state variable observation operators. The formal merging of the

serial and parallel coded will be done in 1997 on a schedule to be determined

by the DAO GEOS 3.0 Design Team.

o The parallel design must generate scientific software that will have a long life
cycle. The recent development of PSAS as a new algorithm for data assimilation,
and the incorporation of f90 into GEOS 2.1 affords the opportunity to use a
modular approach that allows for expandability, decreases the likelihood of bugs,
and makes it easier for a larger group of scientists to use and modify the same
code. It is commonly acknowledged that parallel computing, and message-
passing in particular, are sufficiently complex that some effort has to be made
to hide the communication modules from a substantial population of the regular

programimmers.

o After an extensive review of DAO computing activities, and following the recom-
mendation of the external DAO Review Panel (Farrell et al. 1996), the Message
Passing Interface (MPI) parallel library will be used. If necessary, mixed lan-
guage third-party software may be used provided portable Fortran bindings are

available.

e The parallel code must scale to meet the performance needs of future production
efforts of the DAO. This includes a commitment to MTPE by 1998 (Zero et al.
1996), and ongoing commitments to HPCC (Lyster et al. 1995).

Because PSAS 2.1 and PSAS 3.0 are both in a design phase, the exact definition
of datatypes, modularity, and interfaces has not been decided. It is recommended
that this be done as soon as possible. In the meantime this document will
address parallel questions that must be answered as part of the design phase; most
importantly, can the technology of PSAS JPL be transfered to PSAS 3.0 so as to
provide efficient, load balanced code that also satisfies software configuration man-
agement requirements?

Note that a number of vendors support (or will soon) f90 and MPI on their hard-
ware. Issues of hardware will not be further discussed, except to note that message-
passing is a safe approach for the design of large-scale tightly-coupled algorithms.
This is because a strong coupling between the user-generated data domain decom-
position and the physical layout of memory affords the ability to optimize and scale

against communications (latency and bandwidth) overhead.

4 The JPL Prototype Parallel PSAS

4.1 Summary of the algorithm

The developmental serial version of PSAS was given to computer scientists at the
Jet Propulsion Laboratory in 1994. They had considerable experience in parallel
conjugate gradient algorithms. The key element of the algorithm is a large ma-
trix multiply (HPYHT + R)l‘l where z' is an intermediate weight vector. The key
for message-passing parallelism is to break the matrix into components that can be
parceled out to different processors (domain decomposition). Each matrix block acts
on an appropriate vector fragment to form a partial vector. The result of each matrix
multiply is an set of partial vectors which must be summed using message passing to
form the result. In this way both the total memory and the work in generating the
matrix and performing the multiply are divided among the processors; it is a tenet of
parallel computing that any data or process that cannot be decomposed is a risk to
performance. The large memory that is available on parallel computers, such as the
Intel Paragon or the Cray T3D, also affords the possibility of calculating and stor-
ing the entire forecast error covariance matrix once per analysis cycle. This has the
potential for considerable saving over approach of the serial code where the matrix
was reevaluated for each iteration of the conjugate gradient algorithm. Note that the
present formulation uses P/, which is based on the location of observations in the
state grid. Therefore the structure of P/ is different for each analysis cycle since the

S

observing system, in particular TOVS satellite orbits, is not fixed. It was realized that

the regional decomposition of data that was employed by Pfaendtner et al. (1995)
in the serial PSAS could be the basis for a message-passing parallel algorithm. In
the serial version an icosahedral mesh with triangular subdomains was used to form
compact regions on the surface of a sphere, each of which have approximately equal
numbers of observations. Correlations between members of these regions are used to
form blocks of the forecast error covariance matrix P/. This is a convenient way of
implementing a distance-cutoff (typically 6,000 km) between the centroids of regions
so that some sparseness (26%) can be enforced on the large matrix. More importantly,
is also provides a basis for the domain decomposition of the parallel PSAS JPL. The
following sections summarize the parallel algorithm that was developed (Ding and
Ferraro 1995). The original serial code assimilated only state variables (ps,us, vs, u,
v, h, and ¢); this included satellite retrieved mean layer temperature converted to
height which is routinely generated from TOVS measured radiances. Hence there is
no accounting for the observation operator F'in this algorithm.

In short, the algorithm of the parallel version of PSAS comprises the major com-

putational steps outlined below:

e Partition observations using inertial recursive bisection scheme. This is accom-
plished by the call to the function
partitioner(Obs_handle* , MPI Comm*).

e Decomposition of the innovation matrix M via a call to the block matrix dis-
tribution function
matrix distr(Obs_handlex , Vec_handle* , Reg replica handlex* ,
Mblk list* , MPI _Comm*)

e Solution of the innovation equation via the conjugate gradient (CG) method,
which is performed by the function
equation_solve(Vec handle* , Reg replica handlex, Mblk list* ,
MPI Comm*)

e Partition of the matrix P/ H” and solution of the analysis equation. This is
accomplished by the call to the function
foldback(Vec_handle* , MPI_Comm*).

Each of these steps in the algorithm will be examined in greater detail in subsequent
sections. A top-level flowchart of the parallel PSAS that summarizes the above calls

from main() is presented in Figure 2.

4.1.1 Parallel Partition

This algorithm divides p observations among N, regions using bisection on the sur-
face of a sphere. The data are read in as innovations (w° — Hw/) and distributed
in random order (but in equal numbers) on N, processors. In the first iteration, the
observations are divided along the orthogonal cut of their combined principal axis
moment of inertia. Successive iterations are performed in a tree structure that re-
peats the decomposition on half the remaining processors with approximately half
the data. At each stage, the calculation of the principal axis is performed in parallel.
As regions replicate, data are moved between different processors using split MPI
communicators. The inertial division guarantees some degree of compactness of the
resulting decomposition. This algorithm requires there to be power-of-two number
of processors and number of regions, with N, > N,. Typically, N, = 256, or 512,
and N, = 512. It is possible to modify the power-of-two restriction on numbers of
regions and processors (the orthogonal cut may be made anywhere along the principal
axis to give a division of observations other than 50-50), and maintain approximately
equal numbers of observations per region. However if the number of regions in each
processor is not fixed for all processors there may be some load imbalance in the anal-
ysis equation (section 5.1.4). A schematic for the parallel partition of observations
is shown in Figure 1. Note that the decomposition is in terms of equal numbers of
observations, and that the regions are not necessarily equal in area. Also, the de-
composition is two dimensional and profiles are not permitted to be divided between
regions (for reasons that will be discussed in section 5.1.2).

The key structures (C) for the parallel partition are shown in Appendix B.1
(Obs_handle) and B.2 (Gpt_handle). Initially, the unsorted observations are approx-
imately equally distributed among processors. The structure Obs_handle references
elemental structures of type Observ that store the observations (actually innovations,
w® — Hw?') del, and a number of attributes (id, kt, kx, rlats, rlons, rlevs, xyz[3],
Sig0, and sigF). The allocated memory for all the observations on each processor
is contiguous. The structure Gpt_handle (not to be confused with gridpoints of a
regular grid) is very similar to Obs_handle except that the elemental type (Gpoint)
holds only the coord positions of the observations on a unit sphere, a sequencing
id, and the original processor orgn_proc (numbered from 0 to N, — 1) where each
observation is initially located. Using Gpt_handle the parallel partitioner proceeds
by only passing data of type Gpoint between processors. In this way minimal data
are passed (i.e., the other attributes and the value aren’t passed during successive

bisections of the the parallel partitioner). At each bisection, each processor identifies

the observations (Gpoint) that need to be passed to another processor and concate-
nates them in a buffer. This buffer is sent using MPI_send, with type MPI_byte and
the receiving processor issues an MPI_recv call. The buffer is then unpacked into the
Gpt_handle. This amortizes the message-passing latency across a long message at
a (relatively small) cost of an extra local memory copy per observation. Note that
memory is conserved by collapsing Gpt_handle, i.e., filling the holes that are left by
Gpoints that have been passed to other processors, after each bisection. After the
last bisection, each member that is referenced by Gpt_handle is polled for its value of
org_proc to find the originating processor where the actual data and its attributes is
located. These data are buffered with others that have the same destination proces-
sor. An MPI_send/recv sequence, followed by unpacking the buffers, finally gives a
compact partition referenced by Obs_handle. In this way the efficient parallel parti-
tioner proceeds by sending minimal data between the processors during the bisection,
and then only send one large message at the end. The resulting decomposition gives
approximately equal numbers of observations per region (with some variation because

profiles may not be split).

4.1.2 Matrix Block Partition

In this part of PSAS the parallel decomposition of observations is used to generate
a list of matrix blocks. This is used to determine on which processor a matrix block
will reside. For example, typically there are 512 regions containing approximately
p ~ 10° observations. The 6,000 kilometer cutoff condition gives rise to a forecast
error covariance matrix that is approximately 26% full. Therefore there are about
512% x 0.26 x 0.5 ~ 35,000 blocks (the factor of 0.5 accounts for the symmetry
of the matrix). This large number of blocks (Figure 2) is distributed among the
(typically 256 or 512) processors in a load balanced manner. This achieves a balanced
distribution of the memory and the work in generating the matrix elements (from a
lookup table) and the work in performing the matrix vector multiply. The blocks
are approximately of equal size, since there are approximately the same number of
observations per region. Therefore, setting an equal number of blocks per processor
provides an initial guess for a load balanced distribution. Each block is stored with
the associated vector (z') fragment that must be used to perform the matrix-vector
multiply. Diagonal blocks are stored on the processor that stores the observation for
that region. For the off-diagonal blocks, it is clear the the number of vector fragments
on each processor may be minimized by storing the block on one of the two processors

that owns the observations corresponding to one dimension of the block. This limits

the ability to simply parcel out the blocks in a deterministic and load-balanced way.
From the initial state, the load-balancing scheme proceeds towards this goal by first
refining the initial distribution to produce a new initial state using the following

scheme:

1. The load on each processor L; to perform work for the conjugate gradient solver

is estimated, along with the average load L. This leads to a set of imbalances

Ai = IJ — LZ
2. For each pair (7,) of processors, an exchange probability P;; = % is calcu-
Ty
lated.

