








the tangent linear model operator would be used to evolve the error covariance (Ménard et
al. 1995, Daley 19953).

Our sequential method for evaluating M(JWP)T allocates storage for one matrix of size
n? and message buffers of size n?; both of these large memory objects need to be distributed
among all processors. In the next section we show that, depending on the number of ob-
servations p that are assimilated in a timestep, the memory requirements and number of
floating point operations involved in the analysis error covariance computation can compete

with (and even exceed) that required for evaluating M (M P)T.

3.3 Implementation of the analysis step

The analysis equations are (11), (12), (L3), or (14). The gain K is stored as an n X p
matrix. H is a p X n sparse operator that interpolates bilinearly from analysis gridpoints
to observation locations. In practice, only the four interpolation weights per row of H are
actually stored. P/HT is n x p, while HP/HT4R is px p. The Kalman filter is a sequential
algorithm; at each timestep p observations are assimilated. Since typically p < n, all of the
above matrices are small (as is the state w) compared with size-n? matrices, P/ and P®.
The present code stores all small matrices (n x p and p x p) identically on all processors.
This considerably simplifies the software and debugging. The only problem occurs when p
is sufficiently large that the storage of the n X p matrices competes with the storage of size-
n? /N, components of P on each processor. This occurs when the number of observations in
a timestep is p & n/N,. For example, at 4° X 5° resolution on N, = 512 processors, storage
of the small matrices competes with the storage of P when p & 6 observations per timestep.
The Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on board the UARS
satellite retrieves a number of trace constituents in the stratosphere using a limb sounding
technique. We are assimilating retrievals from this instrument, and others on board UARS,
to generate gridded datasets. In one timestep of our Kalman filter (15 minutes) CLAES
produces about 14 observations when interpolated onto an isentropic surface. In this case
small-matrix storage dominates that of P. For 2° X 2.5% resolution (Nz = 144, Ny = 90),
Pmer = 15, and N, = 512, the compiled code, including the analysis code, on the Intel
Delta requires 12 megabytes per processor, just below the user limit of 12.8 megabytes. In
this case, storage of P dominates that of the small matrices, since n/N, ~ 26. The Intel
Paragon has twice as much user memory, so runs with IV, = 256 are possible at this spatial
resolution.

The following summarizes the floating point and communication costs of the analysis

equations:

11



3.3.1 Evaluate the Kalman gain K

The algorithm evaluates contractions where possible so that large size-n? matrices are not
generated unnecessarily. The first such contraction is P/ HT. For bilinear interpolation, the
p x n matrix H has only four non-zero elements along each row. Each column of the n x p
matrix P/ HT is therefore a linear combination of four columns of P/. Thus the evaluation
of PPHT takes O(np) operations shared over all processors. Since P/ is distributed, and
we require K to be reproduced identically on all processors, we first calculate partial sums
of PYHT on each processor and then perform a global sum over all processors to obtain
P/HT. This is a standard operation on SPMD computers; hence these global-sum routines
are usually provided as optimized library calls {usually involving tree-code algorithms, cf.
Foster 1995). The parallel cost of this is O(nplogyN,) operations shared over all processors,
while the parallel communication cost is optimized according to the architecture of the
machine.

The matrix HP/HT is evaluated as H(P/HT), the matrix P/HT already exists on
all processors. This takes O(p*) operations and the global combine takes O(p?log)N,)
operations, both shared over all processors, with some communication overhead in the
global sum. The observation errors are taken to be uncorrelated; hence R is diagonal, the
clements being the measurement error variances. The solution of Eq. (12) to obtain K
uses an eigenvalue decomposition to evaluate the inverse of symmetric matrices (Press et al.
1989). This approach allows for the deselection of small eigenvalues in the construction of the
inverse of the matrix II P/ IIT + R, which is poorly conditioned when the observation error
variances are small, especially for perfect observations as in the observability test (see section
5.2). This takes O(p?) floating point operations per processor to obtain (HP'HT + R)_l.
When our algorithm is used with UARS datasets, ill-conditioned matrices are not expected
to arise, in which case we will use a more efficient Cholesky decomposition to solve (12).
Finally K is evaluated on each processor as P/HT(HP/HT + R)_1 which takes O(np?)
ol)eratiblls per processor.

