


Abstract 

A I<alma.n filt,er for the assimilalion of long-lived atmospheric chemical constituenis 
was developed for two-dimensional transport models on iseiihopic surfaces over t,he 
globe. Since the I<alman fiker calcuhtes the error covariances of the estima.ted con- 
stit.uent. field, t,liere are five dimensions t.o this problem, XI, x2, and t i m e ,  where x1 a.nd 
x2 a,re the positions of two points on an iseiitropic surface. Only computers with large 
memory capacit,y and high floating point speed caii handle problems of this magnit,ude. 
This a.rticle describes an implenient.a.tioi1 of the Kalnian filt.er for distributed-memory, 
message-passing pa.rallel comput,ers. To evolve the forecast error covariance matrix, an  
Operator Decomposit,ion and a Cova.riance Decomposit,ion were studied. The l a t h  was 
found t,o be scalable and has the general property, of coiisiderable practical advaiita.ge, 
t.liat the dyiiamical model does iiot need to he parallelized. Tests of the Kalinaii fil- 
ter code exa.mined variance transport a.nd observabilit,y properties. This code is being 
used currently to assiinilat,e constituent daba retrieved by limb sounders on the Upper 
Atmosphere Research Satellite. 

Published in  Mon. TVea. Rev., 125. 16i4-1686 (1997). 
Available at  http : //dao . gsf c .nasa. gov/subpages/of f ice-notes . html 
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1 Introduction 

This art,icle int roc1 uces one of the current resea,rcli efforts a t  the Data Assiiiiila,t,ion Office 

(DAO) of the NASA/Goddard S p x e  Flight, Center to use the Ka,lman filter (e.g., Ghil e t  al. 

1981) for atmospheric data  assimilation. At present, a full implement.ation of the Kalman 

filter in  a four-dimensional da,ta assimilation (4DDA) context is impossible. Considerable 

research needs to be undertaken before aiiy implement,ation could be used operationally. 

Many open questions need to  be answered surrounding computational approximations (e.g., 

Todling a.nd Cohn 1994; Colin and Todling 199G), model and observat,ion error covariance 

descriptions (e.g., Dee 1995), nonlinearity (e.g., WGnard 1994), and basic probabilistic as- 

suniptions (e.g.. Colin 1997 and references t,herein). Therefore we have chosen a model 

problem in two space dimensions, for which real observational data  exist and for which the 

Kalman filt.er ca.n be implemented fully, to est,ablish a benchnmrk syst.em to begin addressing 

sonic of tlicsc issues in a rcal-data environment. 

Our model problem focuses on tra.ce chemical constituent nssimila.tion. This is also 

a problem of considera,ble int.erest in the Eart,h Science community (e.g., Daley 1995, Ri- 

islitljgaard 199G). It is well known that in the upper troposphere and stratosphere, a number 

of t,race chemical const,itrients can be modeled for rehtively long t,irnescales, typically weeks 

to months, using mass continuity dynamics. In  isent,ropic vertical coordinates the transport 

behaves two-dimensionally. Therefore we have implemented a. Kalnian filter in spherical 

geometry on  a.n arbitrary isentropic surface (c j .  Cohn and Parrish 1991). In this case the 

state dimension is 1.3 x l o4  at a resolution of 2" lat,itude x 2.5" longit.ude, which requires 

special computa.t.iona1 strategies for a full Iialman filter implementat,ion. Observations are 

availa.ble from t.he ITpper At,mosphere Resea.rch Sa.t.ellite ([TARS) (Reber 1993; Rood and 

Gcllcr 1994) launched in Sepkmbcr 1991. This NASA satellite carrics a number of inst,ru- 

mcnt,s t,liat. obt,a,in retrievals of trace gases in thr  tipper troposphere and the st,ratosphcre 

using limb-sounding techniques. Thus we can perform meaningful data-nssimilation exper- 

iments tha,t operate a t  the floating point speed and memory limit of present-generat.ion 

distributed-memory parallel computers. This article deals with efficient stmtegies for par- 

allel implementation of the Kalman filter. and tests their implementation by assessing basic 

scieiit>ific properties of va,ria.nce transport and observability. 

Since this articlc concentrates on computational aspects of full Kalman filter implemen- 

tation, syiit.lietic (lata are used in t,he esperiirient,s reported here. Near-future work will 

involve assimilsthig actual LIARS data, with the t,ransport model driven by wind analyses 

froiri the g1oba.l alnioaplieric dala  assimilaliori system (PSAS; da. Silva. e t  al. 199.5) currentlv 

under development at. the DAO. With t,he benchmark constituent data  assimilalion system 
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in p i d c r ,  we rxyect to be abie to dddress a numbel of the open questions in Kairnan filter- 

ing, and to produce research-quality datasets of assimilated atmospheric constituents at an 

acceptalde cost. 

This paper is divided into six sections. Section 2 presents the mathematical formulation 

of the Kalman filter for constituent data  assimilation. Section 3 describes the implernenta- 

tion on distributed-memory parallel computers using message-passing Fortran 77 software. 

We develop two methods for implementing the forecast error covariance dynaniics and in- 

dicate our reasons for choosing one (Covariance Decomposition) oi  er the other (Operator 

De(-ompod ion). The Covariancc Dccomposition is efficiciit in the sense of minimizing wall- 

floc-k time, and scalable in the sense that  speed up is attained when more piocessors are 

used on a given problem (especially a t  high resolution). It also has the important advantage 

that the model dynamics does not need to be parallelized 50 long as the model fits in the 

inenioiy of a single processor of the parallel computer - this is a general property. We fur- 

ther describe a parallel implementation of the I<alInan filter analysis eqiiations. Section 4 
emphasizes the efficiency of the parallel implementation by showing detailed timings on the 

512-processor Intel Paragon computer a t  the California Institute of Technology. In section 

5 we concentrate on the scientific validation of the algorithm itself by testing two basic 

properties of our Kalman filter algorithm. The first test verifies the predicted transport 

by solid-body rotation winds of an initial cosine-hill variance structure. The second test 

shows how the total variance is reduced to zero to  machine precision in finite time for an 

ohseryiiig network that  guarantees complete observability. In section G we summarize our 

conclusions. 

2 Description of the Kalinaii Filter for Constituent Assinii- 
lation 

The transport of atmospheric chemical const,it,uents obeys the inass conservation law: 

where p denotes t,he density of the constituent (Le., its mass per unit volume), v is the 

three-diii~ensional wind vector, and S represents the inass source/sinli terms due to  cheniic.al 

rea.ct,ions or phot,odissocia.tion. 

In this work we consider the transport of long-lived constituents (i.e., chemical trac- 

ers). Lower and middle stratospheric nitrous oxide (N20), methane (CH3) ,  CFC’s, water 

vapor, aerosols, and lower stra.tospheric ozone ( 0 3 ) ,  can all be characterized as long-lived 

coiistit.iients for time scales of weeks or more (Brasseur and Solomon 1984, Andrews et  al. 

1987). Using potential temperature B as the vertical coordimte, and neglecting diabatic 
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e f k t  s, chemistry, and explicit sub-grid scale paranieterization of mass flux, the transport 

of long-lived constituents becomes tmo-dimensional, and can be written as 

Here vg dcnotcs the two-climcnsional wind vcctor on t,he isentropic. surfa,c.c (0 = cor~stant) ,  
a.nd Go denotes the t,~vo-tlimensional gradient operat,or on t,he isent.ropic surface. The mass 

conservation law can a,lso be written in terms of mixing rat,io instead of density as the 

state va.riable. in which case the appropriate tmnsport. model is the advection equat,ion ( c j .  

Andrews et al. 1987, Appendis 10A). 

