




Figure 2 shows 2 plot. of the measured speedup 5' as well a.s the ideal speedup for a /lo x 5" 

resolution problem performed on u p  t o  !V, = 1 G  Intel Delta processors. The measured 

speedup curve st.art,s to ta.il off at. 16 processors. This is undesirable because it indicates 

that  adding more processors will not result in a proportionate decrease in the mall-clock 

titlie. The cluant,ity SC is also plotted (for reference, for rV, = 16, rpu-, . /~c:p~i = 0.2). 
The difference between S, a.nd tlie measured speedup S is due primarily to  variation in 

tlie on-processor float,ing point. speed as the domains become smaller wit,h increasing ATp. 

Experiments at 2" x 2.5" resolution (not sliown) revealed that the speedup curve flattens 

out a.bovc -Wz, z 20. 

These cxpcriments indicate tha.t. a straiglitforwa.rd application of Operator Decomposi- 

tion, based on a domain-decomposed transport algorithm, would not be effect,ive for the 

4" x 5" or 2' x 2.5" resolut,ions t,hat are of interest in our work. This is ma.inly because 

messages smaller than about one kilobyte (as here) incur a latency (or startup cost) of about 

100 ,us. One way t.0 a.voicl this is to  concatenate guard-c,ell data  at the beginning of ex11 

tiniestep. and then send the resulting data buffer as a single message. This would add to  

t,lie comp1esit.y of t,he soft.ware. A more serious drawback t.o the Operator Decomposition 

is the wcll-known difficulty of parallelizing t,he semi-La.grangian algorithm (e.$., Barros et  

al. 199.5). 

A4n adv-antage for the Covariance Decomposition is that it is unnecessary to  psrsllelize 

the transport opcrator: t,hc choice of transport. schcine can be bascd on scientific mcrit alone 

I,eca,use bl is simply implement.ed as serial code 011 ea.cli processor. The pot,ential disadvan- 

tage is that, a. pa.ralle1 ma.t,rix transpose (,ZfP)T needs to be implemented. The transpose 

involves t,he t,ransfer of almost all t,lie memory of M P  (except for diagonal blocks) between 

processors. This involves more coniniunicat,ions (in terms of the total number of bytes) 

than  the Operator Decomposition, where only nearest.-neighbor processors coiiimuiiicate 

v ia  guard cells. However, through the communication of large buffers in  the matrix trans- 

pose. the effect of message latency is reduced. For example, t,he time for a global tmnspose 

for 4" x 5" resolution with 512 processors on the Intel Delta is 0.18 seconds. This compares 

fa.vorably with t.he prior estimate of t,he CPlJ time to  ca.lcula.te M(MP)T  of about 1 second, 

leading to a,n acceptable estimated speedup of S, = 512/(1.0+0.18) M 434. Detailed timings 

Tor Ihc global transposc (including bufrcring) for all nunibcrs of processors up to 512 arc 

given in Lystcr et. al. (1997). In section 4, scaling and timing rcsults for thc entire Kalman 

filter using tlie Covariance Decomposition are presented. 

The Covariance Decomposition approach ca.n be applied to  any set of dyna,niical equa- 

tions that can be represented in t81ie form of Eq. (9). The only rest,riction is that the 

inil>lementat,ioil of t.he opera.tor 4.l should fit. on a single processor. For nonlinear dynamics, 
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the tangent h e a r  model operator mould be used to evolve the error covariance (kihnard et 

al. lW5,  Daley 1991). 

our sequential nietliod for evaluating ,\r(:\rP)T allocates storage for one matrix of size 

nL and message buffers of size n2; both of these large memory objects need to  be distributed 

ariioiig all processors. I n  the next section we show that, depending on the number of ob- 

servations p that are assimilated in a timestep, the memor3- requirements and number of 

floating point operations involved in the analysis error covariance computation can compete 

wit t i  (and even exceed) that required for evaluating M ( M P ) ~ .  

3.3 Implementation of the aiialysis step 

The a.na,lysis equations are (ll), (12),  (13), or (14). The gain K is stored as an n x I-, 

iimtrix. H is a p x 11. sparse operat>or that interpohtes bilinearly from analysis gridpoints 

t.o observa.tion 1ocat.ions. In practice, only t,lie four int,erpola.t.ion weights per row of H are 

act,ually stored. P f H T  is n x p .  while HI'fHT+R is p x p .  The Iialman filt.er is a sequential 

algorithm; a t  each tiinestep p observations a.re assimilated. Since t,ypically p << n,  all of the 

above matrices are small (as is the state w) compared with size-n2 matrices, Pf and P". 
The present. code stores all small ma.t.rices (71 x p aiid p x p )  identically on all processors. 