The floating point cost of evaluating K, O(np?) operations on each processor, increases
relative to that of M (M P)T, which is O(hn?/N,) operations per processor (refer to section
3.1), as p or N, become larger. There is also a memory burden in storing K and P/HT on

all processors, which becomes comparable to the storage of P when p ~ n/N,.
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3.3.2 Evaluate P*

Consider first the optimal form Eq. (14): P* = (I — KH)P/. This is evaluated as
P/ — K(HPY). The sccond term uses K and HPS = (PfHT)T, both of which are stored
identically on all processors. The expansion K (H P/) is performed in parallel by evaluating
only those terms that contribute to each processor’s domain for the storage of P*. This
takes O(n?p/N,) operations per processor. This increases relative to the cost of calculating
MM P)T as p becomes larger.

The Joseph form Eq. (13) is evaluated as:
P = (I - KH)(P/ - K(HP)) + KRKT.
Once again this is generated from H P/, K, and R which are all stored identically on all
processors. This operation takes O(n%p/N,) operations per processor, however there is a

2

parallel cost involved in the global transpose of the size-n? matrix. Since P/ is overwritten

by P? no additional memory is required, cf., section 3.1.2.

3.3.3 Evaluate w®

This is carried out identically on all processors. The innovation w® — Hw/ is a p-vector that
is evaluated and saved for collection of innovation statistics. The Kalman gain is applied
to this vector and the analyzed state w® evaluated, Eq. (11). The time to evaluate w" is
dominated by the multiplication by the IKalman gain, which takes O(np) operations per
processor.

The matrix inversion and the evaluation of w® are not parallelized. For these two compu-
tations, all processors perform exactly the same calculations and K, HP/, and w® are stored
identically on each processor. The larger calculations in the analysis step are performed as

parallel processes.

4 Timings for the Parallel Kalman Filter

The previous section makes it clear that the Covariance Decomposition strategy is preferred
for the covariance forecast dynamics, Eq. (10). We discussed a strategy for the analysis
step that involves some global communications to evaluate P/ HT, evaluating K and w®
identically on each processor, and parallelizing the equations for P¢, Egs. (13) or (14).
In this section all timings were obtained for runs on the Intel Paragon at Caltech. The
interprocessor communication bandwidth of this machine is about 5 times faster, and the
on-processor speed (flop/s) is about 1.2 times faster than that of the Delta. We used single

precision arithmetic with compiler optimization options O41 and noiece.
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For medium resolution (1% x 5°) using the Joseph form, Eq. (13), Figure 3 shows the ideal
speedup (Sideat = Np), as well as the measured speedup for the forecast step, the analysis
step, and the full Kalman filter, for N, = (16, 32, 64, 128, 256, 512). For experiments
involving the assimilation of CLAES data, the timestep is 15 minutes and the average
number of observations (p) per timestep is 14. The results in this section apply to this case.
Note that the minimum number of processors on which this problem was run is 16, so these
actual speedups are measured with respect to the times on 16 processors. This speedup
is slightly more optimistic than the usual value measured with respect to time on a single
processor. However, what is important is the change in speedup as more processors are
added to a problem, because this indicates how well the incremental processors are utilized.

Figure 3 indicates that the speedup for the analysis step is less linear (scalable) than for
the forecast step, thus degrading scalability of the full Kalman filter. Both steps involve
substantial interprocessor communication, and the improvement in on-processor speeds with
optimization emphasizes the relative cost of the interprocessor communications (the forecast
step is less scalable than was estimated in section 3.2). That is, although the code runs
faster with more processors, the scaling is poorer; this is a common result of on-processor
optimization. The speedup for the analysis step tails off more quickly than that of the
forecast because only part of this step is fully parallelized, bna.mely, the evaluation of P,

The total speedup curve in Figure 3 begins to flatten above 256 processors, so that using
more than 256 processors at medium resolution for the Joseph form with optimized code
does not reduce the wall-clock time significantly. Figure 4 shows the corresponding speedup
curves when the optimal form, Eq. (14), is used. Here the time to evaluate P* is reduced
relative to that of K and P/IIT. Since the evaluation of P* is fully parallel, the analysis
step speedup curve now falls off more rapidly than in Figure 3. In fact, the analysis step
shows little speedup above 128 processors.

The actual times in seconds per timestep for the analysis using the Joseph form, the
forecast step, and the full Kalman filter are shown in Figure 5 for medium resolution and
p = 14 observations per timestep. The dominant cost of the analysis for large numbers
of processors is clear. A typical 10-day run takes 960 timesteps. This evaluates to an
acceptable 45 minutes of wall-clock time for the full Kalman filter using 256 processors.