I n  st.udies of t,ra.cer t,ransport,, winds used t,o drive t,he trailsport model (1) or (2) are 

usually given by a general circulation model (IYilliamson and Rasch 1989) or from wind 

ana,lyses interpolated in time (Rood et, al. 1991). However, for this st,udy we use analytically 

prescribed wind fields to assess basic properties of the Kalman filter algorithm as well as 

(,lie t iriiiiig a,ricl scaliiig performance of tlie parallel implemeiitat,iori. 

In matrix-vcctor iiotat,ion, a discrete version of Eq. (2) can be written as 

nhere tr; is an n-bector of constituent densities on a grid covering the isentropic surface, 

and the n x I I  matrix -4dk-I  denotes the action of the discrete dynamics from time t ~ - ~  

lo time l k .  The continuum transport equation (2) is linear and it is assumed that the 

cliwrctc) trdnsport cyuatioii (3) is also linear; the dynamics riiatrix M h  docs not depend on 

U T ; ,  although it docs depcnd on the wind field, which may vary with time. TWO different 

discretizations mere act uallp implemented, as  clibcussecl in section 3.2.  For both cases, the 

discrete dynamics are assumed to be perfect in  this initial study: no model error term 

appeals in Eq. ( 3 ) .  Thus uii denotes the true state at time t k .  which is t o  be estimated on 

the Insis of observations available up t o  and including time t k .  

Obsertations available at time t h  are assumed to  have the form 

n liere ui  is a p-vector of observations valid a t  time t k  ( p  generally- varies with time. p = p k ) ,  

I l k  is the p x u ohservation matrix used to interpolate the state to  the positions of the 

observations, and 5: is a random vector representing the observational error, assumed to  

be white in  time, C7aussiaii-distril~itt~d hith zero mean and known covariance Rk = < 
E;I(E;) >, and uncorrelated with the initial state tu:. H k  is assumed to  be independent of 
the 5tate tok, and is implemented as a sparse operator performing bilinear interpolation from 

the model grid to  the observation locations. The error of representativeness is neglected 

T 
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!;ere. For furt licr discassion of model error and rel>resentativeriess error, see Cohii (199'7) 

and references therein. 

IJntler the stated assumptions, the standard Kalnian filter algorithm described below 

gives the evolution of the conditional means 

and the corresponding conditional covariances 

~ c i c  tile n-vectors w{ and = 

uii - w[ and 5; = ui; - u$ are the forecast and analysis errors, and P[ and Pt are the 

(71  x n )  forecast and analysis error covariance matrices. 

arc tcrmcd tlic forecast and analysis, rcspcctivcly, 

The Kalman filter algorithm (see Jazwinski 1970, Gelb 1971, or Cohn 1997 for deriva- 

tions) consists of two steps: 

The forecast step 

21lL = ,U&I (9) 

(10) 

(11) 

(1'2) 

(13) 

P; = fL!!k-#ka_lMkk-lT = 31n-l(h.l~-1P,"_,) T 

UT; = .; + I i k  (UT; - H x : U i k )  J 

~i~ = P;II:(II~P/IIT + R J  

F'f = ( I  - I<kHn)P,f(I  - I i k H k ) T  + I ikRkIir .  

The cLria1jsis step 

'l'lie (unknon.n) initial true state WE, is assumed to be Gaussian-distributed, with known 

meail u$ and covariance matrix F'l. I n  the covariance evolution equation ( lo ) ,  the second 

equality is used because we implement the dynamics matrix h!fk as an operator. 

It sl~oultl be noted that except for roundofl errors in the coniputalion of Eq. (13) ,  the 

analysis error covariancc matrix is syinmet ric and positive semidefinite for any choicc of 

gain matrix I i k .  When thc optimal Kalmaii gaiii (12) is used, the analysis crror covariancc 

equation simplifies to 

(14) P; = ( I  - f < k I Z k ) P , .  J 

the optiaial forrii of the analysis error covariance equation. While the optimal form involves 

less computation than the so-called Joseph form (13) with given by Eq. (12), Pi coni- 

piited using the Joseph forni is less susceptible to rouncloff errors in the evaluation of I i k  

(Bucy and Joseph 1968, pp. 174-176; Gelb 1974). 
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3 Inipleriieritat ion Strategies for Distribut ed-hleriiory Paral- 
lel Computers 

The coniput,a.tion involved i n  the Iialinan filter, especially in Eqs. (10). (13).  or (14), is 
floating point. count- and meiiiory-iiit,ensive. To implenient the I<alman filter we use recent 

a,dvances in t,he use of distributed-metiiorv pa.ralle1 computers. Distribution stmtegies. their 

relative efficiencies, a'nd details of the corresponding algorit.hms are disc.ussecl in  this section, 

first for the foreast  step a,nd then for the analysis step. 

The style of programming we have adopted is Single Pr0gra.m with hlult,iple Dat,a 

(SPhlD). This means t.hat t,he same compiled program is run on all processors (SP), but 

each processor is responsible for different parts of the dist.ribut,ed memory (MD). Our code 

runs porta.bly on serial machines, such as a single processor of a Cray C90 if it fits into niem- 

ory, or on mult,i-processor messa.ge-passing distributed-memory computers: the distinction 

is mxlc I:)y setting the number of processors (a. Fortran paranict.er) to  bc iV7, = 1, or iV, > 1 

respectively. 

Our implementation to  date lins been on Intel pa.ralle1 comput.ers. specifically on the 

Para.gon computer a.t the California Institute of Technology (Caltech), which has 512 pro- 

cessors and about, 24 niega.bytes of usa.ble memory per processor. We also used the Touch- 

stone Delta at. Caltech. an older mxhine with 512 processors and 12.5 megabytes of usable 

niemory per processor. Typical processor speeds on bot,li of these machines range from 2 

to '20 million floating point opera.tions per second (megaflop/s) per processor for realistic 

a.pplications, t,hus reaching 1 t,o 10 gigaflop/s all t,old. For t,his paper we used the NX com- 

munications library; we used a modular progmmming approach so that  the more standard 

Messa,ge Passing Interface (MPI) communications library can also be used. 

3.1 Iiiipleineiitation of the covariance forecast, M ( M P ) T  

The compiitation of thc covariancc forecast, Eq. ( lo) ,  rcprcscnts one of the most compu- 

tationally demanding parts of the Kalman filter algorithm. The clyiiamics matrix A 4  is a 

sparse operator. occupying O ( n )  words of memory the components of M are generated 

ftom the wind variables(u, o) that  are specified on a latitude-longitude grid. However, P is 

a full matrix with n 2  non-zero elements. which is a large memory burden for the computer. 

For example, a t  2" (latitude) x 2..5" (longitude) resolution n z 1.3 x lo4,  and this matrix 

represents about 168 megawords, or 670 megabytes for a single-precision (1 bytes per word) 

iinplenient ation. l'lius tlie coniputation of , L I ( J I P ) ~  involves not only floating point cost of 

ahout h n 2  per timestep. where h depends on the finite difference template for d l  (typically 
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h z 58). but, also the memory cost, of storage. The cornpiled code for the entire Ka1ina.n 

filter based on 2” x 2 . . 5 O  resolution fits easily i n  the memory of the Intel Paragon, but not 

011 the Cra.y C 3 0  at, GSFC. 
It follows that it is importa.nt to  distribute effectively the large matrix P over the available 

proc,essors. This should he done wit,li minimal redundancy in order t,o conserve memory, 

and as uniformly as possible in  order t o  balance the memory and computational load over 

t,lie processors. We have coiisidered two such stmtegies for this domain decomposition: 

Operator Decoinposiiion; and Covariance Decomposition. 

The Opera.t,or Dcconiposition follows na,t i d l y  from thc standard donia,in drcomposition 

of a. finite-difference model where all state-like vectors (it: and columns of P )  are individually 

pxtitioned and distributed among the processors. This can be used because the operat,ion 

d4P can be regarded a s  repeated actions of the model operator on sta.t,e-like coluniiis of P. 
The details of the resulting algorithm, described in the next paragraphs, show t,hat the op- 

eration M ( M P )  can be performed without the need for a global tra.nspose of data. a.mongst 

the processors. The Covariance Decomposition avoids the need to  domain decompose the 

model by acting M on whole columns of P ,  Le., P is cloniain decomposed by distributing 

whole columns of P among the processors. This is of great pract,ical import.a.nce since any 

inodel can be used wit,liout having to develop a specialized model domain decomposit,ion. 