This considerably simplifies the software aiid debugging. The only problem occurs when p 

is suficiently large that the storage of the n x p matrices compet.es with the stora.ge of size- 

iL2/:Vb, coiiiponents of P on each processor. This occurs when the nuinber of observations ill 

a timestep is p z 7t/Np.  For cxaniplc. at 4" x 5" resolution on iVp = 512 proccssors, storage 

of t.hc small matrices conipctes with thc storage of P when p M 6 observations pcr timestep. 

The Cryogenic L.iml:, Array Et.alon Spect,roiiiet,er (CLAES) instrument on Iioa.rc1 t,he [JARS 
sat,ellit,e retrieves a number of t,ra.ce const,ituent.s in the stratosphere using a limb sounding 

technique. We are assimilating retrievals from this instrument, and others on board UA4RS, 
to  generate gridded data.set.s. In one timest,ep of our Iialiiian filter (1.5 minutes) CLAES 

produces about 1.4 observations when interpolated onto an isentropic surface. In this case 

sma.ll-ma.t,rix st,orage doiriina.t.es that of P. For 2" x 2.5' resolution (NZ = 144, A r y  = go), 
p77LtL.c = 15, and Nl, = 512, the compiled code, including the analysis code, on the Intel 

Delta requires 12 mega.bytes per processor, just below the user limit of 12.8 niega.bytes. In 

t,Iiis ca.se, st.orage of P dominat,es that of the small matrices, since n / N p  26. The Intel 

Paragorl lias twice as iriucli user memory, so ruiis with N p  = 2.56 a.re possible at this spalial 

rcsolu tion. 

The following suiiiiiiarizes thc floating point and communicat,ion costs of t,he analysis 

equations: 



3.3.1 Evaluate the Kalman gain I< 

The algorithm evaluat,es cont,ractions where possible so that large size-n2 matrices are not 

gelierat,ecl unnecessarily. The first such contract,ion is P J H T .  For bilinear int,erpolation, the 

p x n matrix H has only four non-zero elements along each row. Each column of the n x p 

matrix P f H T  is therefore a 1inea.r combina,tion of four columns of Pf. Thus the evaluation 

of P f H T  talies O(r2.p) operations sha,red over a11 processors. Since ~f is distributed, and 

we rcciuirc f i  to  be reprod uccd identically on all processors. we first calcula,tc pa.rt,ial sums 

of P j H "  on each processor and then perform a global suni over all processors to obta.in 

PfHT. This is a. standard operation on SPMD computers: hence these global-sum routines 

a,re usually provided as  optimized library calls (usually involving tree-c,ode algorit.lims, cj. 

Fost,er 19'33). The parallel cost of this is O(nplog%Vp) operations shared over all processors, 

wliile t,he parallel cornmunica.t,ion cost is optimized according to t,he architect.ure of the 

m a.chine . 
The ma.trix HPjH'  is evaluated as H ( P f H T ) ,  the matrix P f H T  already exists 011 

all processors. This takes O(p2)  operations and the global combine takes O(p2 l o g ~ V p )  

operations, both shared over all processors, wit,h some conimunicat,ion overhead in the 

global sum. The observation errors are taken to  be uncorrelated; hence R is diagonal, the 

clcriieiits being the ~neasurc~iicnt error variances. The solution of Eq. (12) to  obtain I< 
uses a,n eigenvalue decomposition to evalmte the inverse of symmetric matrices (Press ct  al. 

1989). This approa.ch allows for the deselection of small eigenvalues in blie construction of the 

inverse of t.he matrix f I P f I I T  + R, which is poorly c.onditioned when t,he observa.t.ion error 

va.riances are small, especially for perfect. observations as in the observability test (see section 

5.2). This t.akes O(1j3) floating point operat,ions per processor to obta.in ( H P f H T  + A?)-'. 

When our algorithm is used with UARS datasets, ill-conditioned matrices are not expected 

t o  arise, in  which case we will use a more efficient Cholesky decomposit,ion to  solve (12). 

Finally f< is evaluated 011 each processor as P f H T ( H P f H T  + R)-' which takes O(np2)  

operations per processor. 