3. Use a random number r € [0, 1] to decide if processor i or processor j is assigned
the block. Processor ¢ is assigned the block if » < P;, while processor j is
assigned the block if r > FP;. This amounts to a weighted coin toss.

From this refined initial state, the block distribution is improved iteratively through

the following adjustment process:

1. For iteration m < Nier, for each pair (i,7) of processors deviations from the
average load balance A; and A; are calculated, along with the exchange prob-
ability P;; described above. The number of blocks on each processor, A; and
N, respectively, are counted along with the average number of blocks on each

processor N

2. If A; > 0 and A; <0, the block is transferred from processor ¢ to processor j.
If A; < 0and A; > 0, the block is transferred from processor j to processor .

3. If both A; and A; have the same sign, then if A; — A; > —3A, then the block

is moved from processor ¢ to processor j.

4. Finally, for all other cases not covered above, the block is assigned to a processor

based on the weighted coin toss described in the refinement of the initial state.

Following this scheme for Njer = 10 and § = 1/20 results in a load imbalance of
approximately 10%. The messages that must be exchanged during the matrix block
partition are matrix indices and geometrical data. No complex structures, such as in

the parallel partition, are exchanged until the block partition is complete.

4.1.3 Solve Parallel Conjugate Gradient

The conjugate gradient algorithm uses block preconditioning, and is described in
Golub and van Loan (1989) and da Silva and Guo (1996). Computationally, the core
is the large matrix-vector multiply. In the parallel partitioner the innovations are
separated into regions that are distributed among the processors. These provide the
initial condition for the vector iterate (2'). The vector is actually composed of vector
fragments. The nature of distributed-memory parallel processing is that matrices and
vectors are rarely represented as a whole on any one processor (an exception is some-
times made for the purpose of performing I/0). Depending on how the off-diagonal
blocks are distributed, some of these vector fragments must be replicated on multiple
processors. Furthermore the algorithm that generates the blocks uses lookup tables
with inner loops over same-data types. Hence the vectors are reordered and referenced
by a third structure Vec_handle (Appendix B.3). This is similar to the previously de-
scribed structures except that the elemental type Vec_region references long vectors
of attributes and data. In this case message-passing is easy since the same datatypes
are effectively already buffered. It may be possible to sum the partial vectors using
MPI split communicators and the MPI_reduce(...,MPI_sum,...) function. This
uses a butterfly-tree algorithm. It turns out that the hand written code optimized
using MPI_send/recv functions is more efficient since the number of processors hold-
ing any particular vector segment is small compared to the total number of processing
units (C. Ding personal communication).

For PSAS JPL an older, considerably less efficient algorithm was used to perform
the table lookup (it has been made faster in the present development PSAS by an
order of magnitude). Hence, the generation of the matrix elements was a dominant
part of the cost. The savings in evaluating the matrix only once per analysis cycle
was considerable; effectively N; (the number of CG iterations) multiplied by the cost

of generating the matrix.

4.1.4 Calculate Analysis Increment

The analysis increment is (Eq. 2) PfHTx. The operator P/HT = P/I7 repre-
sents the forecast error covariance between the observation grid and the analysis
grid. The domain decomposition for this must account for the unstructured dis-
tribution of the observations and the structured analysis grid. The solution vector
x for the conjugate gradient algorithm is decomposed in the same manner as the

observations (Section 4.1.1). The decomposition for the analysis grid is based on

10

the fact that gridpoints within the 6,000 mile cutoff of the location of an obser-
vation are affected by the corresponding weight in the vector x. A deterministic
load-balanced algorithm proceeds as follows: an equal area rectangular distribution
of gridpoints is generated (Figure 3). The boundaries of these regions are along lati-
tude and longitude coordinate axes. At higher latitude the boundaries of the regions
in the latitude-longitude plane is altered to keep the area in each region fixed, with
a single cap over the poles. The gridpoints in these equal-area regions are thinned
longitudinally; this is also performed increasingly with higher latitude in such a way
that the number of gridpoints in each equal area region is the same. In this man-
ner the matrix P/HT may be generated as a number of equal-sized blocks whose
centroids are within the 6,000 km cutoff distance of the centroids of each region of
x. Since there is a fixed number of regions per processor (i.e., usually 1 or 2) the
number and size of the corresponding matrix blocks and the work that is performed
in the partial matrix-vector multiply is the same on all processors. The structures
that are used in this are Grd_handle and Gvec_handle these have the property that
they are pointers to pointers, and are dereferenced at the lowest level of the call-
ing tree in the foldback process, create gvec regions(grd handle, gvec handle)
and analysis_inc(vec handle, gvec handle, grd_handle). The partial vectors

are then combined by using MPI_A11 reduceCP.

4.2 Summary of Timings for PSAS JPL

Table 1. shows the timing for PSAS JPL for 80,000 observations (model resolution
2.5% x 2° x 14 levels) on 512 processors of the Intel Paragon at the California Institute
of Technology. The solver achieves 18.3 gigaflop/s (77 megaflop/s per processor),
which is 36% of peak performance for 512 processors. The parallel partitioner takes
3.1 seconds. This is a relatively small cost; the communications are complex but
because of the strategy of sending minimal data and buffering there is little overhead.
The calculation of block distribution lists uses a small amount of communications to
pass simple lists between processors. During the replication of observation regions,
vector fragments referenced by Vec_handle are sent between processors. These are
relatively long messages and have little overhead. The calculation of matrix entries
is very time consuming (23.8 seconds), but is performed only once per analysis. The
solver uses BLAS level 2 library calls (sgemv) and messages (MPI_SEND and MPI_RECV)

to send vector fragments of z'. This is iterated N; ~ 100 times ', taking 36.4 seconds.

I'This number of iterations differs from the value of N; cited earlier because the version of PSAS
that was parallelized had a more stringent convergence criterion than subsequent versions of PSAS.

11

The dominant cost of the analysis equation (referred to in Ding and Ferraro (1995)
as “fold back”) is from the generation of the matrix elements. Since one dimension of
P/HT is n which is larger than p this takes longer than the generation of the innova-
tion matrix. The communication (1.5 seconds) involved in reassembling the analysis

grid vector is similar to the assembly of vector fragments in the innovation equation.

For the innovation equation:

H Task ‘ Time(sec) H
Read input data 14.6
Partition observations 3.1
Calculate block distribution lists | 3.8
Replicate observation regions 3.3
Calculate matrix entries 23.8
Solve parallel CG 36.4
Miscellaneous 1.7

| Total 87.0 |

Secondly, for the analysis equation:

H Task ‘ Time(sec) H
Create grid partition 0.4
Assemble and evaluate P/ H z | 67.6
Reassemble model vector 1.5

| Total | 69.5 |

Table 1. Timings for PSAS JPL on the 512 processor Intel Paragon at the California
Institute of Technology.

The flop rates for runs that were recently performed on the Cray T3D at the
NASA/Goddard Space Flight Center are shown in Figure 4. The closed circles are

for a problem with 51,990 observations and the diamonds are for 79, 938 observations.

H Version ‘ solve conj grad. ‘ analysis equation H
1994 PSAS 9120. (sec) 9000.
1996 PSAS 750. 750.
PSAS JPL 87. 71.

As was mentioned earlier, the condition cited here is more stringent than was later learned to be
necessary.

12

Table 2. Comparison of timings for two versions of the serial PSAS and parallel PSAS
JPL.

Table 2 shows a comparison between wall-clock times for three versions of PSAS:
the serial code that was given to JPL as run on a single processor Cray C90; a recent
optimized serial PSAS also run on a Cray C90; and a PSAS JPL run on 512 processor
of the Intel Paragon. The older serial code is slower than JPL PSAS by two orders of
magnitude, mainly due to the higher net flop rate of the parallel processor (approxi-
mately 10 gigaflop/s to 1 gigaflop/s) and the calculation of the matrix elements only
once per conjugate gradient solve. The more recent, optimized, PSAS runs faster on
the C90 because the algorithm for table lookup has been improved (making more use
of redundancy and using nearest-neighbor lookup). In the future the need to form
the error covariance matrices only once may be relaxed. This is discussed further in

section 7.

5 Developmental PSAS 2.1 and 3.0

5.1 Summary of PSAS 2.1

The developmental serial PSAS 2.1 differs from older versions in two main ways: the
use of 90 modules and types to modernize the software; and the incorporation of
observation operators. Fortran 90 may impact message-passing through changes in
the way observations are buffered in the parallel partitioner and vectors are passed
in the replication and solve subroutines. Fortran 90 may also affect single-processor
performance if pointers are not used carefully. PSAS 3.0 is the parallel version, and
this paper deals mostly with the special problems associated with its development.
The observation operator significantly changes the algorithm (Lamich and da Silva
1996). The left hand side of the innovation equation becomes (F P/ FT 4+ R)z, where
F' is the tangent linear observation operator. The forecast error covariance matrix
is formulated in state space (in particular P/ is dimensioned on the unstructured
state grid of observation profiles). This gives rise a new representation of data on
a state grid (section 2). Appendix C shows prototypes of 90 types Obs_Vect and
State_Vect. Both of these types are built around (unbreakable) profiles. Attributes
that do not vary along a profile are aggregated into types Obs_Att and State_Att.
The 0bs_Vect has all the attributes that facilitate the quality control functions and
the generation of the F' and R operators. The State_Vect has only those attributes

that are needed to generate the forecast error covariance matrices (in particular, the

13

quality control qc, metadata index km, sounding index ks are left out, and the posi-
tions of the profiles on the unit sphere xyz are included). The observation operators
act on profiles (or aggregates of profiles — soundings — at the same location). Hence the
manner in which the Obs_Vector profiles are sorted in memory is not that important
to performance. The observation error covariance matrix R may couple soundings,
so it may be necessary to co-locate soundings in memory. At the lowest subroutine
level, the P/ operator is generated using loops over of pairs of locations of profiles,
each dimension of which corresponds to the same variable. Hence it is important to
sort State_Vect in memory by data type (kt). The 90 types that are used, such as
State_Vect or Obs_Vect actually reference allocated memory space (a memory han-
dler). In general, it is the location of variables in memory that affects performance. If
members of profiles or vectors are not appropriately sorted in memory then the inner
loops may have to dereference f90 pointers and there may be a performance degra-
dation. These are issues that affect both a serial and parallel application — especially
on RISC-based processors (i.e., most scientific computers). The following sections
summarize other aspects of the new data types, and how they may affect message

passing. A summary of performance aspects is given in section 8.