This is a general property for parallel Kalnian filters on large state spaces. The resulting 

algorithm for i L f ( ~ % f P ) ~  is forced to usc a global transposc of t,hc hrgc matrix iWP. The 

timings presented in the nest sec.tion show t1ia.t this is not delet,erious t,o performance. 

T 

3.1.1 Operator Decomposition 

We adopt the Fortran not,ation represent,ing the state to on a latitude-longitude grid wit,h 

indices w(l:iVx, 0 : X y ) ;  the memory is aligned contiguously along rows starting at w(1,O) 

a n d  ending at  i o ( X ; t ,  1Yy). lVz being t,he number of grid point,s on each circle of la.t.itude and 

A;!, + 1 the number on each meridim. The square matrix P ( i l , j l ,  i 2 , j 2 )  then has columns 

(not, t,o be c,onfused with the columns or rows of the stde-like variables on the latit,ude- 

1ongit.ude grid) that extend from P(l,O, i 2 , j 2 )  to  P ( N r ,  A’y, i 2 , j 2 ) ,  where the Fortran 

iiidices ( i 2 ,  j 2 )  specify a. particular coluniii of P. Thc operation A4P can be rcprescntcd 

as [iZPl, MP2, ..., MPi, ..., MP,,] whcrc P, is thc itli column of P. Thcsc Pi’s arc statc-liltc 

qua.iit.ities with the same structure as ui. 

The opera,t,or decompositioii is based on a clecomposit,ion of the domain of t,he transport 

operator bf. For the state forecast. Eq. (9), this is a classical domain-decomposition algo- 

rit.lim (Fosler 1995). For t,lie covariance forecast, the algorit,hni is illustrated in Figure l(a,) .  
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The clashed lines in t,he box represent,ing P cielinea.te the elements or slice of P that  be- 

long to  a particular processor. )$'hen the grid-point transport model operates on this slice, 

only data.  pert,a.initlg to a fraction of the physical domain are needed. In  t h i s  method, the 

domain of t.he transport operator is decomposed and the columns of the covariance matrix 

are decomposed accordingly. For a. specific discretization of A I ,  certa.in boundary values of 

a slice of P in each domain need to be stored redundantly in guard cells. If the number of 
grid pointas in  ex11 domain is la.rge compared t,o the number in the boundary regions, this 

is a small degree of redundancy. However, the redundant data  have to be passed between 

a,ppropriate processors when ill opcrat'es on a. column P; (or 211). This is called message 

pa.ssing and it involves a,ii interprocessor conimunicat,ion time cost t1ia.t must. be added to  

the on-processor floa.ting point operation cost when evaluating the wall-clock time, or 

more import.antly, t,he feasibility of performing the algorithm in an a.c,cepta.ble amount. of 

time. An advantage of this Operator Decomposit,ion approach is that the transpose 

involves no coniiii~inicatioiis. -4s illust,rat,ed in Figure l(a) the slice of MI' in a part,icular 

processor is actually stored as a collect,ion of column fragments. These data  are rewranged 

i n  irieniory t,o form cont.iguous rows of MP. This is equivalent t,o forming a. domain de- 

composition of ( M P ) T  where whole columns are stored on each processor. When the entire 
t\vo-dimensional wind field is in  each processor, which is not a. strain on memory, M ( h l P )  T 

P is syniiiiet,ric t,he columns of M(iL1I') T ca.n be internally transposed so t1ia.t. the resulting 

can be evaluated, without message passing, by the operator L121 acting on the columns of 

( M P )  T ,  i .e., evaluate [M (MI'): . M ( A4P)T. . . . , 111 (MP)' , . . . , llf ( M P ) 3 .  Finally. liecause 

iimtrix is donia.in decomposed, suita,ble for continuing the timestep cyde. 

3.1.2 Covariance Decoinposition 

In  this case. the error covariance matrix P is partitioned along rows so that whole columns 

are stored contiguously on each processor. The transport model operates on whole columns 

of P as illustrated in Figure l (b) .  I t  is not trivial t o  partition a size-n2 matrix P along 

rows onto Xp processors in such a nay that the number of coluirins of P (and hence also the 

floating point cost of !VIP) is approximately the same on all processors. This is generally 

icferred to d b  thc problcrii of load balancing. On a message-passing computer with 1 V p  >> 1 

it is acceptable for a rclativcly feh processors to finish their jobs earlier than the rest; these 

processors just sit and \\sit. However. it is a problem if a relatively few procesors finish 

much later t han  the rest. Lyster et  al. (1997) describe the load balancing procedure that 

ti as  applied to  the Covariance Decomposition approach; the algorithm is summarized in  

Appendix .A. The matrix ?llP is calculated with no interprocessor communications a long 



as all the wind coniponent,s a.re stored in each processor. The resuit M P  is decomposed 

naturally in the same manner as P was as indicated in Fig. l (b) .  

The t.ra.nspose (A4.1P)T ha.s t,o be performed so that whole columns of the result will be 

st,ored contiguously in-processor, in prepa.ration for the calculation of M ( M P ) T  in  the same 

ma.nner as Ad P itself. This necessarily involves communications because blocks of M P  that  

belong to  a. processor must be communicated to  the destination processor tha t  will st.ore 

(rZP)T.  This arnount,s t.o a globa,l transpose of a size-02 matrix, which is not trivial since 

evcry processor iriusl send arid receive sub-blocks of P to every other processor. Eficierit 

irii~~lcmcntat,ion of this global tra,nsposc using Int,cl NX coiriiiitinication library subrout.ines 

is also described in L,yst,er e t  al. (1997). After the global tra,nspose, the coinplete calculation 

AI(  nl can be computed simply, without communications, i n  exactly the same way as 

t,he final st,ep of tlie 0pera.tor Decoiiiposition a,pproach described above. 

In both ampproaches the whole (symmetric) matrix P is stored. This is not wasteful of 

rneiriory since both approaches calculate 31( M P )  t.lirough intermecliat,e calcula.t.inn of t,he 

non-symmetric matrix (;\dP)T in the same memory as that allocated to  P. Storing the 

whole of P also simplifies both algorithms c.onsiderably. 

T 

3.2 Comparison of the Operator and Covariance Decompositions 

C'ompaing multiple approaches to  an application is generally based on the nature of the 

software implementation (complesity, portability, ease of debugging and IIiaiIileiiuce, etc.) , 
aiicl tlir relative efficiencies in terms of iiietrics such as the acliic\ablc number of floating 

point operations per scconcl or the time to solution. 

The relative efficiencies of the two decoriiposition approaches are determined by how 

iiiricli of the work can be distributed effectively (parallelized) and by how much the parallel 

cost of interprocessor communications and associated memory buffering detracts from the 

on-processor floating point opeiation performance. The on-processor floating point count is 

approximately the same in both cases. Also, not only is it important that the parallel cost 

be srriall, but tha t  it remain relatively sriiall as the number of processors N p  is increased. 

'I'his is coininonly referred to  as scaling. In our work, it is important that an algorithm 

va le s  well for large numbers of processors (say N p  M 500) for typical resolutions of 4" x 5" 

and 2" x 2.5". 
Wc used LCCO dinircnt lrarisyort 5chcmcs for thc opcrator M :  t he monotonic ~ c o n d -  

order upwind van Lcer sclicine (Rood 1987, .Illcn ct  al. 1991) and a flux-conscrving scmi- 

Lagrangian piccc\i isc Imrabolic nicthod (Lin and Rood 199G). We cvaluatcd the Operator 

Decomposition algorithm only for tlie van Leer transport scheme. The conclusions that we 



drew froin this and the well-known difficult,y of domain dec,oriiposit,ion for semi-Lagrangim 

transport (e.g.. Barros et. al. 199.5) led us t,o focus on t,he Covariance Decomposition. 