The floating point cost of evaluating fi, O(np2)  operations on each processor, increases 

rclativc io tliat of A ! ( A ~ P ) ~ .  KIiic~i is O(Itt~L/i\~p) operations per processor (refer to seclion 

3.1),  as 11 or LV,, become larger. Thcrc is also a memory burden in storing K and P f H T  on 

all processors, which becomes coinparable to the storage of P when p M n /Np .  
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3.3.2 Evaluate P 1  

Consider first the optimal form Eq. (14): Pa = ( I  - I < H ) P f .  This is evaluated as 

F'f - I<(IIPf). Tlic sccond term lisps K and H P f  z ( P f H T ) T ,  both of which arc \tored 

itlPntically on all pro(-essors. The expansion K ( H P f  ) is performed in parallel by evaluating 

only those terms that contribute to each processor's domain for the stoiage of Pa. This 

tahes 0(?i2p/-vp) operations per processor. This increases relative to  the cost of calculating 

A\I(L\lF')T as p becomes larger. 

Tlic Joscph form Eq. (13) is evaluated as: 

P" = ( I  - Z<H)(Pf - I ; ( H P f ) ) T  + ZiRKT. 
Once again this is generated from H P f ,  ICl  anti R which are all stored identically on all 

processors. This operation takes O(n2p/iVp) operations per processorl however there is a 

parallel cost involved in the global transpose of the size-n2 matrix. Since Pf is overwritten 

by Pa 110 additional memory is required, cf., section 3.1.2. 

3.3.3 Evaluate uf' 

This is c,arried out ident,ically 011 all processors. The innovation tuo - H w f  is a p-vect,or that  

is evaluated and saved for collection of innovation statistics. The Kalman gain is applied 

to this vector a.nd the malyzecl state ,urn evaluat,ed, Eq. (11). The time to evaluat,e utn is 

dominated by the multiplication by t,he Kalman gain, which takes O(np) opera.tions per 

processor. 

'L'he inatrix inversion and the eva.luat,ioii of wa are not parallelized. For these t,wo compu- 

tations, all processors perform exactly the same calculations and K ,  HPf l  and tua are stored 

identically on each processor. The larger calculations in the analysis step are performed as 

parallel processes. 

4 Timings for the Parallel Kalnian Filter 

l'he previous section makes it clear that  the Covariance Decomposition strategy is preferred 

for the cobariance forecast dynamics, Eq. (10). CVe discussed a strategy for the analysis 

step that involves some global communications to  evaluate P f H T ,  evaluating Ii and wa 
identically on each processor. and paralleliziiig the equations for P", Eqs. (13) or (14). 

In this section all h i i n g s  mere obtained for runs on the Intel Paragon a t  Caltech. The 

iiiterproccwor coiriiriuiiication bandmidth or this rriachinc is about 5 tiriies faster. and tlic 

on-processor speed (flop/s) is about 1.2 timcs fastcr than that of the Delta. We uscd single 

precision ai itlimetic with compiler optimization options 0 4  and noieec. 
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For riiediuiri resolution (.I" x ti") using tlie Joseph form, Eq. (13),  Figure 3 shows the ideal 

speedup (Sides/ = ATp), as well as the measured speedup for the forecast step, tlie analysis 

step? aad t.he full  Iialman filter, for iVp = (16, 32, 64, 128, 256, .512). For expeririient,s 

involving the assimilation of CLPlES data, the timestep is 15 minutes and the average 

number of obseriations ( p )  per timestep is 14. The results in this section apply to th i s  case. 

Note that the minimum number of processors on which this problem was run is 16, so these 

actual speedups are measured wit,h respect. t,o the times on 16 processors. This speedup 

is slightly more opt,imistic than the usual value measured with respect to time on a single 

processor. However, what is important is t,hc cliangc in speed up as more processors a.rc 

added to a problem, beca.use this indicates how well tlie incremental processors are utilized. 

Figure 3 indica.t.es that  t,he speedup for tlie analysis step is less linear (scalable) than for 

t,lie forecast. st,ep, t,lius degrading sc.alabilit,y of the full Iialman filter. Both steps involve 

substantial int,erprocessor communication, and the improvement in  on-processor speeds with 

optimizat.ion emphasizes the relat,ive cost. of the interprocessor c m i  rnrinica.t,ions (t,he forecast. 

step is less scalable than was estimated in section 3.2). That is, although the code runs 

faster with more processors, the scaling is poorer; this is a coininon result of on-processor 

optimizat,ion. The speedup for the analysis step tails off more quickly than that of the 

forecast because oiily part. of this step is fully parallelized, na.mely, the evaluation of Pa.  
The total speedup curve in Figure 3 begins to flat,ten above 256 processors, so that using 

more t,han 256 processors a.t mcdium resolution for tlic Joseph form witch optimizcd code 

does not, reduce the wall-clock t.inie sigiiifica,ntly. Figure 4 shows the c.orrespoiicling speedup 

curves when the op t i i i d  form, Eq. (14). is used. Here the t,imc to eva,lua.te Pa is reduced 

relative to that, of K and PfI IT .  Since the evaluation of Pa is fully parallel, the analysis 

step speedup curve now falls off more rapidly than in Figure 3. In fact, the analysis step 

shows little speedup a.l>ove 128 processors. 