5.1.1 Parallel Partition

This section compares the parallel approach of PSAS 3.0 that uses f90 datatypes in
comparison with the approach of PSAS JPL that uses the C language and structures.
As discussed in the previous section PSAS JPL uses Gpt_handle and Obs_handle
structures in the parallel partition. Gpt_handle has reduced data (xyz position on
the unit sphere and the identifying number of the originating processor) that allows
the successive bifurcations of the partition to proceed efficiently. Is is sufficient here
to show the analogous approach that uses f90 datatypes, and to indicate how this will
give comparable performance. Considerable prototyping will have to be done in the
future.

The type Gpt_holder_£90 that is defined in Appendix D performs the equivalent
function as Gpt_handle. The usage is:

type(Gpt_holder_£90) gpt

!There are numRegs regions in the problem
gpt/numRegs = numRegs
allocate(gptigpt_region(l:numRegs))

do index = 1,numRegs

14

gpthgpt_region(index) 4numGpts=numgpts(index)
allocate(gpthgpt_region(index)¥%gpoints(1:numgpts(index))

do iobs=1,numgpts(index
gpthgpt_region(index)jgpoints(iobs)%coord(1)=...x position of obs..

! ...these data are derived from Obs_Vect...

enddo

enddo

The parallel partition proceeds in the same way as PSAS JPL. At each stage, a
subset of the data of type Gpoint_£90 are buffered and passed between processors.
There are (at least) two ways to do this:

(i) The data that are selected to be communicated are extracted from the holder gpt
and inserted into two buffers of type real (for xyz positions) and integer (for
orgn_procand id). The buffers are communicated and unpacked at the recieve-
ing processor. This is guaranteed to work since it respects the language types,

but the loops that perform the buffering are clumsy and perhaps inefficient.

(ii) Allocate a buffer that stores a periodic array of type Gpoint_£90:

type Gpt_buffer
type(Gpoint_£90) ,pointer::p(:)
end type Gpt_buffer

type(Gpt_buffer) gpt_buf

allocate(gpt_buflp(1l:max_obs_buffer))

This buffer can be directly filled with the data that needs to be passed between
processors. The message will use the form
MPI_send(gpt_buf,npoints*size(Gpoint_£90) ,MPI_BYTE,...).

This has been prototyped, and shown to work for the f90 compiler with MPI
library on a DEC multiprocessor. However it may not be portable since 90
may not always interpret a subroutine argument as a simple pointer to a block

of memory (Hennecke 1996).

In Section 4 it was shown how the structure Obs_handle references data with
all the attributes sequentially located in memory with each observation value. In

the last step of the parallel partitioner the identifying numbers of the originating

15

processors are used to buffer the observations and their attributes and send them to
their destination processors. On the other hand, the type O0bs_Vect that is shown in
Appendix C.1 stores profiles sequentially. Redundant attributes for each profile are
stored once per profile in the type Obs_Att. The bisection process generates a type
Gpt_holder_f£90 that specifies the originating processor for the actual data. If the
data are at least sorted into profiles before the parallel partition then entire profiles
and attributes from Obs_Vect may be buffered and sent to the destination processor.
This eliminates the need to send unnecessary attributes, and eliminates the need for
equivalent structure to Obs_handle where all observations are treated as separate
atomic units (along with attributes). Hence, Obs_Vector may fulfill a role in both
message passing and in generating the R and I operators. This indicates that the
f90 types Gpt_holder_£90 and Obs_Vect may be used to perform the same function
in the message-passing f90 parallel partitioner as the C structures Gpt_handle and

Obs_handle do in PSAS JPL.

5.1.2 Matrix Block Partition

PSAS 2.1 includes, for the first time, the tangent linear observation operator F'. At
the end of the parallel partition, the observations are decomposed in profiles that are
referenced by 0bs_Vect. After that, the adjoint of the observation operator is used
to form F'Tx, which is referenced by State_Vect. This is an embarrassingly parallel
calculation since operators I'/FT transform profiles of the observation grid (€ IRP)
into profiles of the state grid (€ IR®). Therefore the forward model and its adjoint do
not need to be parallelized — a blessing since they may be dusty-deck serial code — it
is mainly for this reason that profiles are not permitted to be broken in the parallel
partitioner (section 4.1.1 and 5.1.1). For the subsequent evaluation of P/ FTz there
is a choice of maintaining a decomposition that has approximately equal numbers
of observations in each region or transforming to another representation where equal
numbers of the state grid values are in each region. The latter more closely resembles
the approach of PSAS JPL because the resulting blocks of P/ are approximately of
equal size. The parallel partitioner of PSAS JPL initially assumes that all blocks of the
innovation matrix are the same size (i.e., they cost the same to generate the block and
perform the submatrix-vector multiply). The subsequent iterative process, whereby
load-balance is ensured, uses the size of the block as a cost function. Therefore, if
we use an approximately even decomposition of the state grid the subsequent load
balance algorithm will be the same as PSAS JPL. For example, the convergence of

the load-balance calcualation would be as rapid, and the extent of load balance would

16

be expected to be the same (PSAS JPL achieves about 10% load balance after 10
iterations of the balancing process). The load balance of the operation Fa is not
necessarily assured in this algorithm. However, since the number of profiles ~ 10*
is much larger then the number of processors there would be a natural convergence
toward load balance due to the large numbers. Also, six hours of TOVS soundings
(20,000 profiles, each of which has 20 channels) takes 5 minutes of processing for the
radiative transfer calculation on a 50 megaflop/s DEC uniprocessor (J. Joiner, private
communication). Therefore, at 10 gigaflop/s the calculation should take about 1.5
seconds which is considerably less than the cost of generation of P/ and the matrix-
vector multiply (Table 1). If necessary, the operators corresponding to different types
of profiles could be costed and the result used to modify the cost function for the
evaluation and use of blocks P/ (i.e., use a more sophisticated cost function other
than the size of the blocks).

Note that the operation Rz is performed in the decomposition of the observation
grid. It may be necessary to sort Obs_vect by sounding in order to preserve in-
memory locality. This may help performance in a RISC-based processor. Other than
that, Rz is load balanced and should not require fundamental changes between PSAS
JPL and PSAS 3.0.

5.1.3 Solve Parallel Conjugate Gradient

For PSAS 3.0, the conjugate gradient algorithm is not significantly different than
PSAS JPL. The algorithms for replication of fragments of State_Vect and the sub-
sequent parallel sum of partial vectors uses values that are sorted into long vectors of

the same type. This is the same as PSAS JPL which used the structure Vect_handle.

5.1.4 Calculate Analysis Increment

The message-passing that is required to calculate P/ FTz is similar to PSAS JPL.
Matrix block lists and long vectors need to be replicated and passed as necessary.
Once again load balance may be an issue. As discussed in section 5.1.2, because
of the large number of profiles and the relatively small cost, the load balance for
FT2 may not depend on whether z is decomposed in terms of equal number of the
Obs_Vect or State_Vect. However to ensure load balance of the subsequent matrix
generation and matrix-vector multiply, the vector F7z (of type State_Vect) should
be decomposed into equal numbers in regions. In this case PSAS 3.0 can use the
same decomposition of the analysis grid Anal_Vect as PSAS JPL (Figure 3). This

will guarantee that blocks of P/ are of equal size and there will be the same number

17

on all processors. The decomposition is load balanced and static (there is no iterative
load-balancing process here). This may be a problem if we relax the restriction of
equal sized regions and equal number of regions on each processor, because the size

and number of matrix blocks assigned to processors may become disparate.

6 The Parallel Evaluation of Forecast Error Co-
variance Matrices

6.1 PSAS JPL, PSAS 2.1, and PSAS 3.0

One of the advantages of parallel computing is that the memory scales proportionally
with the number of processors (subject to cost) and may allow for the storage of the
entire forecast error covariance matrix. As described in section 4.2, if the matrix is
stored once there is a time saving proportional to the number of iterations of the
conjugate gradient solver N;. This explains in part the impressive improvement in
wall-clock time between the serial PSAS in 1994 and the parallel PSAS JPL (Table 2).
Table 2 also shows how the serial algorithm has been made an order of magnitude more
efficient through improved algorithms for calculating the matrix elements. However
there is still some saving in calculating the elements once. For a machine which
is memory deficient it may be necessary to develop an algorithm that dynamically
decides whether to store or recalculate matrix elements. The error covariance operator
P! is not evaluated as a single matrix for current serial versions of PSAS, but is
instead a series of sparse operators that act successively on a vector (A. M. da Silva,
Personal Communication). Thus, it is not a matrix that is stored, but rather a
structure of coefficients. This may make it difficult to evaluate a cost function for the
load balancing algorithm, although the large numbers of profiles per processor should
ameliorate the problem.