First., we can est,imate t,lie cent,ral processing uni t  (CPU) time it takes t,o perform 

~l.l(dlY)'' excluding the parallel cost. At 3" x 3' resolution for the van Leer scheme on 

a single processor of t,he Intel Delta, the opera.tion M w  takes 0.077 seconds per timest,ep. 

This time does not differ much from the time for the algorithm of Lin and Rood (1996). 

-At this resolution '(1 = 72 x 46 = 3312, so tlie ininimum time to evaluate A4(MP)T is 

(277/N,,j x 0.077 z 512/Xp seconds per timestep. A typical simulation uses a 15-minute 

t.inicstep on 2-56 proccssors. so this amount,s to  192 seconds of c.oniput,c-t,ime per da,y (96 

tiniest,eps). 'lhis est,a.blislies tha,t. an efficient parallel iniplement~ation of the dynainics should 

give rise t,o an algorithm that runs to  completion in an acceptable amount of \\-all-c,locli time. 

A r u n  a.t 2* x 2.5" resolution with tlie sa.me t,imestep (made possible because 13 minutes 

Lvas conservative for the 1" x -5' run) should take about 42 = 16 times as long, since P is 

t . h w  fcmr t,imes a.s large in each dimension. 

The scaling of t.he 0pera.tor Decomposition was assessed by developing a domain-decomposed 

version of t,lie va.n Leer scheme for Eq. ( 2 ) .  This involved dividing the latit.ucle-longitude 

grid uniformly into Np,z regions in the E-W direction and Xpy regions in the N-S direction 

(i.e.. iYP = Aips x XPy). It should be noted that this is not. an optimal decomposition for t.his 

scheme because the standard upwind algorithm on a latitude-longitude grid usually requires 

subcycling of thc tinicstep at high latitudes in  order to keep the Courant number less t,han 

one. Hence this uiiiforni cloiiiain ilecoinposit,ioii is load-inihalanc.ec1 because processors that 

solve for high-latitude domains have a higher CPL! burden. To focus a.tt,ention on scala,hilit,y 

we do not directly address t.his load irnl)alance problem. 

The results given here are for the case of a small timestep everywhere on the grid such 

t ha.t t,lie C,'ourant number is less than one. and therefore there is no load imbalance. The 

metric we use is the speedup S ,  which is the time taken to  perform Mu, (or MPi) on one 

processor divided by the time on Y p  processors. If t,liere is no conimunicat,ion cost and a 

fixed processor speed we would expect an ideal scaling = N p .  When only parallel 

communica.tions degrade talle scaling performance we expect, a. speedup of 

whcrc r,,,, is thc time involvcd in packing and unpacliing tlic communication buIfcrs and 
invoking the communication library subroutines. The quantity Tcpir is the processor time 

iised for floating point operations. In general, maximuni times per processor should be used 

for times such as rpar and T C P I / .  IIowever, here and for the remainder of this paper, where 

load halance is never a proldem. we will use average times per processor. 
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Figure 2 shows 2 plot. of the measured speedup 5' as well a.s the ideal speedup for a /lo x 5" 

resolution problem performed on u p  t o  !V, = 1 G  Intel Delta processors. The measured 

speedup curve st.art,s to ta.il off at. 16 processors. This is undesirable because it indicates 

that  adding more processors will not result in a proportionate decrease in the mall-clock 

titlie. The cluant,ity SC is also plotted (for reference, for rV, = 16, rpu-, . /~c:p~i = 0.2). 
The difference between S, a.nd tlie measured speedup S is due primarily to  variation in 

tlie on-processor float,ing point. speed as the domains become smaller wit,h increasing ATp. 

Experiments at 2" x 2.5" resolution (not sliown) revealed that the speedup curve flattens 

out a.bovc -Wz, z 20. 

These cxpcriments indicate tha.t. a straiglitforwa.rd application of Operator Decomposi- 

tion, based on a domain-decomposed transport algorithm, would not be effect,ive for the 

4" x 5" or 2' x 2.5" resolut,ions t,hat are of interest in our work. This is ma.inly because 

messages smaller than about one kilobyte (as here) incur a latency (or startup cost) of about 

100 ,us. One way t.0 a.voicl this is to  concatenate guard-c,ell data  at the beginning of ex11 

tiniestep. and then send the resulting data buffer as a single message. This would add to  

t,lie comp1esit.y of t,he soft.ware. A more serious drawback t.o the Operator Decomposition 

is the wcll-known difficulty of parallelizing t,he semi-La.grangian algorithm (e.$., Barros et  

al. 199.5). 

A4n adv-antage for the Covariance Decomposition is that it is unnecessary to  psrsllelize 

the transport opcrator: t,hc choice of transport. schcine can be bascd on scientific mcrit alone 

I,eca,use bl is simply implement.ed as serial code 011 ea.cli processor. The pot,ential disadvan- 

tage is that, a. pa.ralle1 ma.t,rix transpose (,ZfP)T needs to be implemented. The transpose 

involves t,he t,ransfer of almost all t,lie memory of M P  (except for diagonal blocks) between 

processors. This involves more coniniunicat,ions (in terms of the total number of bytes) 

than  the Operator Decomposition, where only nearest.-neighbor processors coiiimuiiicate 

v ia  guard cells. However, through the communication of large buffers in  the matrix trans- 

pose. the effect of message latency is reduced. For example, t,he time for a global tmnspose 

for 4" x 5" resolution with 512 processors on the Intel Delta is 0.18 seconds. This compares 

fa.vorably with t.he prior estimate of t,he CPlJ time to  ca.lcula.te M(MP)T  of about 1 second, 

leading to a,n acceptable estimated speedup of S, = 512/(1.0+0.18) M 434. Detailed timings 

Tor Ihc global transposc (including bufrcring) for all nunibcrs of processors up to 512 arc 

given in Lystcr et. al. (1997). In section 4, scaling and timing rcsults for thc entire Kalman 

filter using tlie Covariance Decomposition are presented. 

The Covariance Decomposition approach ca.n be applied to  any set of dyna,niical equa- 

tions that can be represented in t81ie form of Eq. (9). The only rest,riction is that the 

inil>lementat,ioil of t.he opera.tor 4.l should fit. on a single processor. For nonlinear dynamics, 
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the tangent h e a r  model operator mould be used to evolve the error covariance (kihnard et 

al. lW5,  Daley 1991). 

our sequential nietliod for evaluating ,\r(:\rP)T allocates storage for one matrix of size 

nL and message buffers of size n2; both of these large memory objects need to  be distributed 

ariioiig all processors. I n  the next section we show that, depending on the number of ob- 

servations p that are assimilated in a timestep, the memor3- requirements and number of 

floating point operations involved in the analysis error covariance computation can compete 

wit t i  (and even exceed) that required for evaluating M ( M P ) ~ .  

3.3 Implementation of the aiialysis step 

The a.na,lysis equations are (ll), (12),  (13), or (14). The gain K is stored as an n x I-, 

iimtrix. H is a p x 11. sparse operat>or that interpohtes bilinearly from analysis gridpoints 

t.o observa.tion 1ocat.ions. In practice, only t,lie four int,erpola.t.ion weights per row of H are 

act,ually stored. P f H T  is n x p .  while HI'fHT+R is p x p .  The Iialman filt.er is a sequential 

algorithm; a t  each tiinestep p observations a.re assimilated. Since t,ypically p << n,  all of the 

above matrices are small (as is the state w) compared with size-n2 matrices, Pf and P". 
The present. code stores all small ma.t.rices (71 x p aiid p x p )  identically on all processors. 