The actual times in seconds per timestep for the analysis using the Joseph form, the 

forecat. Ptep, and t.he full I<a.lma.n fiker are shown in Figure 5 for medium resolution and 

p = 14 observations per timestep. The dominant cost of the analysis for large numbers 

of processors is clear. This evaluat.es to a.n 

acceptable 15 minutes of wall-clock time for the full Kalman filter using 256: processors. 

A t,ypical 10-day run takes 960 timesteps. 

The corrcsporidiiig rcsu1t.s for the optirnd rorm arc sliowri in Figurc 6. Siiicc the optimal 

form is sirnplcr (1vit.h fewer floating point, opcrations and without tlic need for thc global 

transpose), the a.ctual t.imes for the analysis are relatively small. This is why t,he speedup 

(scaling) for the full  I ia lnian filter is a. lit,tle better for t,he optimal form t h a n  for the Joseph 

form (compare Figs. 3 and ,I). Only for large numbers of processors N p  > 2.56 does the time 

€or the analysis st,ep exceed that of the forecast s k p .  The full Ka1ma.n filter st'ep ta.kes less 
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time for the optimal form than the Joseph form, for all numbers of processors. -4 10-clay 

run for the optimal form takes about 34 minutes of wall-clock time for the full Kalman filter 

using 256 processors. 

Due to the limitations of main memory, high-resolution runs ('2" x 2.5') can only be 

performed on '2.56 and 512 processors of the Int,el Paragon. Therefore c.oniplete speedup 

curves cannot, be plot.ted; however, comparisons with medium-resolution runs can be made. 

Four a. 10-day ruii wit,li 960 timesteps on 512 processors, the total time for the full I<alman 

filter a1 high resolution is 7.8 hours for t.he Joseph form and 5.0 hours for t,he optimal form. 

The rat'io of t,hc tot'al time for 256 proccssors to tha,t of 512 proccssors is 1.50 for t,hc Joscph 

forni and 15'2 for tlie opt.in1a.l form. This scaling is considerably better t.han for medium 

rcsolution, due t,o the improved scaling of tlie global transpose for larger sized matrices and 

t.lre reduced relative cost of cidculat.ing the mat,ric,es K and P f H T ,  a t  least one of whose 

dimension is fixed ( p ) .  

.4ct,ual flop/s ra.t.es were calculated using the hardware performance monitor (hpm) on 

the Goddard Cra,y C9S to measure t,he number of floating point. operations. The flop/s ra.tes 

were calculated by dividing the hpm numbers by the actual t,imes (Figures 5 and 6! i.e., 

for p = 14) on the Intel Paragon. Figure 7 shows the gigaflop/s rates for the full Kalman 

filter (optimal form) for b0t.h iiiediuni (4" x 5') and high (2' x 2.5") resolutions. We obta.in 

a peak performance of about. 1.3 gigaflop/s. This is typical for the i860 RISC-based pro- 

ccssors, wlicre local mcmor;v-to-mcrnory data tra,nsfcrs redim thc actual throughput. bclow 

the rated peak (especia,lly for a ~emi-Lagra,ngia,ii transport algorithm). The gigaflop/: 5 rates 

for the Joseph form (not shown) a.re almost the mnie a,s for the optinial form, peaking at 

1.2 gigaflop/s; the slight. reduction arises from the parallel cost, of the extra global t,ranspose 

operation. We note that there are different interpretations of the term flop/s in the evalu- 

ation of parallel code performanc,e. %'e have used the conserva.tive approach of considering 

only the number of floating point operations for the serial version of the code on the Cray 
C'98. 111 deriving the numbers for Figure 7 we do not factor in the ext,ra. parallel float,ing 

point burden associated with, for example, the global sum in calculating P f W T .  
Both fornis of t,he Kalman filter (Joseph and opt,imal) scale well up  tso 2.56 processors at 

do x 5" resolut,ion. Scaling is satisfactory up to  512 processors a t  2' x 2.5" resolution. The 

algorit1iiris for evaluating P ~ H ~  arid K arc tlie dominant ca.use or diminishing spccdup. 