Currently, for an isotropic and separable formulation of the correlation function,
the lookup tables may be stored in memory on each processor. However, as we relax
these assumptions the lookup tables will grow (possibly up to the size of P/) and may
have to be decomposed in a similar way as the matrix blocks (section 4.1.2). The

next section discusses a related implementation.

6.2 Issues for Evaluating P/ on the Analysis Grid

Evaluation of a forecast error covariance matrix is a computationally intensive part of

solving the innovation and analysis equations. The amount of computation required

18

for brute-force evaluation of a general forecast error covariance matrix followed by the
matrix-vector multiplication is proportional to the dimensions of the matrix. There-
fore, in the current PSAS, the forecast error covariance matrix is evaluated directly on
the state grid instead on the larger analysis grid. We propose an efficient algorithm
which applies to a wide class of forecast error correlation functions. The algorithm
uses symmetries of the analysis grid to greatly reduce the number of correlation func-
tion evaluations over brute-force methods.

In the current PSAS, the product of matrices ZP/ZT, where P/ is the n xn and T is
s X n matrix, is approximated by the s x s matrix P/, where s is typically smaller than
n by an order of magnitude. Generally, brute-force evaluation of a full k£ x k forecast
error covariance matrix requires (k2 + k)/2 covariance function evaluations. Brute-
force matrix-vector multiplication requires &% multiplications and k? — k additions.
In the future, the number of observations p will increase, thus increasing s, as well.
If s becomes larger than n, and the interpolation matrix Z is implemented as a very
sparse matrix, it will be more efficient to use ZP/Z7 instead of P;.

For a wide class of forecast error covariance functions, the use of ZPfZ7, with
the algorithm for evaluation of P/ presented below, is computationally efficient even
if the analysis grid is refined so that n remains an order of magnitude larger than
s. Denote the multidimensional (i.e., multi-level) random field of geopotential height

forecast errors by
h(p) = {hi(p), h2(P), -, hm(P)}, (4)

where hi(p), ha(p),...,hn(p) are random fields on the sphere (Earth’s surface) of
geopotential height forecast errors corresponding to pressure levels 1,2,...,m. The

covariance of h(p) is given by the matrix of covariance functions

X(P1:P2) = {Bjx(P1,P2) } (5)

and the correlation of h(p) is given by the matrix of correlation functions

O L (6

T T
B]](plv p1)2 Bkk(pza pz)2

where Bjj, is a covariance function of the random fields h; and hy, j,k =1,2,...,m.
The algorithm we propose applies to models where 7 depends only on parameters
which are preserved under the symmetries of the uniform longitude-latitude grid on

the sphere. For instance the distance

d(py, Py) (7)

19

between p, and p, and the absolute value of the latitudes

lp1| and |y (8)

of p; and p, are preserved under rotations and reflections of the uniform longitude-
latitude grid on the sphere (¢f. Definitions 2.4 and 2.5, Gaspari and Cohn 1996). The
correlation 7 currently used in the PSAS depends only on d(p,, p,).

The covariance matrix P/, which is the analysis grid evaluation of multi-level
covariances between all the state variables (h, u, v, ¢, ps us and v,) can be written as

a product of a diagonal matrix D of standard deviations, and a correlation matrix '
P/ = DCD. (9)

Denote by ('}, the block of €' of geopotential height forecast error covariances, i.e.,
the evaluation of 7 on the analysis grid. Denote by Cyi (7, k, ¢1,2) the block of Cyy,
which is the evaluation of Bj; between the points on circle of latitude ¢, and the
points on circle of latitude w,. It is assumed that the points on each circle are sorted
with increasing longitude. Denote the number of points on each circle of constant
latitude by I. In the current PSAS, I = 144. If 7 depends only on the parameters (7)
and (8), due to the symmetries of the analysis grid, the matrix C;, has the following
structure. Each of the blocks Cui(J, k, ¢1,¢2) is a symmetric circulant matrix (see
Figure 7), so there are 2/ elements with identical values. Moreover, there are three

more blocks of C}, identical with Cpp(J, k, @1, @2),
Chh .] kv ©1, 992)

(
(
(
(

Y
Y

I
)

Jr k=1, =)
kv.jv 9927991) (10)
= Chh kv.jv_@?v_g‘ol)'

hh

I
)

hh

Therefore, there are 81 identical elements of the matrix Cpy,.

The following is a brief description of the algorithm for evaluation of C}; and
computation of the matrix-vector product z;, = C},y;, which exploits the fact that
81 elements of ('), are identical. For every set of 81 identical matrix elements of
Chp, their value is computed by one evaluation of the correlation function. These
81 matrix elements are needed in computation of some, typically 81, coordinates of
the product vector zj,. All these coordinates of zj are updated, that is the product
of the element of of ', with a coordinate of y,, is added to the previous value of a

coordinate of z,. This process is repeated until z;, is computed. A sequential version

20

of this algorithm was implemented on Cray C-98. It was up to 42 times faster than
the algorithm which was evaluating every element of the correlation matrix.

A parallel version of this algorithm has been implemented in FORTRAN 77 using
MPI on the Cray T3D. The processors are organized in a three-dimensional virtual
topology. The distribution of the work was done in a “card shuffling” manner, that

P circle of constant latitude and pressure level,

is each processor works with every n!
where n depends on the number of available processors. This distribution of the work
has the property that increasing the support of the correlation function or refining the
grid results in a more balanced load. On a grid with 8 levels and meshes of 2 degrees
in latitude and 2.5 degrees in longitude using a correlation function with support of
3000 km, the speedup of this algorithm was 75.5 on 128 processors.

In this algorithm only one value of 87 identical matrix elements is stored at one
time. The algorithm can be modified so that an [x [matrix block Cyp(p1, p2, @1, 92)
(equal to three other blocks of Cpy in equation (10)) is evaluated and stored. The
matrix-vector multiplication of this block with four subvectors of y; can be performed
using a BLAS routine.

This algorithm was described for the block Cp; of C for simplicity. If correlation
functions between state variables are modeled by the functions which are currently
used in the PSAS, the same algorithm applies to evaluation of the the entire matrix

C' and matrix-vector multiplication z = C'y.

7 Optimization and Load Balance

For message-passing optimization the messages should be few and buffered. For the
algorithm that involves communicating lists and information about geometry there are
sufficiently few bytes that this is not a significant burden. For the communication of
vector fragments the data are already effectively buffered in vectors. Ding and Ferraro
(1995) have developed a sophisticated algorithm that optimizes the accumulation of
partial sums without using the MPI_reduce function. For the communication of
observation and profile data Ding and Ferraro also buffer data and thus amortize the
startup cost of messages.

For RISC-based technology the on-processor optimization performance depends
on the ability to move data efficiently through cache to the arithmetic units and then
back to memory. The process of calculating a covariance matrix and using BLAS
calls is, in a sense, optimizing cache because the matrix is an optimal form for the

input data. For cases where C or f90 pointers are used to refer to data, they should

21

be dereferenced outside of inner loops. The quantities Rz and FTz are calculated
one profile (or sounding) at a time. P/(FTz) is calculated using BLAS functions.
F(P/FTz)is calculated one profile (or sounding) at a time. The evaluation of matrix
elements, which is a significant cost, may require prototyping and cache optimization.
In particular, indirection is a major problem for cache optimization. For example,
modern RISC-based processors may have up to two orders of magnitude difference
between the time it takes to access data in cache (cache is usually kilobytes in size)
and the time to access remote data in physical memory. It is often more efficient
to separately sort data and thus avoid indirection on inner loops. For example, for
isotropic horizontal correlation functions it may be useful to sort the profile pairs in
order of increasing distance before indexing the lookup table in a loop.

The load-balancing algorithm of Ding and Ferraro was very successful. We have
shown in section 5.1.2 that for PSAS 2.1 and PSAS 3.0 with observation operators
there is no conceptual difficulty with following the same approach. However, the
analysis equation may create problems because it is not self adjusting; it relies on the
fact that blocks of P/ on each processor in the folding-back decomposition (Figure
3) are the same size and cost. This would be difficult to maintain if we broke the

requirement of having the same number of regions of observations on each processor.

8 Input/Output and the PSAS-GCM Interface

The calculation of the innovation requires transformation from the analysis grid on
which the forecast is generated and an observation grid. In principle this is not an
excessive cost in terms of message-passing because the model grid which has p ~ 10°
variables (i.e., ~ 107 bytes) would take approximately 0.1 seconds to be arbitrarily
transformed on a parallel computer with a net bandwidth of ~ 100 megabytes/s (these
back of the envelope calculations always represent an underestimate because of the
hidden cost of message latency). The difficulty is one of writing efficient, modular
software that transforms data between the structured analysis grid (it may be the
domain decomposition of the GCM) and the unstructured observation grid. Similarly,
on the back end of PSAS efficient software needs to be developed for transforming
between the domain decomposition for the analysis grid of PSAS and that of the
GCM. Writing the analysis grid or observation data streams (ODS, da Silva and
Redder 1995) to disc using, say, MPI-IO will also need these grid transformation
tools. It will be so easy to get beaked to death by a thousand ducks.

22

9 Parallel Quality Control

The present on-line quality control is a two-stage process (Seablom et al., 1991). The
gross check compares innovations (w® — Hw/) against a specified upper bound. For
any even distribution of profiles on processors, such as given by the parallel partition
(section 4.1.1) the gross check is obviously load-balanced and embarrassingly paral-
lel. Those observations that fail the gross check are flagged and a subsequent buddy
check is performed. This involves comparing the suspect value with a statistically
interpolated estimate based on a number of nearest-neighbor unflagged observations.
The comparison amounts to data indirection with its concomitant cache inefficiency.
Unless a significant number of observations are flagged it is probably not efficient to
sort the data for buddy check. Efficiency is further complicated by a dependency in
the comparison loop that allows re-accepted data to influence not-yet-buddy-checked
data. The parallel quality control algorithm of von Laszewski (1996) uses a domain
decomposition based on the analysis grid. Clearly, it makes more sense to use the
parallel partition of observations (section 4.1.1) as a basis for the quality control in
PSAS 3.0, in effect leveraging the work that is already done for the domain decompo-
sition of PSAS. Overlap regions of redundant data are used to parallelize the loop for
the buddy check. Because of the redundancy, some processors have to wait for others
to complete their fragment of the buddy-check loop, thus giving rise to a potentially
pathological load imbalance. von Laszewski calculates that the number of observa-
tions that fail the buddy check is usually small enough that the load imbalance does
not adversely affect overall performance. However if optimal performance is required
then the algorithm itself may have to be modified to eliminate the the dependency in
the buddy-check loop, rendering the buddy-check embarrassingly parallel.