This considerably simplifies the software aiid debugging. The only problem occurs when p 

is suficiently large that the storage of the n x p matrices compet.es with the stora.ge of size- 

iL2/:Vb, coiiiponents of P on each processor. This occurs when the nuinber of observations ill 

a timestep is p z 7t/Np.  For cxaniplc. at 4" x 5" resolution on iVp = 512 proccssors, storage 

of t.hc small matrices conipctes with thc storage of P when p M 6 observations pcr timestep. 

The Cryogenic L.iml:, Array Et.alon Spect,roiiiet,er (CLAES) instrument on Iioa.rc1 t,he [JARS 
sat,ellit,e retrieves a number of t,ra.ce const,ituent.s in the stratosphere using a limb sounding 

technique. We are assimilating retrievals from this instrument, and others on board UA4RS, 
to  generate gridded data.set.s. In one timest,ep of our Iialiiian filter (1.5 minutes) CLAES 

produces about 1.4 observations when interpolated onto an isentropic surface. In this case 

sma.ll-ma.t,rix st,orage doiriina.t.es that of P. For 2" x 2.5' resolution (NZ = 144, A r y  = go), 
p77LtL.c = 15, and Nl, = 512, the compiled code, including the analysis code, on the Intel 

Delta requires 12 mega.bytes per processor, just below the user limit of 12.8 niega.bytes. In 

t,Iiis ca.se, st.orage of P dominat,es that of the small matrices, since n / N p  26. The Intel 

Paragorl lias twice as iriucli user memory, so ruiis with N p  = 2.56 a.re possible at this spalial 

rcsolu tion. 

The following suiiiiiiarizes thc floating point and communicat,ion costs of t,he analysis 

equations: 



3.3.1 Evaluate the Kalman gain I< 

The algorithm evaluat,es cont,ractions where possible so that large size-n2 matrices are not 

gelierat,ecl unnecessarily. The first such contract,ion is P J H T .  For bilinear int,erpolation, the 

p x n matrix H has only four non-zero elements along each row. Each column of the n x p 

matrix P f H T  is therefore a 1inea.r combina,tion of four columns of Pf. Thus the evaluation 

of P f H T  talies O(r2.p) operations sha,red over a11 processors. Since ~f is distributed, and 

we rcciuirc f i  to  be reprod uccd identically on all processors. we first calcula,tc pa.rt,ial sums 

of P j H "  on each processor and then perform a global suni over all processors to obta.in 

PfHT. This is a. standard operation on SPMD computers: hence these global-sum routines 

a,re usually provided as  optimized library calls (usually involving tree-c,ode algorit.lims, cj. 

Fost,er 19'33). The parallel cost of this is O(nplog%Vp) operations shared over all processors, 

wliile t,he parallel cornmunica.t,ion cost is optimized according to t,he architect.ure of the 

m a.chine . 
The ma.trix HPjH'  is evaluated as H ( P f H T ) ,  the matrix P f H T  already exists 011 

all processors. This takes O(p2)  operations and the global combine takes O(p2 l o g ~ V p )  

operations, both shared over all processors, wit,h some conimunicat,ion overhead in the 

global sum. The observation errors are taken to  be uncorrelated; hence R is diagonal, the 

clcriieiits being the ~neasurc~iicnt error variances. The solution of Eq. (12) to  obtain I< 
uses a,n eigenvalue decomposition to evalmte the inverse of symmetric matrices (Press ct  al. 

1989). This approa.ch allows for the deselection of small eigenvalues in blie construction of the 

inverse of t.he matrix f I P f I I T  + R, which is poorly c.onditioned when t,he observa.t.ion error 

va.riances are small, especially for perfect. observations as in the observability test (see section 

5.2). This t.akes O(1j3) floating point operat,ions per processor to obta.in ( H P f H T  + A?)-'. 

When our algorithm is used with UARS datasets, ill-conditioned matrices are not expected 

t o  arise, in  which case we will use a more efficient Cholesky decomposit,ion to  solve (12). 

Finally f< is evaluated 011 each processor as P f H T ( H P f H T  + R)-' which takes O(np2)  

operations per processor. 

The floating point cost of evaluating fi, O(np2)  operations on each processor, increases 

rclativc io tliat of A ! ( A ~ P ) ~ .  KIiic~i is O(Itt~L/i\~p) operations per processor (refer to seclion 

3.1),  as 11 or LV,, become larger. Thcrc is also a memory burden in storing K and P f H T  on 

all processors, which becomes coinparable to the storage of P when p M n /Np .  
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3.3.2 Evaluate P 1  

Consider first the optimal form Eq. (14): Pa = ( I  - I < H ) P f .  This is evaluated as 

F'f - I<(IIPf). Tlic sccond term lisps K and H P f  z ( P f H T ) T ,  both of which arc \tored 

itlPntically on all pro(-essors. The expansion K ( H P f  ) is performed in parallel by evaluating 

only those terms that contribute to each processor's domain for the stoiage of Pa. This 

tahes 0(?i2p/-vp) operations per processor. This increases relative to  the cost of calculating 

A\I(L\lF')T as p becomes larger. 

Tlic Joscph form Eq. (13) is evaluated as: 

P" = ( I  - Z<H)(Pf - I ; ( H P f ) ) T  + ZiRKT. 
Once again this is generated from H P f ,  ICl  anti R which are all stored identically on all 

processors. This operation takes O(n2p/iVp) operations per processorl however there is a 

parallel cost involved in the global transpose of the size-n2 matrix. Since Pf is overwritten 

by Pa 110 additional memory is required, cf., section 3.1.2. 

3.3.3 Evaluate uf' 

This is c,arried out ident,ically 011 all processors. The innovation tuo - H w f  is a p-vect,or that  

is evaluated and saved for collection of innovation statistics. The Kalman gain is applied 

to this vector a.nd the malyzecl state ,urn evaluat,ed, Eq. (11). The time to evaluat,e utn is 

dominated by the multiplication by t,he Kalman gain, which takes O(np) opera.tions per 

processor. 

'L'he inatrix inversion and the eva.luat,ioii of wa are not parallelized. For these t,wo compu- 

tations, all processors perform exactly the same calculations and K ,  HPf l  and tua are stored 

identically on each processor. The larger calculations in the analysis step are performed as 

parallel processes. 

4 Timings for the Parallel Kalnian Filter 

l'he previous section makes it clear that  the Covariance Decomposition strategy is preferred 

for the cobariance forecast dynamics, Eq. (10). CVe discussed a strategy for the analysis 

step that involves some global communications to  evaluate P f H T ,  evaluating Ii and wa 
identically on each processor. and paralleliziiig the equations for P", Eqs. (13) or (14). 

In this section all h i i n g s  mere obtained for runs on the Intel Paragon a t  Caltech. The 

iiiterproccwor coiriiriuiiication bandmidth or this rriachinc is about 5 tiriies faster. and tlic 

on-processor speed (flop/s) is about 1.2 timcs fastcr than that of the Delta. We uscd single 

precision ai itlimetic with compiler optimization options 0 4  and noieec. 
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For riiediuiri resolution (.I" x ti") using tlie Joseph form, Eq. (13),  Figure 3 shows the ideal 

speedup (Sides/ = ATp), as well as the measured speedup for the forecast step, tlie analysis 

step? aad t.he full  Iialman filter, for iVp = (16, 32, 64, 128, 256, .512). For expeririient,s 

involving the assimilation of CLPlES data, the timestep is 15 minutes and the average 

number of obseriations ( p )  per timestep is 14. The results in this section apply to th i s  case. 

Note that the minimum number of processors on which this problem was run is 16, so these 

actual speedups are measured wit,h respect. t,o the times on 16 processors. This speedup 

is slightly more opt,imistic than the usual value measured with respect to time on a single 

processor. However, what is important is t,hc cliangc in speed up as more processors a.rc 

added to a problem, beca.use this indicates how well tlie incremental processors are utilized. 