Ta.blc 1 sliows t1ia.t the pcrccnt,agcs of tiincs takcii by P f H T  and I\' incrcasc significantly 

from K;, = 16 to 512 processors. In the case of PJH* recall that  global suin operations 

are used t,o combine partial sums over processors. For 1' = 14 and iVp >> p most processors 

tviI1 make no contribution to the sum, yet the global sum is over all processors. This gives 

rise t,o the poor scaling for Pf H". .4n opt,iinized algorit.hm t.ha.t. replaced t,he global sums 



would be considerably more complex. The evaluat,ion of I< is not pa.raiielixed; the inverse of 

(HPfHT+ R ) ,  a p x p ma.trix. is performed identically on all processors and gives rise to the 

poor scaling in Table I .  No LIARS instrument provides enough observa,tions per timestep 

to ma,ke satisfactory use of a parallel inverse, such as from the Scalapack software library. 

\Ve ha.ve not found ot,lier t,han bitwise identical results for the sa.me run performed on 

different numbers of processors. However, because of the use of the global sums that  may 

evaluate partial sums in a different order (depending on iVp and the location of observa.tions), 

bitivise identical results are not guaranteed by our algorit.hni. 

Table 1. Tinics for the P f H T  a,ncl I< steps as a percentage of t,lic total analysis times for 

4L' x 5" resolution, and 14 obsermtions per t.imestep. These numbers a.re evalua,ted for both 

16 and 512 processors. The remaining percentages are domina.t,ed by the cost of evaluating 

P" , which is higlily lxtrallelized. 

Nuinber of Processors 
Percentage PIH'  
Percentage I< 

16 512 
1.5 30. 
3.2 19. 

5 Numerical Tests 

Here we present the results of two validation tests of t,lie Kalman filt,er code, using synthetic 

winds and observations. These tests are basic for the Kalman filter algorit.hm; further work 

byill use act,ual wind datasct.s and [JARS obscrva.tions. VL'c used the transport sclicme of 

Lin and Rood (1996). which is less diffusive than the n n  Leer scheme. The algorithni 

was renclcrccl 1inea.r with respect. to  the constituent density by removal of the monotonicity 

concl i tion. 

5.1 Consistent evolution of the error variance 

For noli-divergent flows, in the absence of observations, the variance P(x, x, t )  satisfies the 

advection equation (Cohn 1'393) 

(16) 
d 
d t  
-P(x ,  x, / )  + vg * TP(x, x, I )  = 0, 

where x denotes a point on the isentropic surface 0 = constcint. The non-divergent flow 

considered here is solid-body rotation. In this case Eq. (16) implies that  the variance field 

simply rotates along w i t h  the flow. and verifying this property constitutes a test of the 

implementation of the discrete covaridnce propagation equation (10). The axis of rotation 

is chosen to  pa5s through the equator (i.e., flow is over the poles) so that ,  in particular, this 

pro! ides a test of the variance propagation near the poles. 
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A case is presented wit.11 8" x 10" resolution (1Y.r = 36 and N y  = 22). The tiniest,ep is 

set to 15 minutes, so t.hat one day corresponds to 96 timesteps. The rotation period is 1 

day. In this case the rna.simuni Courant number for flow at, t,he equator is 44/96 = 0.46. 

The initial error covariance funct,ion is chosen to  have a space-limited cosine structure: 

0.25(1 t cos (Te , /e , ) ) ( i  + C o S ( T o 2 / e n ) )  

for 0 5 01 5 ea a n d  0 5 02 5 0, (17) { 0. for 01 > 0, 01' 02 > ea 
P ( X 1 ,  x2, f = 0)  = 

where 01 = @ ( X I ) ,  02 = O ( X ~ ) ,  a.nd d(x) is tlie great-circle angle between x and a 

fixed point on t,lie ec1ua.t.or where the solid-body speed is a maxirnuin. The inilia1 variance 

P ( x ,  x, / = 0) is thcrcforc a squared cosine hill centered a t  ihe cquator. Since P(x1, x2,1 = 
0) given by Eq. (17) is a. product f(xl)f(x2) with f continuous, it, follows that  P(x1,xg. t = 

0) is a. legit,iniat,e covariance function (Gaspari and C'ohn 1996). The initial c.ovariance 

rna.tris Po" is obt,ained by eva1ua.ting Eq. (17) on the grid. 