The corresponding results for the optimal form are shown in Figure 6. Since the optimal
form is simpler (with fewer floating point operations and without the need for the global
transpose), the actual times for the analysis are relatively small. This is why the speedup
(scaling) for the full Kalman filter is a little better for the optimal form than for the Joseph
form (compare Figs. 3 and 4). Only for large numbers of processors N, > 256 does the time

for the analysis step exceed that of the forecast step. The full Kalman filter step takes less
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time for the optimal form than the Joseph form, for all numbers of processors. A 10-day
run for the optimal form takes about 34 minutes of wall-clock time for the full Kalman filter
using 256 processors.

Due to the limitations of main memory, high-resolution runs (2° x 2.5°) can only be
performed on 256 and 512 processors of the Intel Paragon. Therefore complete speedup
curves cannot be plotted; however, comparisons with medium-resolution runs can be made.
For a 10-day run with 960 timesteps on 512 processors, the total time for the full Kalman
filter at high resolution is 7.8 hours [or the Joseph form and 5.0 hours for the optimal form.
The ratio of the total time for 256 processors to that of 512 processors is 1.50 for the Joseph
form and 1.52 for the optimal form. This scaling is considerably better than for medium
resolution, due to the improved scaling of the global transpose for larger sized matrices and
the reduced relative cost of calculating the matrices K and P HT, at least one of whose
dimension is fixed (p).

Actual flop/s rates were calculated using the hardware performance monitor (hpm) on
the Goddard Cray C98 to measure the number of floating point operations. The flop/s rates
were calculated by dividing the hpm numbers by the actual times (Figures 5 and 6, i.e.,
for p = 14) on the Intel Paragon. Figure 7 shows the gigaflop/s rates for the full Kalman
filter (optimal form) for both medium (4° x 5%) and high (2° x 2.5°) resolutions. We obtain
a peak performance of about 1.3 gigaflop/s. This is typical for the i860 RISC-based pro-
cessors, where local memory-to-memory data transfers reduce the actual throughput below
the rated peak (especially for a semi-Lagrangian transport algorithm). The gigaflop/s rates
for the Joseph form (not shown) are almost the same as for the optimal form, peaking at
1.2 gigaflop/s; the slight reduction arises from the parallel cost of the extra global transpose
operation. We note that there are different interpretations of the term flop/s in the evalu-
ation of parallel code performance. We have used the conservative approach of considering
only the number of floating point operations for the serial version of the code on the Cray
('98. In deriving the numbers for Figure 7 we do not factor in the extra parallel floating
point burden associated with, for example, the global sum in calculating P/HT,

Both forms of the Kalman filter (Joseph and optimal) scale well up to 256 processors at
4° x 5° resolution. Scaling is satisfactory up to 512 processors at 2° x 2.5° resolution. The
algorithms for evaluating P/HT and K are the dominant cause of diminishing speedup.
Table 1 shows that the percentages of times taken by P/HT and K increase significantly
from N, = 16 to 512 processors. In the case of P/HT recall that global sum operations
are used to combine partial sums over processors. For p = 141 and N, > p most processors
will make no contribution to the sum, yet the global sum is over all processors. This gives

rise to the poor scaling for P/ HT. An optimized algorithm that replaced the global sums
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would be considerably more complex. The evaluation of K is not parailelized; the inverse of
(HP/HT 4+ R), a px p matrix, is performed identically on all processors and gives rise to the
poor scaling in Table 1. No UARS instrument provides enough observations per timestep
to make satisfactory use of a parallel inverse, such as from the Scalapack software library.

We have not found other than bitwise identical results for the same run performed on
different numbers of processors. However, because of the use of the global sums that may
evaluate partial sums in a different order (depending on /N, and the location of observations),
bitwise identical results are not guaranteed by our algorithm.

Table L. Times for the P HT and K steps as a percentage of the total analysis times for
4° % 5° resolution, and 14 observations per timestep. These numbers are evaluated for both
16 and 512 processors. The remaining percentages are dominated by the cost of evaluating

P, which is highly parallelized.

| Number of Processors | 16 | 512 |
Percentage P HT 1.5 30.
Percentage K 3.2 | 19.

5 Numerical Tests

Here we present the results of two validation tests of the Kalman filter code, using synthetic
winds and observations. These tests are basic for the Kalman filter algorithm; further work
will use actual wind datascts and UARS observations. We used the transport scheme of
Lin and Rood (1996), which is less diffusive than the van Leer scheme. The algorithm
was rendered linear with respect to the constituent density by removal of the monotonicity

condition.