Figure 3 indica.t.es that  t,he speedup for tlie analysis step is less linear (scalable) than for 

t,lie forecast. st,ep, t,lius degrading sc.alabilit,y of the full Iialman filter. Both steps involve 

substantial int,erprocessor communication, and the improvement in  on-processor speeds with 

optimizat.ion emphasizes the relat,ive cost. of the interprocessor c m i  rnrinica.t,ions (t,he forecast. 

step is less scalable than was estimated in section 3.2). That is, although the code runs 

faster with more processors, the scaling is poorer; this is a coininon result of on-processor 

optimizat,ion. The speedup for the analysis step tails off more quickly than that of the 

forecast because oiily part. of this step is fully parallelized, na.mely, the evaluation of Pa.  
The total speedup curve in Figure 3 begins to flat,ten above 256 processors, so that using 

more t,han 256 processors a.t mcdium resolution for tlic Joseph form witch optimizcd code 

does not, reduce the wall-clock t.inie sigiiifica,ntly. Figure 4 shows the c.orrespoiicling speedup 

curves when the op t i i i d  form, Eq. (14). is used. Here the t,imc to eva,lua.te Pa is reduced 

relative to that, of K and PfI IT .  Since the evaluation of Pa is fully parallel, the analysis 

step speedup curve now falls off more rapidly than in Figure 3. In fact, the analysis step 

shows little speedup a.l>ove 128 processors. 

The actual times in seconds per timestep for the analysis using the Joseph form, the 

forecat. Ptep, and t.he full I<a.lma.n fiker are shown in Figure 5 for medium resolution and 

p = 14 observations per timestep. The dominant cost of the analysis for large numbers 

of processors is clear. This evaluat.es to a.n 

acceptable 15 minutes of wall-clock time for the full Kalman filter using 256: processors. 

A t,ypical 10-day run takes 960 timesteps. 

The corrcsporidiiig rcsu1t.s for the optirnd rorm arc sliowri in Figurc 6. Siiicc the optimal 

form is sirnplcr (1vit.h fewer floating point, opcrations and without tlic need for thc global 

transpose), the a.ctual t.imes for the analysis are relatively small. This is why t,he speedup 

(scaling) for the full  I ia lnian filter is a. lit,tle better for t,he optimal form t h a n  for the Joseph 

form (compare Figs. 3 and ,I). Only for large numbers of processors N p  > 2.56 does the time 

€or the analysis st,ep exceed that of the forecast s k p .  The full Ka1ma.n filter st'ep ta.kes less 
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time for the optimal form than the Joseph form, for all numbers of processors. -4 10-clay 

run for the optimal form takes about 34 minutes of wall-clock time for the full Kalman filter 

using 256 processors. 

Due to the limitations of main memory, high-resolution runs ('2" x 2.5') can only be 

performed on '2.56 and 512 processors of the Int,el Paragon. Therefore c.oniplete speedup 

curves cannot, be plot.ted; however, comparisons with medium-resolution runs can be made. 

Four a. 10-day ruii wit,li 960 timesteps on 512 processors, the total time for the full I<alman 

filter a1 high resolution is 7.8 hours for t.he Joseph form and 5.0 hours for t,he optimal form. 

The rat'io of t,hc tot'al time for 256 proccssors to tha,t of 512 proccssors is 1.50 for t,hc Joscph 

forni and 15'2 for tlie opt.in1a.l form. This scaling is considerably better t.han for medium 

rcsolution, due t,o the improved scaling of tlie global transpose for larger sized matrices and 

t.lre reduced relative cost of cidculat.ing the mat,ric,es K and P f H T ,  a t  least one of whose 

dimension is fixed ( p ) .  

.4ct,ual flop/s ra.t.es were calculated using the hardware performance monitor (hpm) on 

the Goddard Cra,y C9S to measure t,he number of floating point. operations. The flop/s ra.tes 

were calculated by dividing the hpm numbers by the actual t,imes (Figures 5 and 6! i.e., 

for p = 14) on the Intel Paragon. Figure 7 shows the gigaflop/s rates for the full Kalman 

filter (optimal form) for b0t.h iiiediuni (4" x 5') and high (2' x 2.5") resolutions. We obta.in 

a peak performance of about. 1.3 gigaflop/s. This is typical for the i860 RISC-based pro- 

ccssors, wlicre local mcmor;v-to-mcrnory data tra,nsfcrs redim thc actual throughput. bclow 

the rated peak (especia,lly for a ~emi-Lagra,ngia,ii transport algorithm). The gigaflop/: 5 rates 

for the Joseph form (not shown) a.re almost the mnie a,s for the optinial form, peaking at 

1.2 gigaflop/s; the slight. reduction arises from the parallel cost, of the extra global t,ranspose 

operation. We note that there are different interpretations of the term flop/s in the evalu- 

ation of parallel code performanc,e. %'e have used the conserva.tive approach of considering 

only the number of floating point operations for the serial version of the code on the Cray 
C'98. 111 deriving the numbers for Figure 7 we do not factor in the ext,ra. parallel float,ing 

point burden associated with, for example, the global sum in calculating P f W T .  
Both fornis of t,he Kalman filter (Joseph and opt,imal) scale well up  tso 2.56 processors at 

do x 5" resolut,ion. Scaling is satisfactory up to  512 processors a t  2' x 2.5" resolution. The 

algorit1iiris for evaluating P ~ H ~  arid K arc tlie dominant ca.use or diminishing spccdup. 

Ta.blc 1 sliows t1ia.t the pcrccnt,agcs of tiincs takcii by P f H T  and I\' incrcasc significantly 

from K;, = 16 to 512 processors. In the case of PJH* recall that  global suin operations 

are used t,o combine partial sums over processors. For 1' = 14 and iVp >> p most processors 

tviI1 make no contribution to the sum, yet the global sum is over all processors. This gives 

rise t,o the poor scaling for Pf H". .4n opt,iinized algorit.hm t.ha.t. replaced t,he global sums 



would be considerably more complex. The evaluat,ion of I< is not pa.raiielixed; the inverse of 

(HPfHT+ R ) ,  a p x p ma.trix. is performed identically on all processors and gives rise to the 

poor scaling in Table I .  No LIARS instrument provides enough observa,tions per timestep 

to ma,ke satisfactory use of a parallel inverse, such as from the Scalapack software library. 

\Ve ha.ve not found ot,lier t,han bitwise identical results for the sa.me run performed on 

different numbers of processors. However, because of the use of the global sums that  may 

evaluate partial sums in a different order (depending on iVp and the location of observa.tions), 

bitivise identical results are not guaranteed by our algorit.hni. 

Table 1. Tinics for the P f H T  a,ncl I< steps as a percentage of t,lic total analysis times for 

4L' x 5" resolution, and 14 obsermtions per t.imestep. These numbers a.re evalua,ted for both 

16 and 512 processors. The remaining percentages are domina.t,ed by the cost of evaluating 

P" , which is higlily lxtrallelized. 

Nuinber of Processors 
Percentage PIH'  
Percentage I< 

16 512 
1.5 30. 
3.2 19. 

5 Numerical Tests 

Here we present the results of two validation tests of t,lie Kalman filt,er code, using synthetic 

winds and observations. These tests are basic for the Kalman filter algorit.hm; further work 

byill use act,ual wind datasct.s and [JARS obscrva.tions. VL'c used the transport sclicme of 

Lin and Rood (1996). which is less diffusive than the n n  Leer scheme. The algorithni 

was renclcrccl 1inea.r with respect. to  the constituent density by removal of the monotonicity 

concl i tion. 