Figure 8(a)  shows a cont,our plot. of t,he initial variance field evaluated on t,he 8" x 10" 

grid. For this case 0, = 21x/63, so the  total width of the structure is about 120" (;.e., 12 

grid points in longit,ude and 1.5 in latitude). Figure 8(b) sliows t,he discrete variance field, 

or diagonal of Y ,  a.ft.er integrating E,q. (10) for 96 t.imesteps. Escept for a slight north-south 

a.symiiietry, the overall shape is well-preserved aft.er the passage over the poles. 

The total va.riance is defined to be the integral 

11- = dx P(x. x). t 18) s 
whcre dx is arca. nica.surecl on thc surfa.ce of thc sphcrc. The intcgral is cva,luatccl numeri- 

cally on t.he grid. For tlie present case t,he initial total vxiance is 0.5589 and the final total 

va.riance is 0.5493. The discrete dynamics results in  a mild diffusion in the transport of 

mriance over the poles. 

5.2 Observability t es t  

The second t,est, involves bot,h forecast and a.nalysis st.eps, using synt.het,ic perfect obser- 

xxtions. The total variance I/', as defined in Eq. (18) should reduce to  zero (to machine 

precision) in  finite t,inie if the observability condition is met (Cohn and Dee 1988). Solid- 

body rota.tion winds are used again, b u t  now with the axis of rotation is through the poles. 

and .again a.t, 8" x 10" resolution. The wind rot,at,ion period is again one day, but. a timestep 

of 40 niiiiutes is chosen so that  the Courant number is everywhere equal to one (the flow is 

zona,l). Obscrvations a.rc nia.dc at all grid points along a fixcd nicridian at ca.ch timcst,cp, 

a,ncl tlic obscrva.tioii crror covariancc niat.ris R is takcn to bc zcro. Thus the entire flow is 
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observed perfectky in one day, so that tlie uLseivaLiiity coiiditioii is met and therefore the 

total variance must reduce to  zero in one day. The Joseph formula, Eq. (13),  is used t o  help 

ensure iiuirieiicai stability in this extreme case. 

The initial error covariance is taken to be the isotropic second-order autoregressive 

(SO.4R) triotiel 

where 6 = d(xl,x2) is the great-circle angle between positions x1 and x2 on the sphere 

(T$-eber and Talkner 1993), r ,  is the radius of the earth. and L is the correlation length. 

Figure 9 s11o\~s the total variance b- (in normalized unils or r,") a5 a function of time for 

valurs of c-orrclation lcngtli L = (1,000 lim, 500 Itm, 5 l m ) .  Thc variancc is plotted through 

points taken every 1 timesteps. The initial value of V is 47r since P(x, x, t = 0) = 1. For the 

cases L = 1,000 ltm and L = 500 hm, where the correlation length is comparable to the grid 

spacing near the equator and greatly exceeds the grid spacing near the poles, the variance 

decreases rapidly a t  first. then decreases linearly. and finally reaches zero in one day. The 

case where the correlation length is 5 k m  is \vel1 below the grid spacing, corresponding to  an  

initial covariance structure that is unity on the diagonal of P and small elsewhere. In th i s  

case we expect the total variance to  decrease almost linearly because from the first timestep 

there is negligible correlation between nearby gridpoints. This behavior is demonstrated in 

Figure 9. 

6 Summary and Conclusions 

We have implement,ed on distributed-memory parallel computers a Kalman filter for the 

assirnilation of at,mosplieric constituents on isentropic, surfa.ces over the globe. The code runs 

a t  resolutions of 8" x lo", 4" x 5", and 2' x 2.5" on the 512-processor Intel Paragon and Delta 

ma.chines a.t the California 1nstitut)e of Technology, using Fortran 77 with the NX message- 

passing library. We have developed a Covariance Decomposition approach as the basis for 
t,lw pa,ra.llcl algorit,hm. This a,pproach distributes the columns of the forcc,ast,/ana.lysis error 

cova,ria,nce ma,trix on different processors. +4 considerable advantage of t,his scheme is t,ha.t it 

is not necessary to pa.rallelize the model tra.nsport c.ode; only tha,t it, fits ont,o the memory of 

each processor. This approach is also efficient in terms of t.he distribution of floating point 

operations and memory, with some parallel cost involved in a global matrix transpose. Ten- 

day  r u n s  using IJAR.S-CL,AES observation datasets ca.n be completed in 34 minutes for 

the opt,iiiia,l form of tlie analysis a t  medium resolut,ioii (4" x 5') on 256 processors of' the 

Pa.ra.gon with 0 4  a.nd noieee compiler optimizations (45 minutes for the Joseph form). The 

corrcsponding high-resolution (2' x 2.5.) runs take 5 hours on 512 processors (7.5: hours for 
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the Joseph form). 