5.1 Consistent evolution of the error variance

For non-divergent flows, in the absence of observations, the variance P(x,x, t) satisfies the
advection equation (Cohn 1993)

0 .
—a—t-P(x, x,)+vg - VP(x,x,1) =0, (16)
where x denotes a point on the isentropic surface § = constant. The non-divergent flow
considered here is solid-body rotation. In this case Eq. (16) implies that the variance field
simply rotates along with the flow, and verifying this property constitutes a test of the
implementation of the discrete covariance propagation equation (10). The axis of rotation
is chosen to pass through the equator (i.e., flow is over the poles) so that, in particular, this

provides a test of the variance propagation near the poles.
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A case is presented with 8% x 10 resolution (Nz = 36 and Ny = 22). The timestep is
set to 15 minutes, so that one day corresponds to 96 timesteps. The rotation period is 1
day. In this case the maximum Courant number for flow at the equator is 44/96 = 0.46.
The initial error covariance function is chosen to have a space-limited cosine structure:

0.25(1 4 cos(w,/8,))(1 + cos(n8,/6,))

P(x1,%2,t=0) = for 0<68; <8, and 0 < 6y, <8, (17)

0. for 61 > 0, or 6, > 8,
where 0 = f(xq), #; = 6(x2), and 8(x) is the great-circle angle between x and a
fixed point on the equator where the solid-body speed is a maximum. The initial variance
P(x,x,{ = 0) is thercfore a squared cosine hill centered at the equator. Since P(X1,X2,!l =
0) given by Eq. (17) is a product f(x1) f(x2) with f continuous, it follows that P(x3,x5,t =
0) is a legitimate covariance function (Gaspari and Cohn 1996). The initial covariance
matrix Py is obtained by evaluating Eq. (17) on the grid.

Figure 8(a) shows a contour plot of the initial variance field evaluated on the 8° x 10°
grid. Tor this case §, = 217/64, so the total width of the structure is about 120° (i.e., 12
grid points in longitude and 15 in latitude). Figure 8(b) shows the discrete variance field,
or diagonal of P, after integrating Eq. (10) for 96 timesteps. Except for a slight north-south
asymmetry, the overall shape is well-preserved after the passage over the poles.

The total variance is defined to be the integral
V= /dx P(x,x), (18)

where dx is arca measured on the surface of the sphere. The integral is evaluated numeri-
cally on the grid. For the present case the initial total variance is 0.5589 and the final total
variance is 0.5493. The discrete dynamics results in a mild diffusion in the transport of

variance over the poles.

5.2 Observability test

The second test involves both forecast and analysis steps, using synthetic perfect obser-
vations. The total variance V', as defined in Eq. (18) should reduce to zero (to machine
precision) in finite time if the observability condition is met (Cohn and Dee 1988). Solid-
body rotation winds are used again, but now with the axis of rotation is through the poles,
and again at 8° x 10° resolution. The wind rotation period is again one day, but a timestep
of 40 minutes is chosen so that the Courant number is everywhere equal to one (the flow is
zonal). Observations arc made at all grid points along a fixed meridian at each timestep,

and the obscrvation crror covariance matrix R is taken to be zero. Thus the entire flow is
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observed perfectly in one day, so that the observability condition is met and therefore the
total variance must reduce to zero in one day. The Joseph formula, Eq. (13), is used to help
ensure numerical stability in this extreme case.

The initial error covariance is taken to be the isotropic second-order autoregressive
(SOAR) model

P(x1,%x2.t =0) = (14 (2r./L)sin(8/2))exp(—(2r./L)sin(0/2)), (19)

where § = #(x3,x2) is the great-circle angle between positions x; and xz on the sphere
(Weber and Talkner 1993), r. is the radius of the earth, and L is the correlation length.
Figure 9 shows the total variance V (in normalized units of r?) as a [unction of time for
values of correlation length L = (1,000 km, 500 km, 5 km). The variance is plotted through
points taken every 4 timesteps. The initial value of V' is 47 since P(x,x,t = 0) = 1. For the
cases L = 1,000 km and L = 500 km, where the correlation length is comparable to the grid
spacing near the equator and greatly exceeds the grid spacing near the poles, the variance
decreases rapidly at first, then decreases linearly, and finally reaches zero in one day. The
case where the correlation length is 5 km is well below the grid spacing, corresponding to an
initial covariance structure that is unity on the diagonal of P and small elsewhere. In this
case we expect the total variance to decrease almost linearly because from the first timestep
there is negligible correlation between nearby gridpoints. This behavior is demonstrated in

Figure 9.