5.1 Consistent evolution of the error variance 

For noli-divergent flows, in the absence of observations, the variance P(x, x, t )  satisfies the 

advection equation (Cohn 1'393) 

(16) 
d 
d t  
-P(x ,  x, / )  + vg * TP(x, x, I )  = 0, 

where x denotes a point on the isentropic surface 0 = constcint. The non-divergent flow 

considered here is solid-body rotation. In this case Eq. (16) implies that  the variance field 

simply rotates along w i t h  the flow. and verifying this property constitutes a test of the 

implementation of the discrete covaridnce propagation equation (10). The axis of rotation 

is chosen to  pa5s through the equator (i.e., flow is over the poles) so that ,  in particular, this 

pro! ides a test of the variance propagation near the poles. 
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A case is presented wit.11 8" x 10" resolution (1Y.r = 36 and N y  = 22). The tiniest,ep is 

set to 15 minutes, so t.hat one day corresponds to 96 timesteps. The rotation period is 1 

day. In this case the rna.simuni Courant number for flow at, t,he equator is 44/96 = 0.46. 

The initial error covariance funct,ion is chosen to  have a space-limited cosine structure: 

0.25(1 t cos (Te , /e , ) ) ( i  + C o S ( T o 2 / e n ) )  

for 0 5 01 5 ea a n d  0 5 02 5 0, (17) { 0. for 01 > 0, 01' 02 > ea 
P ( X 1 ,  x2, f = 0)  = 

where 01 = @ ( X I ) ,  02 = O ( X ~ ) ,  a.nd d(x) is tlie great-circle angle between x and a 

fixed point on t,lie ec1ua.t.or where the solid-body speed is a maxirnuin. The inilia1 variance 

P ( x ,  x, / = 0) is thcrcforc a squared cosine hill centered a t  ihe cquator. Since P(x1, x2,1 = 
0) given by Eq. (17) is a. product f(xl)f(x2) with f continuous, it, follows that  P(x1,xg. t = 

0) is a. legit,iniat,e covariance function (Gaspari and C'ohn 1996). The initial c.ovariance 

rna.tris Po" is obt,ained by eva1ua.ting Eq. (17) on the grid. 

Figure 8(a)  shows a cont,our plot. of t,he initial variance field evaluated on t,he 8" x 10" 

grid. For this case 0, = 21x/63, so the  total width of the structure is about 120" (;.e., 12 

grid points in longit,ude and 1.5 in latitude). Figure 8(b) sliows t,he discrete variance field, 

or diagonal of Y ,  a.ft.er integrating E,q. (10) for 96 t.imesteps. Escept for a slight north-south 

a.symiiietry, the overall shape is well-preserved aft.er the passage over the poles. 

The total va.riance is defined to be the integral 

11- = dx P(x. x). t 18) s 
whcre dx is arca. nica.surecl on thc surfa.ce of thc sphcrc. The intcgral is cva,luatccl numeri- 

cally on t.he grid. For tlie present case t,he initial total vxiance is 0.5589 and the final total 

va.riance is 0.5493. The discrete dynamics results in  a mild diffusion in the transport of 

mriance over the poles. 

5.2 Observability t es t  

The second t,est, involves bot,h forecast and a.nalysis st.eps, using synt.het,ic perfect obser- 

xxtions. The total variance I/', as defined in Eq. (18) should reduce to  zero (to machine 

precision) in  finite t,inie if the observability condition is met (Cohn and Dee 1988). Solid- 

body rota.tion winds are used again, b u t  now with the axis of rotation is through the poles. 

and .again a.t, 8" x 10" resolution. The wind rot,at,ion period is again one day, but. a timestep 

of 40 niiiiutes is chosen so that  the Courant number is everywhere equal to one (the flow is 

zona,l). Obscrvations a.rc nia.dc at all grid points along a fixcd nicridian at ca.ch timcst,cp, 

a,ncl tlic obscrva.tioii crror covariancc niat.ris R is takcn to bc zcro. Thus the entire flow is 
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observed perfectky in one day, so that tlie uLseivaLiiity coiiditioii is met and therefore the 

total variance must reduce to  zero in one day. The Joseph formula, Eq. (13),  is used t o  help 

ensure iiuirieiicai stability in this extreme case. 

The initial error covariance is taken to be the isotropic second-order autoregressive 

(SO.4R) triotiel 

where 6 = d(xl,x2) is the great-circle angle between positions x1 and x2 on the sphere 

(T$-eber and Talkner 1993), r ,  is the radius of the earth. and L is the correlation length. 

Figure 9 s11o\~s the total variance b- (in normalized unils or r,") a5 a function of time for 

valurs of c-orrclation lcngtli L = (1,000 lim, 500 Itm, 5 l m ) .  Thc variancc is plotted through 

points taken every 1 timesteps. The initial value of V is 47r since P(x, x, t = 0) = 1. For the 

cases L = 1,000 ltm and L = 500 hm, where the correlation length is comparable to the grid 

spacing near the equator and greatly exceeds the grid spacing near the poles, the variance 

decreases rapidly a t  first. then decreases linearly. and finally reaches zero in one day. The 

case where the correlation length is 5 k m  is \vel1 below the grid spacing, corresponding to  an  

initial covariance structure that is unity on the diagonal of P and small elsewhere. In th i s  

case we expect the total variance to  decrease almost linearly because from the first timestep 

there is negligible correlation between nearby gridpoints. This behavior is demonstrated in 

Figure 9. 

6 Summary and Conclusions 

We have implement,ed on distributed-memory parallel computers a Kalman filter for the 

assirnilation of at,mosplieric constituents on isentropic, surfa.ces over the globe. The code runs 

a t  resolutions of 8" x lo", 4" x 5", and 2' x 2.5" on the 512-processor Intel Paragon and Delta 

ma.chines a.t the California 1nstitut)e of Technology, using Fortran 77 with the NX message- 

passing library. We have developed a Covariance Decomposition approach as the basis for 
t,lw pa,ra.llcl algorit,hm. This a,pproach distributes the columns of the forcc,ast,/ana.lysis error 

cova,ria,nce ma,trix on different processors. +4 considerable advantage of t,his scheme is t,ha.t it 

is not necessary to pa.rallelize the model tra.nsport c.ode; only tha,t it, fits ont,o the memory of 

each processor. This approach is also efficient in terms of t.he distribution of floating point 

operations and memory, with some parallel cost involved in a global matrix transpose. Ten- 

day  r u n s  using IJAR.S-CL,AES observation datasets ca.n be completed in 34 minutes for 

the opt,iiiia,l form of tlie analysis a t  medium resolut,ioii (4" x 5') on 256 processors of' the 

Pa.ra.gon with 0 4  a.nd noieee compiler optimizations (45 minutes for the Joseph form). The 

corrcsponding high-resolution (2' x 2.5.) runs take 5 hours on 512 processors (7.5: hours for 
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the Joseph form). 

The Eialinaii fiker forecast step shows some reduction in scaling when the full 512 proces- 

sors of the ina.cltines are used wit,li conipiler optimizations. This reduction is due primarily 

to  communication overhead involved in the global mat.rix transpose. The reduction in scal- 

ing for the I\;alman filter analysis step is more severe. This reduct,ion is due primarily to  the 

serial (unparallelized) calculation of t,he Kalman gain matrix on each processor - sometimes 

referred t,o as au ,41ndahl’s bottleneck - and! inore significantly, to software siinplifications 

tliat, invol1;e the use of global s u m  library subroutines. 

Overall the peak performa.ncc obtainccl for high-rcsol iit,ion runs on 512 processors of 

the Paragon is about 1.3 gigailop/s. This may lie improved by on-processor memory-to- 

memory optimiza.tion or eva.lua.t,ing the matrix P f H T  more directly, using fewer floating 

point. operat.ions and cornmunicat,ion calls t hail do t,he global sums. \,$’e expect t,o port 

our code t o  machines such as the Cray T3E without much effort,. improving further the 

~va11-clock time for high-resolut,ion runs. 