The Eialinaii fiker forecast step shows some reduction in scaling when the full 512 proces- 

sors of the ina.cltines are used wit,li conipiler optimizations. This reduction is due primarily 

to  communication overhead involved in the global mat.rix transpose. The reduction in scal- 

ing for the I\;alman filter analysis step is more severe. This reduct,ion is due primarily to  the 

serial (unparallelized) calculation of t,he Kalman gain matrix on each processor - sometimes 

referred t,o as au ,41ndahl’s bottleneck - and! inore significantly, to software siinplifications 

tliat, invol1;e the use of global s u m  library subroutines. 

Overall the peak performa.ncc obtainccl for high-rcsol iit,ion runs on 512 processors of 

the Paragon is about 1.3 gigailop/s. This may lie improved by on-processor memory-to- 

memory optimiza.tion or eva.lua.t,ing the matrix P f H T  more directly, using fewer floating 

point. operat.ions and cornmunicat,ion calls t hail do t,he global sums. \,$’e expect t,o port 

our code t o  machines such as the Cray T3E without much effort,. improving further the 

~va11-clock time for high-resolut,ion runs. 

Basic tests of the parallel Kalman filter code using synthetic data  examined variance 

transport. and verified observa.bilit,y properties. The code is now being used to  assimilat,e 

retrieved const,ituent, data  from U.4RS inst,ruments, using analyzed wind fields from the 

DAO global a.tmospheric data  assimilat.ioii system to drive the transport model. Work on 

characterizing transport model errors is in progress. Results of these data  assimilation stud- 

ies will be reported in a future publication. 
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7 Appendix 

Appendix A. A load balanced Covariance Decomposition 

The cova.riance matxix is indexed P(il,Jl,  i 2 , j 2 )  where ( i 1 , j l )  and ( i 2 , j a )  are Fortran 

indices for two positions on a discretized latitude-longitude grid. Following the convent.ion 

that, is used for t,he state vect,or w ,  t,he entire matrix is dimensioned 1'( 1 : Arx, 0 :  ivy, 1 : 

%x, 0: N y ) .  The C'ovariance Decomposition assigns contiguous columns of I' onto difier- 

ent processors in  such a. way that. the t,ota.lit,y of all c,olumns on all processors ma.kes up 

the entire matrix without redundant!,. This amounts to a domain decomposition where a 

range of ( i 2 , j 2 )  is assigned to a processor corresponding t.o a contiguous sequence on a grid 

whose Fortran dimension statement has the range (1::Vz. 0:Ny).  Each processor allocates 

it,s doma.in of the mataris as P ( 1 :  JVr, 0 : Ny. i b :  i e ,  j 6 :  j e )  where (ib, ic, j b ,  j e )  depend on 

the proccssor identification number which, by c.onvcntion, ranges from 0 t o  N p -  1. Two 

sit.tiat.ions wise. For the case XI- ,  < iVy+l  at least one processor must have a range of 

j 2  such t,liat, j e  > j 6 ;  therefore, ib = 1 and i e  = N ; c .  For the case 1L'p 2 N y + l  it is 

not necessary that any processor overlap multiple values of j 2 ,  i.e., j e  = j b .  In fact, this 

condition is necessary to  conserve memory when N p  is much greater t,lian iliy + 1, because 

it is the only way to  impose a limited range on i2, i.e., ( i b : i e )  must encompass a range 

t,liat, is less than ( ] : M a ) .  The load inibalmce of the resulting decomposition arises from the 

uneven numbers of columns of Y on different processors. If we define the load imbalance 

L a.s the maxiInum number of columns on a, processor divided by the minimuin number, 

t,lien it ca.n be shown (Lyster et ai. 1997) that the worst case occurs when N p  = ivy + 1, 

corresponding to L,,, = (,Vr + 1 ) / N a .  For all ot.lier cases L is closer to unity. Clearly. 

for problciiis of intcrcst, (c.g., for 4Ox.5" rcsolution IVT = 72)  load imbalance is not a problem. 
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Table 1. Times for the P f l l T  and I< steps as a percentage of the total analysis times for 

lL' x 5" resolution. and 1-1 observations per timestep. These numbers are evaluated for both 

16 and 512 procesors. The reiriaining percentages are dominated by the cost of evaluating 

P" , which is highly parallelized. 