6 Summary and Conclusions

We have implemented on distributed-memory parallel computers a Kalman filter for the
assimilation of atmospheric constituents on isentropic surfaces over the globe. The code runs
at resolutions of 8% x 10°, 4° x 5°, and 2 x 2.5° on the 512-processor Intel Paragon and Delta
machines at the California Institute of Technology, using Fortran 77 with the NX message-
passing library. We have developed a Covariance Decomposition approach as the basis for
the parallel algorithm. This approach distributes the columns of the forecast/analysis error
covariance matrix on different processors. A considerable advantage of this scheme is that it
is not necessary to parallelize the model transport code; only that it fits onto the memory of
each processor. This approach is also efficient in terms of the distribution of floating point
operations and memory, with some parallel cost involved in a global matrix transpose. Ten-
day runs using UARS-CLAES observation datasets can be completed in 34 minutes for
the optimal form of the analysis at medium resolution (4° x 5°) on 256 processors of the
Paragon with O4 and noieee compiler optimizations (45 minutes for the Joseph form). The

corresponding high-resolution (2° x 2.5%) runs take 5 hours on 512 processors (7.8 hours for
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the Joseph form).

The Kalman filter forecast step shows some reduction in scaling when the full 512 proces-
sors of the machines are used with compiler optimizations. This reduction is due primarily
to communication overhead involved in the global matrix transpose. The reduction in scal-
ing for the Kalman filter analysis step is more severe. This reduction is due primarily to the
serial (unparallelized) calculation of the Kalman gain matrix on each processor — sometimes
referred to as an Amdahl’s bottleneck — and, more significantly, to software simplifications
that involve the use of global sumn library subroutines.

Overall the peak performance obtained for high-resolution runs on 512 processors of
the Paragon is about 1.3 gigaflop/s. This may be improved by on-processor memory-to-
memory optimization or evaluating the matrix P/ HT more directly, using fewer floating
point operations and communication calls than do the global sums. We expect to port
our code to machines such as the Cray T3E without much effort, improving further the
wall-clock time for high-resolution runs.

Basic tests of the parallel Kalman filter code using synthetic data examined variance
transport and verified observability properties. The code is now being used to assimilate
retrieved constituent data from UARS instruments, using analyzed wind fields from the
DAOQO global atmospheric data assimilation system to drive the transport model. Work on
characterizing transport model errors is in progress. Results of these data assimilation stud-

ics will be reported in a future publication.
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7 Appendix

Appendix A. A load balanced Covariance Decomposition

The covariance matrix is indexed P(il, 1,42, j2) where (i1, j1) and (42, j2) are Fortran
indices for two positions on a discretized latitude-longitude grid. Following the convention
that is used for the state vector w, the entire matrix is dimensioned P(1:Nz,0:Ny,1:
Na,0:Ny). The Covariance Decomposition assigns contiguous columns of I’ onto differ-
ent processors in such a way that the totality of all columns on all processors makes up
the entire matrix without redundancy. This amounts to a domain decomposition where a
range of (12, j2) is assigned to a processor corresponding to a contiguous sequence on a grid
whose Fortran dimension statement has the range (1:Nz,0:Ny). Each processor allocates
its domain of the matrix as P(1:Nz,0:Ny,ib:ie,jb:je) where (ib,ie, jb, je) depend on
the processor identification number which, by convention, ranges from 0 to Np—1. Two
situations arise. For the case Np < Ny+1 at least one processor must have a range of
j2 such that je > jb; therefore, ib = 1 and i¢e = Na. For the case Np > Ny+1 it is
not necessary that any processor overlap multiple values of 52, i.e., je = jb. In fact, this
condition is necessary to conserve memory when Np is much greater than Ny + 1, because
it is the only way to impose a limited range on ¢2, i.e., (ib:ie) must encompass a range
that is less than (1:Nz). The load imbalance of the resulting decomposition arises from the
uneven numbers of columns of P on different processors. If we define the load imbalance
L as the maximum number of columns on a processor divided by the minimum number,
then it can be shown (Lyster et al. 1997) that the worst case occurs when Np = Ny + 1,
corresponding to Ly, = (Na + 1)/Nz. For all other cases L is closer to unity. Clearly,

for problems of interest (¢.g., for 4°x 5° resolution N = 72) load imbalance is not a problem.
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Table 1. Times for the P/ IIT and K steps as a percentage of the total analysis times for
4% x 5 resolution, and 14 observations per timestep. These numbers are evaluated for both
16 and 512 processors. The remaining percentages are dominated by the cost of evaluating

P?, which is highly parallelized.