10 Reproducibility

There are two aspects of reproducibility for PSAS. First, the same problem (i.e.,
same values of all physical and numerical parameters) should give bitwise identical
results, with the exception that roundoff may vary with the number of processors,
N,. This may occur for the partial vector sum algorithm (section 4.1.2 and 4.1.4)
where, for different numbers of processors, additions may be performed in a different
order. Often, the guarantee of bitwise identical results are helpful for debugging. For
PSAS (and a lot of other parallel applications, especially those that use standard

“reduction” library functions) this can only be guaranteed for runs on the same

23

numbers of processors.

The second aspect of reproducibility is that results (e.g., the value of the analysis
increment) may vary up to the middle order bits when the number of regions, N,, is
changed (i.e., truncation, but not necessarily “error”). Of course, there are a number
of other parameters that affect truncation (e.g., number of iterations of the conjugate
gradient NNV;) but the number of regions is a special case because it is coupled to the
configuration of the parallel computer. At present, N, must not only be a power of
two (because of the recursive bisection algorithm) but it must be an integer multiple
of the number of processors in order that the analysis equation be load balanced.
Typically, PSAS JPL is run with ~ 10° observations, 512 regions, and 256 or 512
processors. For the Intel Paragon, with about 8 gigabytes of available memory, we
cannot run with fewer than 256 processors because of the storage of P/. This may
turn out to be too inflexible in terms of the use of PSAS as a production/scientific
tool on a range of computing platforms. The obvious modification is to allow the
recursive partitioner to select a non-powers-of-two decomposition of observations into
regions. In this case, to ensure load balance the algorithm for the analysis equation
would have to be self adjusting in a similar way as the load-balancing process for the
matrix block partition (section 4.1.2) A second problem with truncation may arise for
inhomogeneous observation patterns. The parallel partitioner will generate relatively
large regions (in terms of physical area) where data are sparse. In this case the use
of the data centroids of regions as a criterion for applying the correlation cutoff may
be inconsistent. A more rigorous approach may base the cutoff on the minimum
distance between vertexes of regions. This in turn will adversely affect load balance
of the analysis equation, which assumes blocks of P/ to be approximately of the same
size. Once again, the solution may be a self adjusting load balancing algorithm for
the analysis equation.

At present, compactly supported correlation functions (that are exactly zero be-
yond a fixed distance) are being used in PSAS. Another issue related to truncation is
that applying a cutoff to matrix blocks based on distances between centroids of data
applies a harsher truncation than the case where the compact correlation function is
evaluated pointwise on an observation grid. This potential problem is worse for par-
allel PSAS because the regions are unstructured, as opposed to the present scientific

PSAS which uses structured (icosahedral) regions.

24

11 Portability, Reusability, and Third-Party Soft-
ware

There are several key functions in PSAS JPL that may be modified and installed as
(C-based) library for PSAS 3.0. It should be noted that these higher level functions
of PSAS JPL were written with clean modular interfaces (often a single input and
single output handles), which should make their modification fairly simple. Providing
precautions are taken with the interfaces, there should be no problem calling C-based
libraries from f90 code — especially when the f90 compiler has a Fortran 77 heritage

(J. Michalakes private communication).

o The parallel partitioner was based on a general design that has a wider range of
applications than earth science (Ding and Ferraro 1995). Hence it is a sturdy
algorithm and may be modified for PSAS to allow for a non-power-of-two num-
ber of regions. We may also want to implement a flexible decomposition based
on the observation grid and/or the state grid (section 5.1.2). This should be
prototyped.

e The matrix block partitioner may be easily modified to include a more general
cost function for the load-balancing process. As pointed out in section 5.1.2

this is straightforward for an data decomposition based on the state grid.

e The custom algorithm for combining partial vectors in the parallel matrix solve

may be packaged as a library function.

e The analysis grid decomposition and algorithm for the analysis equation could
be packaged, although considerable modification may be required to allow for

self-adjusting load balanced algorithm.

Finally, as discussed in section 5.1.1 there may be some portability problems
where f90 types are used as arguments for MPI message-passing functions (Hennecke
1996). This should be prototyped, even to the extent of generating a set of diagnostic

functions to run on target parallel platforms libraries and compilers.

Acknowledgments

The original design of the parallel PSAS was developed in consultation with Robert
Ferraro of the Jet Propulsion Laboratory. We would also like to acknowledge use-

ful discussions with Max Suarez and Dan Schaffer at Goddard. The work of Chris

25

Ding at the Jet Propulsion Laboratory and Peter Lyster and Jay Larson at the Data
Assimilation Office was funded by the High Performance Computing and Communi-
cations Initiative (HPCC) Earth and Space Science (ESS) program, contract number
NCCS5-150.

26

References

DAO Staff: Algorithm Theoretical Basis Document for Goddard Farth Observing
System Data Assimilation System (GEOS DAS), Data Assimilation Office God-
dard Space Flight Center, Greenbelt, MD 20771.

Ding, H. Q., and R. D. Ferraro 1996: An 18GFLOPS Parallel Data Assimila-
tion PSAS Package, Proceedings of Intel Supercomputer Users Group Confer-
ence 1996. To be published in Journal of Computers and Mathematics; also
Ding, H. Q., and R. Ferraro, 1995: A General Purpose Parallel Sparse Matrix
Solver Package, Proceedings of the 9th International Parallel Processing Sym-
posium, p. 70.

Farrell, W. E.; A. J. Busalacchi, A. Davis, W. P. Dannevik, G-R. Hoffmann, M. Kafatos,
R. W. Moore, J. Sloan, T. Sterling, 1996: Report of the Data Assimilation Office
Computer Advisory Panel to the Laboratory for Atmospheres.

Gaspari, G., and S. E. Cohn, 1996: Construction of Correlation Functions in Two
and Three Dimensions. DAQO Office Note 96-03. Data Assimilation Office,
Goddard Space Flight Center, Greenbelt, MD 20771.

Golub, G. H. and C. F. van Loan, 1989: Matriz Computations, 2nd Edition, The
John Hopkins University Press, 642pp.

Hennecke, M., 1996: A Fortran 90 interface to MPI version 1.1. RZ Universitat
Karlsruhe, Internal Report 63/96.
http://ww.uni-karlsruhe.de/"Michael .Hennecke/

Lamich, D., and A. da Silva, 1996: Data and Architectural Design for the GEOS-2.1
Data Assimilation System Document Version 1. DAO Office Note 97-7¢ (in

preparation). Data Assimilation Office, Goddard Space Flight Center, Green-
belt, MD 20771.

von Laszewski, G. 1996: The Parallel Data Assimilation System and its Implications
on a Metacomputing Environment. PhD. Thesis Computer and Information

Science Department, Syracuse University.

Lyster, P. M., and Co-I's, 1995: Four Dimensional Data Assimilation of the At-
mosphere. A proposal to NASA Cooperative Agreement for High Performance

Computing and Communications (HPCC) initiative.

27

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J Stobie, A. da Silva,
1995: Documentation of the Goddard Earth Observing System (GEOS) Data
Assimilation System — Version 1. NASA Tech. Memo. No. 104606, Vol. 4, God-
dard Space Flight Center, Greenbelt, MD 20771. Available electronically on the
World Wide Web as ftp://dao.gsfc.nasa.gov/pub/tech_memos/volume_4.ps.Z

Seablom, M., J. W. Pfaendtner, and P. E. Piraino, 1991: Quality Control tech-
niques for the interactive GLA retrieval /assimilation system. Preprint Volume,
Ninth Conference on Numerical Weather Prediction, October 14-18, Denver,
CO, AMS, 28-29.

da Silva, C. Redder, 1995: Documentation of the GEOS/DAS Observation Data
Stream (ODS) Version 1.01, DAO Office Note 96-01. Data Assimilation Office,
Goddard Space Flight Center, Greenbelt, MD 20771.

da Silva, A., J. Guo, 1996: Documentation of the Physical-space Statistical Analy-
sis System (PSAS). Part I: The Conjugate Gradient Solver, Version PSAS-1.00.
DAO Office Note 96-02. Data Assimilation Office, Goddard Space Flight Cen-
ter, Greenbelt, MD 20771.

da Silva, A., J. Pfaendtner, J. Guo, M. Sienkiewicz, and S. Cohn, 1995: Assessing
the Effects of Data Selection with DAQO’s Physical-space Statistical Analysis
System. Proceedings of the second international symposium on the assimilation
of observations in meteorology and oceanography, Tokyo Japan, World Meteo-

rological Organization.
Stobie, J. 1996: GEOS 3.0 System Requirements.

Zero, J., R. Lucchesi, R. Rood, 1996: Data Assimilation Office (DAQO) Strategy

Statement: Evolution Towards the 1998 Computing Environment.