Pcrcciitage Pf H y '  
Percentage K 

11 Number of Processors 1 16 1 512 11 
1.5 30. 
3.2 19. 



Figure captions 

Figrire 1 (a) .  Schematic for the Operutor Decomposition approach for storing large size-n2 
matrices and performing B! 

Figure 1 (b). Schematic for the Covarzance Decomposition approach for storing large size-n2 
matrices and pertornling U ( M P )  T .  

Figure 2. Speedup curves for the domain decomposed van L.eer transport, algorithm imple- 
mented on the Intel Delta. 

Figuie 3 .  Tlie actual speedups for the forecast step, the analysis step, and the full Kalrnan 
filter on the Intel Paragon for medium resolution (4" x 5") using Covariance Decomposition 
c~iid the Joseph foiiii Cq. (13).  

Figure 4. The a c t u d l  bpeeduys for llie forecast step, the arialgsis step, arid the full Kalrnan 
filtcr on thr  Intrl Paragon for nieclium resolution (4" x 5") using Covariance Decomposition 
and  the optimal foim Eq. (14). 

Figure 5. The actual time (seconds) per timestep of the forecast step. the analysis step, and 
the full I\almsn filter on the lntel Paragon for medium resolution (4" x 5") using Covariance 
Decomposition and the Joseph form Eq. (13). 

Figure 6. The actual time (seconds) per timestep of the forecast step, the analysis step. and 
the full Kalman filter on the Intel Paragon for medium resolution (4" x 3") using Covariance 
Decomposition and the optimal form Eq. (14). 

Figure T. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the 
Intel Paragon. These numbers mere obtained for t,he optimal form of the analysis step, Eq. 
(14). 

Figure 8. For solid body wind propagation over the poles: (a) the initial variance; (b) the 
final variance after a full rotation period of the winds. 

Figure 9. The total variance 1. versus time for a meridional obscrving network, and an 
ohservation error covariance matrix R = 0. The initial error covariance matrix is obtained 
froin the SOAR covariance function with values of correlation length L = (1,000 kin, 500 
k m ,  5 krn). The rotation period of the solid body winds about the polar axis is one clay. 

23 



domain decomposition 
of P down Columns 

(MP)T = ....... 

(P is symmetric) 

Figurc 1 (a).  Schcmatic for the Operdor Decomposition approach for storing largc sizc-n2 
matriccs and pcrlorming M ( M P )  . T 
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domain decomposition 
of P along rows I:!] - P -  

....... o MP = M gj 
.... .... .... .... .... .... .... 

tiiiij 
...... 

global transpose 
...... 1 ,  (MP)T = I'iii, ...... 
...... 

T 
M(MP) = M l s i  = rl Bi!il ....... .... ....... .... ....... .... .... .... 

Figure 1 (b). Schematic for the C'ocariance Decomposition approach for storing large size-n2 
matrices and performing Al(MP)T.  
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Figure '2. Speedup curves for t,he domain decomposed van L.eer transport algorithm imple- 
IiieriLed 011 the Intel Delta,. 
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Figure 3. The actual speedups for the forecast step, the analysis step, and the full Kalman 
filter on the Intel Paragon for medium resolution (4' x 5') using Covariance Decomposition 
and the Joseph form Eq. (13). 
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Figure 4. T h e  actual s p e e d u p  for the forecast step, t h e  analysis step, and the full Kalman 
filter on the Intel Paragon for medium resolution (4" x 5") using Covariance Decomposition 
and the  optimal form Eq. (14). 
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Figure 5. T h e  actual t ime (seconds) per timestep of t h e  forecast step, the  analysis step, and 
the  full Kalman filter on the Intel Paragon for medium resolution (4" x 5') using Covariance 
Decomposition and the Joseph form l3q. (13). 
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Figure 6. T h e  actual time (seconds) per timestep of t he  forecast step, the  analysis step, and 
t h e  full Kalman filter on the Intel Paragon for medium resolution (4' x 5') using Covariance 
Decomposition and the optimal form E&. (14). 
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Figure 7. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the 
Intel Paragon. These numbers were obtained for the optimal form of the analysis step, Q. 
(14). 
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Figure 8. For solid body wind propagation over the poles: (a) the initial variance; (b) the 
final variance after a full rotation period of the winds. 
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Figure 9. The  total variance V versus time for a meridional observing network, and an  
observation error covariance matrix R = 0. The  initial error covariance matrix is obtained 
from the SOAR covariance function with values of correlation length L = (1,000 km, 500 
km, 5 km). The  rotation period of the  solid body winds about the  polar axis is one day. 
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