Basic tests of the parallel Kalman filter code using synthetic data  examined variance 

transport. and verified observa.bilit,y properties. The code is now being used to  assimilat,e 

retrieved const,ituent, data  from U.4RS inst,ruments, using analyzed wind fields from the 

DAO global a.tmospheric data  assimilat.ioii system to drive the transport model. Work on 

characterizing transport model errors is in progress. Results of these data  assimilation stud- 

ies will be reported in a future publication. 
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7 Appendix 

Appendix A. A load balanced Covariance Decomposition 

The cova.riance matxix is indexed P(il,Jl,  i 2 , j 2 )  where ( i 1 , j l )  and ( i 2 , j a )  are Fortran 

indices for two positions on a discretized latitude-longitude grid. Following the convent.ion 

that, is used for t,he state vect,or w ,  t,he entire matrix is dimensioned 1'( 1 : Arx, 0 :  ivy, 1 : 

%x, 0: N y ) .  The C'ovariance Decomposition assigns contiguous columns of I' onto difier- 

ent processors in  such a. way that. the t,ota.lit,y of all c,olumns on all processors ma.kes up 

the entire matrix without redundant!,. This amounts to a domain decomposition where a 

range of ( i 2 , j 2 )  is assigned to a processor corresponding t.o a contiguous sequence on a grid 

whose Fortran dimension statement has the range (1::Vz. 0:Ny).  Each processor allocates 

it,s doma.in of the mataris as P ( 1 :  JVr, 0 : Ny. i b :  i e ,  j 6 :  j e )  where (ib, ic, j b ,  j e )  depend on 

the proccssor identification number which, by c.onvcntion, ranges from 0 t o  N p -  1. Two 

sit.tiat.ions wise. For the case XI- ,  < iVy+l  at least one processor must have a range of 

j 2  such t,liat, j e  > j 6 ;  therefore, ib = 1 and i e  = N ; c .  For the case 1L'p 2 N y + l  it is 

not necessary that any processor overlap multiple values of j 2 ,  i.e., j e  = j b .  In fact, this 

condition is necessary to  conserve memory when N p  is much greater t,lian iliy + 1, because 

it is the only way to  impose a limited range on i2, i.e., ( i b : i e )  must encompass a range 

t,liat, is less than ( ] : M a ) .  The load inibalmce of the resulting decomposition arises from the 

uneven numbers of columns of Y on different processors. If we define the load imbalance 

L a.s the maxiInum number of columns on a, processor divided by the minimuin number, 

t,lien it ca.n be shown (Lyster et ai. 1997) that the worst case occurs when N p  = ivy + 1, 

corresponding to L,,, = (,Vr + 1 ) / N a .  For all ot.lier cases L is closer to unity. Clearly. 

for problciiis of intcrcst, (c.g., for 4Ox.5" rcsolution IVT = 72)  load imbalance is not a problem. 
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Table 1. Times for the P f l l T  and I< steps as a percentage of the total analysis times for 

lL' x 5" resolution. and 1-1 observations per timestep. These numbers are evaluated for both 

16 and 512 procesors. The reiriaining percentages are dominated by the cost of evaluating 

P" , which is highly parallelized. 

Pcrcciitage Pf H y '  
Percentage K 

11 Number of Processors 1 16 1 512 11 
1.5 30. 
3.2 19. 



Figure captions 

Figrire 1 (a) .  Schematic for the Operutor Decomposition approach for storing large size-n2 
matrices and performing B! 

Figure 1 (b). Schematic for the Covarzance Decomposition approach for storing large size-n2 
matrices and pertornling U ( M P )  T .  

Figure 2. Speedup curves for the domain decomposed van L.eer transport, algorithm imple- 
mented on the Intel Delta. 

Figuie 3 .  Tlie actual speedups for the forecast step, the analysis step, and the full Kalrnan 
filter on the Intel Paragon for medium resolution (4" x 5") using Covariance Decomposition 
c~iid the Joseph foiiii Cq. (13).  

Figure 4. The a c t u d l  bpeeduys for llie forecast step, the arialgsis step, arid the full Kalrnan 
filtcr on thr  Intrl Paragon for nieclium resolution (4" x 5") using Covariance Decomposition 
and  the optimal foim Eq. (14). 

Figure 5. The actual time (seconds) per timestep of the forecast step. the analysis step, and 
the full I\almsn filter on the lntel Paragon for medium resolution (4" x 5") using Covariance 
Decomposition and the Joseph form Eq. (13). 

Figure 6. The actual time (seconds) per timestep of the forecast step, the analysis step. and 
the full Kalman filter on the Intel Paragon for medium resolution (4" x 3") using Covariance 
Decomposition and the optimal form Eq. (14). 

Figure T. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the 
Intel Paragon. These numbers mere obtained for t,he optimal form of the analysis step, Eq. 
(14). 

Figure 8. For solid body wind propagation over the poles: (a) the initial variance; (b) the 
final variance after a full rotation period of the winds. 

Figure 9. The total variance 1. versus time for a meridional obscrving network, and an 
ohservation error covariance matrix R = 0. The initial error covariance matrix is obtained 
froin the SOAR covariance function with values of correlation length L = (1,000 kin, 500 
k m ,  5 krn). The rotation period of the solid body winds about the polar axis is one clay. 
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domain decomposition 
of P down Columns 

(MP)T = ....... 

(P is symmetric) 

Figurc 1 (a).  Schcmatic for the Operdor Decomposition approach for storing largc sizc-n2 
matriccs and pcrlorming M ( M P )  . T 
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domain decomposition 
of P along rows I:!] - P -  

....... o MP = M gj 
.... .... .... .... .... .... .... 

tiiiij 
...... 

global transpose 
...... 1 ,  (MP)T = I'iii, ...... 
...... 

T 
M(MP) = M l s i  = rl Bi!il ....... .... ....... .... ....... .... .... .... 

Figure 1 (b). Schematic for the C'ocariance Decomposition approach for storing large size-n2 
matrices and performing Al(MP)T.  
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Figure '2. Speedup curves for t,he domain decomposed van L.eer transport algorithm imple- 
IiieriLed 011 the Intel Delta,. 
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Figure 3. The actual speedups for the forecast step, the analysis step, and the full Kalman 
filter on the Intel Paragon for medium resolution (4' x 5') using Covariance Decomposition 
and the Joseph form Eq. (13). 

29 



600 I , ,  , , , , , , , , , 

5 0 0  1 
a a 

a 
CA 

100 

*0° i 
0 

- S Ideal - - S Forecast 
*.--.-.. S Analysis - S Total 

0 100 200  3 0 0  400 500 6 0 0  

Number of Processors Np 

Figure 4. T h e  actual s p e e d u p  for the forecast step, t h e  analysis step, and the full Kalman 
filter on the Intel Paragon for medium resolution (4" x 5") using Covariance Decomposition 
and the  optimal form Eq. (14). 
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Figure 5. T h e  actual t ime (seconds) per timestep of t h e  forecast step, the  analysis step, and 
the  full Kalman filter on the Intel Paragon for medium resolution (4" x 5') using Covariance 
Decomposition and the Joseph form l3q. (13). 
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Figure 6. T h e  actual time (seconds) per timestep of t he  forecast step, the  analysis step, and 
t h e  full Kalman filter on the Intel Paragon for medium resolution (4' x 5') using Covariance 
Decomposition and the optimal form E&. (14). 
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Figure 7. Gigaflop/s rates for the full Kalman filter at medium and high resolution on the 
Intel Paragon. These numbers were obtained for the optimal form of the analysis step, Q. 
(14). 
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Figure 8. For solid body wind propagation over the poles: (a) the initial variance; (b) the 
final variance after a full rotation period of the winds. 
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Figure 9. The  total variance V versus time for a meridional observing network, and an  
observation error covariance matrix R = 0. The  initial error covariance matrix is obtained 
from the SOAR covariance function with values of correlation length L = (1,000 km, 500 
km, 5 km). The  rotation period of the  solid body winds about the  polar axis is one day. 
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