28

Appendix A: List of Symbols and Definitions

A.1 List of Symbols

n number of analysis gridpoints x number of variables — n ~ 10°
p number of observations p ~ 10°
s dimension of the state vector (size of the state grid)
w* gridded analysis state vector e rR”
w gridded forecast state vector e rR”
w? observation vector € Irr
H tangent linear generalized interpolation operator H:IRP — IR"
Z interpolation operator I:R\— IR/
F' tangent linear observation operator T:IR/ — IRV
P/ forecast error covariance matrix
defined on the analysis grid P/ R — IR
P/ forecast error covariance operator
defined on the state grid P/ IR — IR
R observation error covariance R: IR — IRP
ps sea level pressure hPa
us zonal surface wind speed m/s
vs meridional surface wind speed m/s
u upper air zonal wind speed m/s
v upper air meridional wind speed m/s
h pressure level height km
g moisture mixing ratio g/ke
N, number of processors used for a run
N, number of regions used to partition the observations
N; number of iterations of the conjugate gradient solver
A .2 Definitions
Analysis grid The latitude-longitude-pressure grid of the model
analyzed fields (a structured grid)
Observation grid The grid of locations of observations (an

unstructured grid)

State grid The grid of locations of analysis grid

29

interpolated to the horizontal location of

the observation profiles (a quasi-structured grid)

A .3 Versions of algorithms

GEOS 2.1 Goddard Earth Observing System Data Assimilation System
that will incorporate observation operators.

GEOS 3.0 Goddard Earth Observing System Data Assimilation System
that will incorporate parallel software.

PSAS 2.1 The version of PSAS with observation operators.

PSAS 3.0 The parallel version of PSAS with observation operators.

PSAS JPL The earlier developmental version of PSAS (1994)

that was parallelized by Jet Propulsion Laboratory.

A.4 PSAS JPL Datatypes

Obs_handle Structure that references innovations (w® — wa) and
observation attributes (value and attributes are
co-located in physical memory, and the total
dataset is stored in a contiguous buffer).

Gpt_handle Structure that references the (x,y,z) locations of
profiles projected onto the unit sphere (each
atom (x,y,z) is co-located in memory, and the total
dataset is stored in a contiguous buffer).

Vec_handle Structure that references vectors of observations,
and attributes such that each value is represented in
physical memory as a long vector, and each attribute
is separately in physical memory as a long vector.

Grd_handle Structure that references indices and arrays that describe
the decomposition of the analysis grid for the parallel
analysis solve.

Gvec_handle Structure that references the grid values on the domain
decomposed analysis grid, stored in physical memory as

a long vector.

30

A.5 PSAS 2.1 Datatypes

Obs_Vect The 90 type which references the observations that are sorted

into profiles by kr, (ks), kt, kx, lat, lon, (ks), lev
i.e., the vector € IR?

State_Vect The 90 type which references the state grid that is sorted

into profiles by kr, kt, lat, lon, lev
i.e., the vector € IR’

Anal_Vect The 90 type which references the analysis (and forecast) grid;

each variable (us, vs, ps, u, v, h, q) are stored in

physical memory as long vectors.

A.6 Data Attributes

kr
ks
kt
lat
lon
km
qc
val

Region
Sounding

Type

Latitude
Longitude
Meta-data
Quality Control

Value, or innovation

31

Appendix B: PSAS JPL Data Structures
B.1: Obs_handle Structure

/* data structures for observations. Written by Chris H. Q. Ding at JPL */

#include "ktmax.h"

/* structure for an individual observation point */

typedef struct {

int id ;
int kt ;
int kx ;

Rvalue rlats;
Rvalue rlons;
Rvalue rlevs;
Rvalue xyz[3];
Rvalue del;
Rvalue sig0;
Rvalue sigF;

} Observ;

/* all observation point data in a region. */

typedef struct{
int reg_id;
int numObs;
int ktlen[KTMAX];
int kt_typlen[KTMAX];
int totlen; /* length in bytes of this object with variable length */
Rvalue cent_mass[3]; /* center of mass of all observation points */
Rvalue extension[3]; /* rms distance in all 3 directions */
Observ *observs; /* sorted when pass to matrix build */
Observ observloc;

} Obs_region;
/* top structure to hold all obs_regions address on this processor */

typedef struct{

int numRegs;

32

Obs_region ** obs_regions;
int obs_regions_limit;

} Obs_handle;

33

B.2: Gpt_handle Structure

/* data structures in partitioner.c Written by Chris H. Q. Ding at JPL */
#define NDIM 3 /* dimension of space, Partition bases on x,y,z */

/* structure for an individual geometric point on the surface */
typedef struct {

Rvalue coord[NDIM];

int orgn_proc; /* original processor when partitioning started */

int id; /* sequencial id number when partitioning started */

/* Both orgn_proc and id are for keeping track of grids
* movement purose, and are not referred to in partitioner. */

} Gpoint;

/* all gpoints in a region. Used for partition purpose */
typedef struct{
int reg_id;
int numGpts;
int totlen; /* length in bytes of this object with variable length */
Rvalue cent_mass[NDIM];
Rvalue extension[NDIM];
int gpoints_limit; /* used during parallel partitioning,
indicating # of gpoints allocated for *gpoints */
Gpoint *gpoints;
Gpoint gpointLoc; /* gpoints points to this location */
} Gpt_region;

/* top structure to hold all gpt_region address in this processor */
typedef struct{

int numRegs;

Gpt_region ** gpt_regions;

int gpt_regions_limit;

} Gpt_handle;

34

B.3: Vec_handle Structure

/3t s s sk sk st st sttt stttk ok ok sk sk sk sk sk sk s sk sk sk stk stk sk kst sfofskofskofskok ook ok ok skok sk kol sk stk sk stk kel sk kok sk ok ko
Data structure for observations stored as 20 arrays, each of them has

a length "reglen" and is pointed by a pointer defined in vec_region.

These arrays are stored in memory immediately following the memory for

vec_region itself, so the whole thing can be moved in one piece.

The total length of the structure and arrays is 'size'" bytes.

To save memory in the folding back part, one could store only
rlats, rlons, rlevs, xobs, yobs, zobs, qcosp, gsinp, qcosl, gsinl,
kx, kt and xvec vectors, 13 vectors, instead of 20 vectors needed for
the correlation matrix part. Not yet implemented.

st ok ok ke ok ok o ok ok ok ok ok ok sk ok e skeok ok ok sk ok sk ok sk skok ok ok o sk ok ok ok sk skok s skok ok sk ko sk sk ok sk skok ok sk ok ok sk ok sk skok sk k sk kR sk ko ok /

/* Written by Chris H. Q. Ding of JPL */

/*
#include "ktmax.h"
#include "Rvalue.h"

#include "maxsizes.h"

*/

typedef struct {

/* The rlats, rlons, rlevs, xobs, yobs, zobs, kx, kt, id vectors
are directly from obs_region */

Rvalue *rlats; /* latitudes */

Rvalue *rlons; /* longitudes */

Rvalue *rlevs; /* pressure levels */

Rvalue *xobs; /* xobs = cos(rlats)*cos(rlons) */

Rvalue *yobs; /* yobs = cos(rlats)*sin(rlons) */

Rvalue *zobs; /* zobs = sin(rlats) */

/* qcosp, gsinp, qcosl, gsinl are computed in form_vec_regions() */

Rvalue *qcosp; /* cos(rlats) */

35

Rvalue *gsinp; /* sin(rlats) */
Rvalue *qcosl; /* cos(rlons) */
Rvalue *gsinl; /* sin(rlons) */
Rvalue *del; /* used only to calculate bvec = del*Dinvii.

Current, xvec is stored here */

/* The following 5 vectors, sigO, sigF, Onorm, Fnorm and Dinvii
are used only for constructing the correlation matrix */

Rvalue *sig0; /#* used only to calculate Onorm = sigO*Dinvii */

Rvalue *sigF; /* used only to calculate Onorm = sigF*Dinvii */
Rvalue *Onorm; /* could use the same memory for sigQ */
Rvalue *Fnorm; /* could use the same memory for sigF */

Rvalue #Dinvii; /* Dinvii = 1/sqrt(sig0**2 + sigF**2) */

/* bvec is used only for solving the correlation matrix */

Rvalue *bvec; /* could use the same memory for del */

/*

Rvalue *xvec; solution to the CG part. This array differs from all other
arrays in that is it allocated right before CG part

*/

int reglen; /* number of observation points in this region */

int ityplen[KTMAX];

int *kx; /* kx type for each obs */

int *kt; /* kt type for each obs */

int *id; /* sequence id from the sequential preprocessing part*/

int reg_id;

int float_offset; /* no. of bytes from start of this structure to rlats*/

int Rvalue_offset; /* no. of bytes from start of this structure to bvec */

int 1int_offset; /* no. of bytes from start of this structure to kx */

long size; /* total number of bytes used by this region */

Rvalue cent_mass[3]; /* center of mass, for checking correlaion purpose */

int 1is_owned; /* =1 if owned, =0 if not owned */

} Vec_region;

/* The top structure to hold all vec_regions address on this processor */

36

typedef struct{
int numRegs;
Vec_region ** vec_regions;
int vec_regions_limit;
char *mem_non_owned_regs; /* starting memory location for non-owned regs */
int num_owned_regs;

int owned_regs_list[MAXREGNS]; /* list of reg_ids for owned vec_regions */
} Vec_handle;

37

B.4: Grd_handle Structure

/* grids related data structures. Written by Chris H. Q. Ding of JPL */

/* active grids --- those grids after decimation.

static grids --- the grids before decimation, i.e., those basic grids.

Each grd_region essentially defines a template for the grids in the
region. They are all active grids since gvec_region will generate vectors

based on these grids.

All global_vector are based on active grids.
All universal_vectors are initially based on active grids. After

expand_uvec(), universal_vecs are based on static grids.