[rNumber of Processors I 16 l 512 ”
Percentage PPHT 1.5} 30.
Percentage I{ 3.2 19.
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Figure captions
Figure 1 (a). Schematic for the Operator Decomposition approach for storing large size-n?
matrices and performing M (M DP)7T.

Figure 1 (b). Schematic for the Covariance Decomposition approach for storing large size-n?
matrices and performing M (M P)7.

Figure 2. Speedup curves for the domain decomposed van Leer transport algorithm imple-
mented on the Intel Delta.

Figure 3. The actual speedups for the forecast step, the analysis step, and the full Kalman
filter on the Intel Paragon for medium resolution (4° x 5°) using Covariance Decomposition
and the Joseph form Eq. (13).

Figure 4. The actual speedups [or the [orecast step, the analysis step, and the full Kalman
filter on the Intel Paragon for medium resolution (4° x 5%) using Covariance Decomposition
and the optimal form Eq. (14).

Figure 5. The actual time (seconds) per timestep of the forecast step, the analysis step, and
the full Kalman filter on the Intel Paragon for medium resolution (1° x 5%) using Covariance
Decomposition and the Joseph form Eq. (13).

Figure 6. The actual time (seconds) per timestep of the forecast step, the analysis step, and
the full Kalman filter on the Intel Paragon for medium resolution (4° % 5°) using Covariance
Decomposition and the optimal form Eq. (14).

Figure 7. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the
Intel Paragon. These numbers were obtained for the optimal form of the analysis step, Eq.
(14).

Figure 8. For solid body wind propagation over the poles: (a) the initial variance; (b) the
final variance after a full rotation period of the winds.

Figure 9. The total variance V' versus time for a meridional observing network, and an
observation error covariance matrix B = 0. The initial error covariance matrix is obtained
from the SOAR covariance function with values of correlation length L = (1,000 km, 500
km, 5 km). The rotation period of the solid body winds about the polar axis is one day.



p = domain decomposition
of P down Columns
in—processor
transpose
(MP)' = -
M(MP)' =
(P is symmetric)

Figure 1 (a). Schematic for the Operator Decomposition approach for storing large size-n?
madtrices and performing M(MP)” .
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p = domain decomposition
of P along rows
global transpose
MPY = -/
M(MP)' =

Figure 1 (b). Schematic for the Covariance Decomposition approach for storing large size-n?
matrices and performing J\-I(J\v/IP)T.
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Figure 2. Speedup curves for the domain decomposed van Leer transport algorithm imple-

mented on the Intel Delta.
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Figure 3. The actual speedups for the forecast step, the analysis step, and the full Kalman
filter on the Intel Paragon for medium resolution (4° x 5°) using Covariance Decomposition
and the Joseph form Eq. (13).
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Figure 4. The actual speedups for the forecast step, the analysis step, and the full Kalman
filter on the Intel Paragon for medium resolution (4° x 5°) using Covariance Decomposition
and the optimal form Eq. (14).
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Figure 5. The actual time (seconds) per timestep of the forecast step, the analysis step, and
the full Kalman filter on the Intel Paragon for medium resolution (4° x 5°) using Covariance
Decomposition and the Joseph form Eq. (13).
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Figure 6. The actual time (seconds) per timestep of the forecast step, the analys1s step, and
the full Kalman filter on the Intel Paragon for medium resolution (4° x 5°) using Covariance
Decomposition and the optimal form Eq. (14).
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Figure 7. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the
Intel Paragon. These numbers were obtained for the optimal form of the analysis step, Eq.
(14).
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Figure 8. For solid body wind propagation over the poles
final variance after a full rotation period of the winds.

34
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Figure 9. The total variance V' versus time for a meridional observing network, and an
observation error covariance matrix R = 0. The initial error covariance matrix is obtained
from the SOAR covariance function with values of correlation length L = (1,000 km, 500
km, 5 km). The rotation period of the solid body winds about the polar axis is one day.
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