*/

/* The structure to define a grd_regions */

typedef struct{
int reg_id;
int num_grids; /* # of active grids in this region */
int num_corr; /* # of obs regions correlated to this region */
int num_gds_latlong[2]; /* # of active latitude grids and longitude grids */
int start_loc; /* starting location in the active universal vector */
int n_long_grids_zone; /* # of active longitude grids at this zone */
Rvalue start_latlong[2]; /* lat-long cordinates of the lower-left corner */
Rvalue cent_latlongl[2];
Rvalue cent_mass[3];

} Grd_region;

/* The top structure to hold all grd_regions on this processor */
typedef struct{

int numRegs;

Grd_region ** grd_regions;

int grd_regions_limit;

int tot_active_grids; /* sum of active num_grids of all grd_regions */

/* this is the currently used grids after decimation */

38

int n_long_grids[TOT_LAT_GRIDS] ; /* # of active longitude grids
at each latitude. */
int tot_static_grids; /* # of static grids on the surface */
int tot_grids_lat; /+* # of static latitudinal num_grids */
int tot_grids_lon; /* # of static longitudinal num_grids */
} Grd_handle;

39

B.5: Gvec_handle Structure

/* grids

related data structures. Written by Chris H. Q. Ding of JPL */

#define NFVECS 9 /* # of Rvalue vector in gvec_region */

/* Note:

to "act

/* The s
typedef
int
int
int
int
int
int
int
Rvalue
/* mem
Rvalue
Rvalue
Rvalue
Rvalue
Rvalue
Rvalue
Rvalue
Rvalue
Rvalue

Rvalue

/*

all num_grids, max_numgrds, tot_numgrds in gvec_region refers

ive" grids, i.e., those grids after decimation. */

tructure to define a gvec_region */

struct{

reg_id;

num_grids; /* # of active grids in the gvec_region */

num_corr; /* number obs_regions this gvec_reg correlates to */
obs_corr_list; / list of correlated obs_region reg_ids */
global_offset; /* starting position in the global_array */
size; /* =sizeof (Gvec_region) + num_grids*9*sizeof (float) */

kx; / points to a vector of all 0’s, no memory allocated */

glevs; / points to a vector of all glev’s, no memory allocated */
ory allocated for the following 9 Rvalue vectors, starting at strLoc */

*glats;

*glons;

*xgrid;

*ygrid;

*zgrid;

qcospg; / cos(lat) */

qsinpg; / sin(lat) */

qcoslg; / cos(lon) */

qsinlg; / sin(lon) */

cent_mass[3];

INC_SUBVEC **inc_subvecs; ** increment sub-vectors for many kt and level **

int
*/

/* Grd_
int

Rvalue

num_inc_subvecs;

region *grd_link; points to the corresponding grd_region */
vec_reg_corrlist; / list of correlated vec_regions, by reg_id */

strloc; /* starting location of the 9 float vectors */

40

} Gvec_region;

/* The top structure to hold all grd_regions on this processor */

typedef struct{

int n_gvec_regs; /* number of gvec_regions on this proc */
Gvec_region **gvec_regions; /* array of pointers */

int gvec_regions_limit; /* # of allocated gvec_regions pointers */
Rvalue *PHmatrix; /* points to memory for largest PH matrix blk */
int PHmatrix_limit; /+* size of the largest PH matrix blk */

int max_numgrds; /* max of any single gvec_region on this proc */
int tot_numgrds; /#* sum of num_grids on all gvec_regions on this p*/
Rvalue preslevels[MAXLEVELS] ;

int nlevels; /* # of pressure levels to be folded back */

int *xkx_buffer; /* buffer for the kx-array for grids */

Rvalue *plev_buf; /* buffer for the pressure level-array for grids */
Rvalue *plev_ptr[MAXLEVELS]; /* pointer array for each pressure level */

} Gvec_handle;

41

Appendix C: GEOS 2.1 Data Types
C.1: Obs_Vect Type

type Obs_Att
integer: :kr,kt ,kx,ks,km
real::lat,lon

end type Obs_Att

type 0Obs_Prof
integer: :nlev
type(Obs_Att) : :att
real, pointer :: val(:)
integer, pointer::qc(:)
real, pointer::lev(:)

end type Obs_Prof

type Obs_Vect

integer: :nprof

type(0bs_Prof), pointer :: prof(:)
end type Obs_Vect

C.2: State Vect Type

type State_Att
integer: :kr,kt
real::lat,lon
real::x,y

end type State_Att

type State_Prof
integer: :nlev
type(State_Att)::att

real, pointer :: val(:)

42

real, pointer::lev(:)
real, pointer::z(:)

end type State_Prof

type State_Vect

integer: :nprof

type(State_Prof), pointer :: prof(:)
end type State_Vect

C.3: Anal Vec Type

type Anal_Vect

real, pointer::us(:,:)
real, pointer::vs(:,:)
real, pointer::slp(:,:)
real, pointer::u(:,:,:)
real, pointer::v(:,:,:)
real, pointer::h(:,:,:)
real, pointer::q(:,:,:)

end type Anal_Vect

43

Appendix D: GEOS 3.0 Proposed Data Types

D.1: Gpt_handle £90

Note that Gpt_holder f90 emulates the structure of Gpt_handle that is used in PSAS
JPL.

type Gpoint_£90
real: :coord(3)
integer: :orgn_proc
integer: :id

end type Gpoint_£90

type Gpt_region_£90

integer: :reg_id

integer: :numGpts

integer: :totlen

real::cent_mass(3)

real: :extension(3)

integer: :gpoints_limit
type(Gpoint_£90) ,pointer: :gpoints(:)
end type Gpt_region_f90

type Gpt_holder_f£90

integer: :numRegs
type(Gpt_region_£90) ,pointer: :gpt_region(:)
end type Gpt_holder_f90

44

Appendix E: Notes on the JPL Parallel PSAS Code

E1. Where the JPL Parallel PSAS is Archived

The code is a public-domain code available through the High Performance Com-
puting and Communications (HPCC) Software Exchange, and can be obtained via
anonymous ftp at the universal resource locator (URL)
ftp://hera.gsfc.nasa.gov/pub/hpcc/PSAS.T3D.FIXED/mpiPSAS. tar

Note that this tar file contains both the source code and sample data, and thus is
quite large. The total disk space needed for the tar file alone is over 61 Mbytes, and
the directory tree structure that results when it is untarred occupies over 70 Mbytes
of disk. To be safe, one should have on the order 150 Mbytes to download, compile,
and run the JPL PSAS.

E.2 About the Source Code for the Parallel PSAS

The parallel PSAS is a hybrid code, comprising 105 files of C source code (15107 lines
of source code), along with 47 FORTRAN 77 files (7623 lines of source code). The

source code is organized in a directory hierarchy summarized below:

e distr: This directory contains code that accomplishes the distribution of ma-

trix blocks of the innovation matrix and related codes.

e £il1l: Organize and fill in blocks of the forecast error covariance matrix and

related codes.

e fold old: Solution of the innovation equation. This operation is sometimes
referred to as the foldback, since it involves folding the CG solution = from the

observation grid to the analysis grid.

o ftrnnew: FORTRAN codes containing the parameterizations of forecast error
covariances, et cetera. One could argue that the bulk of the science behind

PSAS lies here in these routines.
e include: The header files for all the C programs.

e io: Input/Output-related codes, including read data.c, read parameter.c,

et cetera.

e misc: miscilaneous service routines, such as print matrix.c, printflag.c, et

cetera.

45

o mv: The parallel matrix-vector multiplication code lies here, along with the rest

of the parallel conjugate-gradient solver (cg_solver) source code.

e part: Source code for both the parallel and sequential partitioners and their

related routines.

e src: The driver program, main.c. As mentioned in the previous section, this

is the directory from which PSAS is compiled via the command make all

e run: Directory from which one runs the parallel code. Sample input data,
along with file param.in, which contains the control parameters for the parallel
PSAS. The file Read.me contains detailed instructions on running the code,

information regarding test cases, et cetera.

E.3 Building the Executable JPL Parallel PSAS

Once one has downloaded the tar file mpiPSAS.tar, the procedure outlined below
should be followed to build the executable. One should note that the current distri-

bution of the code is configured to be compiled on either the Intel Paragon or the

Cray T3D (default).

1. Create a directory as your main PSAS directory from which will serve as the
root, whose descendents will include directories containing all the source code,
support data, and a directory from which to execute the code. The suggested
directory name is mpiPSAS (parallel PSAS). On Unix systems (and in this
section a unix-like operating system is assumed from this point foward), this

directory can be created by typing the command mkdir mpiPSAS

2. Next, go to the mpiPSAS directory (use command cd mpiPSAS). Move the tar
file mpiPSAS.tar to this directory (or, for that matter, move to this directory
and download the tar file mpiPSAS.tar into this directory). Unpack the tar
file using the command tar -xvf mpiPSAS.tar which will create the directory

structure containing the source code, data, et cetera.

3. At this point, it is necessary to set some environment variables associated with
the compilation process using make, and also the execution of the code. In the
directory mpiPSAS, typing the command source ./setup will accomplish this.
For the shells csh or tcsh, one can alter the .cshrc file to set this variable by

adding the line setenv PSASHOME mpiPSAS Adding this line to the .profile

46

file is necessary for users of the ksh and bash shells. In any event, this action
sets the environment variable PSASHOME, which can be verified by the command

echo $PSASHOME

4. Now it is possible to proceed with the installation of the code. In the directory
mpiPSAS/src type the command make all This is a lengthy process that ulti-
mately produces the executable file main, which is then moved to the directory

mpiPSAS/run.

E.4 Running the JPL Parallel PSAS

Once the code has been compiled, and is configured to run on nprocs processing
elements, it may be run on the Cray T3D via the command main -npes nprocs

In order to run correctly, the contents of the parameter file param.in have to be
specified correctly. Below is a listing of the parameters found in param. in, along with
their significance. A sample listing of param.in can be found in Appendix E.5. Note

that the entries in the parameter file must be in order and with no omissions.
e datafile= the input data file containing innovations.
e incvfile= the output data file, containing the analysis increment vectors
e nobs= the number of observations
e totregns= the total number of observation regions

e max_iter=the maximum number of iterations for the Conjugate Gradient (CQG)

solver

e precond_iter= maximum number of iterations for the preconditioner to the

CG solver
e tolerance= fractional change at which CG solver terminates successfully
e precond_tol= same as above for the preconditioner CG solver
e decimate= 1 for equal-area grids, 0 otherwise
e write_incvc= 0=no write; 1= to binary file incvec.out; 2=to stdout

e want_slu= 1 fold back sea level u-wind, 0 otherwise

47

want_slv= 1 fold back sea level v-wind, 0 otherwise

want_slp= 1 fold back sea level pressure, 0 otherwise
want_uwnd= 1 fold back up air u-wind, 0 otherwise

want_vwnd= 1 fold back up air v-wind, 0 otherwise

want_hght= 1 fold back up air geo hight, 0 otherwise

want mixr= 1 fold back up air mix ratio, 0 otherwise

plevel low= Upper air pressure level lower limit

plevel high= Upper air pressure level upper limit

ncols= Number of columns of processors

nrows= Number of rows of processors

printflag= Printging flags. set printflag=-1 will give all options
ebugflag= Debugging flags. set printflag=-2 will give all options
printproc= The processor on which data are printed.
stopflag= > 0 stop execution at the ith place. < 0 no stop
freeflag= Free parameter for convenience. Can be used for anything

rho= Parameter used in simulated annealing load-balance algorithm for maxtrix

block distribution (currently not used)

beta= Parameter used in simulated annealing load-balance algorithm for max-

trix block distribution (currently not used)

rm_seed= Random number seed for maxtrix block distribution load balancing

scheme

niter= Number of iterations for maxtrix block distribution load balancing

scheme.

48

E.5 Procedures for Modifying the Source Code

The makefile system for the source code is a multi-directory, two-pass system with all

the necessary cross-checking of dependencies. All relations are specified in one and

only in one place. A modification of the makefile (e.g., adding a source code file)

should be made in makefile.org, not makefile. The dependencies on the header

files will be accounted for automatically. After a change of makefile.org in one or

any directories, all you need to do to re-compile the codes is to type make all in the

mpiPSAS/src directory.

If one wishes to modify any of the C or FORTRAN source code, or modify any of

the header (.h) files, one can, following this procedure:

1.

Go to the relevant directory, and edit the C (.c), FORTRAN (.f), or header
(.h) file

2. In that directory, type the command make all

3. Go to the mpiPSAS/src directory, and type the command make all to build a

new executable main. Note that one can skip step 2 and simply execute this

step with the same result.

If one wishes to modify the source code by adding further source code files (C or

FORTRAN), it is accomplished as follows:

1.

Go the relevant directory and add the new source code file

. Change the makefile.org file to reflect this new source code

Type the command make makefile in that directory, which will create a new

makefile.
Type command make all in that directory.

Go to the directory mpiPSAS/src and type the command make all to get a new
executable main. Note that this step alone can accomplish what was outlined

in the two previous steps.

If one wishes to refresh file dependecies, change or split header files into more

header files, et cetera, such actions are equivelent to rebuilding the entire PSAS

system. Here is what needs to be done subsequent to such changes:

49

1. Execute the command touch makefile.org in the appropriate or all direc-
tories. This can also be done via touch */makefile.org from the directory

mpiPSAS/src.

2. Go to the directory mpiPSAS/src and type the command make all to build the

new executable main.

Finally, it should be noted that there are files present in the source code direc-
tory hierarchy that are needed by make to correctly implement the cross-directory

compilation procedure. If these files are missing or incorrectly modified, make could

fail.
o The file mpiPSAS/compile contains predefined flags and variables used by make.

e In each of the source code subdirectories, there should be a makefile, which

contains make rules for the files in that directory

e In each of the source code subdirectories, there is a file entitled LINKFILES, in
which filename and dependency information to the master makefile in mpiPSAS/src.

It is generated from the local makefile.

50

E.6 Sample Input Parameter File param.in

datafile=dataCRAY.51990 /* input data file */

incvfile=incvec.51990 /* output data file, increment vectors */

nobs=51990 /* number of observations */

totregns=512 /* number of observation regions */

max_1iter=150 /* max iteration in Preconditioned Conjugate Gradt solver */

precond_iter=150 /* max iter in the Preconditioner which is also a CG solver */
tolerance=0.001 /* residual reduction factor in PCG solver */

precond_tol=0.001 /* residual reduction in the Preconditioner itself */
decimate=1 /* 1 for equal-area grids, O otherwise */

write_incvc=1 /* O0=no write; 1= to binary file incvec.out; 2=to stdout */

want_slu=0 /* 1 fold back sea level u-wind, 0 otherwise */
want_slv=0 /* 1 fold back sea level v-wind, 0 otherwise */
want_slp=0 /* 1 fold back sea level pressure, 0 otherwise */
want_uwnd=1 /* 1 fold back up air u-wind, O otherwise */
want_vwnd=1 /* 1 fold back up air v-wind, O otherwise */
want_hght=1 /* 1 fold back up air geo hight, O otherwise */
want_mixr=1 /* 1 fold back up air mix ratio, O otherwise */

plevel_low=19.0 /* pressure level lower limit : min=9.0 */

plevel_high=1501.0 /* pressure level upper limit : max=1001.0 */

ncols=0 /* the # of processors on columes */

nrows=1 /* the # of processors on rows */

printflag=0 /* printging flags. set printflag=-1 will give all options */
debugflag=0 /* debugging flags. set printflag=-2 will give all options */
printproc=0 /* the processor on which data are printed. */

stopflag= 0 /* >0 stop execution at the ith place. <=0 no stop. */
freeflag=-19 /* Free parameter for convenience. Can be used for anything */
rho=1.0 /* for maxtrix block distribution */

beta=10. /* for maxtrix block distribution */

rm_seed=12345 /* for maxtrix block distribution */
niter=10 /* for maxtrix block distribution */

/* Don’t change the sequential order of lines. They are important */

51

Appendix F: Workshop Participants

Workshop I: September 30 - October 4, 1996, DAO, Goddard Space Flight Center
(GSFC), Greenbelt, Maryland.

e P. M. Lyster (chair), Meteorology Department and Joint Center for Earth Sys-
tem Science (JCESS), University of Maryland.

e A. M. daSilva, General Sciences Corporation and NASA Goddard Space Flight
Center (GSFC)

C. H. Q. Ding, Lawrence Berkeley National Laboratory

Jing Guo, General Sciences Corporation

J. W. Larson, Department of Earth and Atmospheric Sciences, Purdue University?

I. Stajner, Universities Space Research Association
Workshop II: October 28 - November 1, 1996, DAO GSFC.

e P. M. Lyster (chair), Meteorology Department and Joint Center for Earth Sys-

tem Science, University of Maryland.

e A. M. daSilva, General Sciences Corporation and NASA Goddard Space Flight
Center (GSFC)

Jing Guo, General Sciences Corporation

J. W. Larson, JCESS, University of Maryland

W. Sawyer, ELCA Informatique®

e I. Stajner, Universities Space Research Association

ZCurrent Affiliation: Dept. of Meteorology and JCESS, University of Maryland
3Current Affiliation: Dept. of Meteorology and JCESS, University of Maryland

52

Appendix G: Figures

initialization
GCM OBS/QC
observations
forecast
innovations
w’ Hw

analysis PSAS >

Figure 1: PSAS and its role in GEOS-DAS.

33

INITIALIZATION

main()

MPI_lInit(&argc, &argv)
MPI_Comm_dup(MPI_COMM_WORLD, MPI_Comm*)
init_glob_comm_env(MPI_Comm*)

allocate_obs_handle(2* totregions/activeProcs)

read_data(char * datfile, int nobs, Obs_handle*,
MPI_Comm*)

read_param("param.in”, MPI_Comm?*)

printflag_table(global s.printflag) .

print_functions()

allocate_vec_handle(globals.totregns + 1) < —

COMPUTATION

partitioner(Obs_handle* , MPI_Comm*)

matrix_distr(Obs_handle* , Vec_handle* ,
Reg_replica_handle* , Mblk_list* , MPI_Comm*)

equation_solve(Vec_handle* , Reg _replica_handle* ,
Mblk_list* ,MPI_Comm*)

—>

foldback(Vec_handle* , MPI_Comm*)

Y

exit()

Figure 2: Top-level flowchart of parallel PSAS.

54

Partition

Observati ons ' boundary’

Figure 3: Parallel partition of observations into regions using recursive bisection.

35

Figure 4: Matrix-block distribution of the innovation matrix # P/ H" + R The upper-
half blocks of the complete symmetric matrix are assembled on each processor.

56

Rc = 6,000 kn

$® Centroid
e Profile

Figure 5: The load-balanced analysis grid decomposition. The triangle shows one of
the regions of the parallel partitioner of observations. Blocks of P/HT within 6,000
km of the centroid of this region are stored on the processor that has the corresponding
vector fragment of x

57

Prototype Parallel PSAS

Performance on 512 Node Cray T3D
12.0 R T A

11.0 - 8

10.0 [/ -

9.0 | y |

70 - / |

6.0 8

Performance(Gigafl ops)

30 - i
——o 51 990 Observations

20 - & ——¢ 79938 Observations| -

0.0

0 o ‘128‘ | ‘256‘ | ‘384‘ | ‘512‘
Number of Processors

Figure 6: Performance (gigaflop/s) of the PSAS JPL on the Goddard 512 processor
Cray T3D using the MPI message-passing library. The closed circles are for a problem
with 51,990 observations and the open circles are for 79, 938 observations.

38

Schematic representation of a block of C,

Figure 7: Every I x I block Chn(J,k,¢1,92) is a circulant symmetric matrix. The
elements along its {"* and (I —1)"* superdiagonals and subdiagonals are identical for
every [, 0 <[< [T—1.

59

