


Abstract 

The fixed-lag Kalman smoother was proposed recently as a framework for 
providing retrospective data  assimilation capability in atmospheric reanalysis 
projects (Cohn et al. 1994, Mon. Wea. Rev., 122, 2838-2867). Retrospective 
data  assimilation refers to the dynamically-consistent incorporation of da ta  
observed well past each analysis time into each analysis. Like the Kalman 
filter, the fixed-lag Kalman smoother requires statistical information that  is 
not available in  practice and involves an excessive amount of computation if 
implemented by brute force, and must therefore be approximated sensibly to  
become feasible for operational use. 

In this article the performance of suboptimal retrospective data  assimilation 
systems (RDASs) based on a variety of approximations to the optimal fixed-lag 
Kalman smoother is evaluated. Since the fixed-lag Kalman smoother formula- 
tion employed in this work separates naturally into a (Kalman) filter portion 
and an optimal retrospective analysis portion, two suboptimal strategies are 
considered: (i) viable approximations to the Kalman filter portion coupled 
with the optimal retrospective analysis portion, and (ii) viable approximations 
to  both portions. These two strategies are studied in the context of a linear dy- 
namical model and observing system, since it is only under these circumstances 
that performance can be evaluated exactly. A shallow-water model, linearized 
about an  unstable basic flow, is used for this purpose. 

Results indicate that retrospective data  assimilation can be successful even 
when simple filtering schemes are used, such as one resembling current oper- 
ational statistical analysis schemes. In this case, however, on-line adaptive 
tuning of the forecast error covariance matrix is necessary. The performance of 
this RDAS is similar to that of the Kalman filter itself. More sophisticated ap- 
proximate filtering algorithms, such as ones employing singular values/vectors 
of the propagator or eigenvalues/vectors of the error covariances, as a way to  
account for error covariance propagation, lead to even better RDAS perfor- 
mance. Approximating both the filter and retrospective analysis portions of 
the RDAS is also shown to be an acceptable approach in some cases. 
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1 Introduction 

The fixed-lag Kalman smoother (FLKS) has been proposed by Cohn et al. (1994; 
CST94 hereafter) as an approach to perform retrospective data assimilation. The 
term retrospective data assimilation denotes a procedure to incorporate data observed 
well past each analysis time into each analysis, taking into account error propagation 
through dynamical effects. Since a goal of reanalysis efforts is to produce a long 
archive of best-possible analyses based on all available data, while current reanalysis 
projects (e.g., Burridge 1996, Kalnay et al. 1996, Schubert and Rood 1995) only 
incorporate data observed up to and including each analysis time, retrospective data 
assimilation should be an ultimate goal of reanalysis efforts, as pointed out in CST94. 
Moreover, although retrospective data assimilation is studied in this article primarily 
as a means of improving analysis quality, it is foreseeable that such a procedure 
could also be adopted in numerical weather prediction to improve mid- to long-range 
forecasts, starting from a given retrospective analysis. The preliminary efforts of 
Gelaro et al. (1996) can be viewed as an approach to retrospective data assimilation 
with this purpose. 

Cohn et. a1 (1994) gave a particular derivation of the optimal l inear FLKS. In that 
work, it was pointed out that the same algorithm can be derived from the approach 
of “state enlargement”, or “state augmentation” as it is more commonly known, first 
suggested in the engineering literature by Willman (1969), to reduce the smoothing 
problem to a filtering problem. In the state augmentation approach, the state vector 
at each time is appended with the state vector at previous times when the desired 
smoother estimates are to be calculated. A Kalman filter (KF) problem can then be 
solved for the augmented system. The first derivation of a smoother algorithm via 
state augmentation was that of Biswas and Mahalanabis (1972) for the linear fixed- 
point smoothing problem. Subsequently, Moore (1973) derived a linear fixed-lag 
smoother via the same approach, which results in the same algorithm as that derived 
in CST94. Extension of the FLKS formulation to nonlinear systems can be achieved 
using the same technique of state augmentation, as indicated by Biswas and Maha- 
lanabis (1973), for both the fixed-point and fixed-lag smoothing problems (see also 
Todling and Cohn 1996a for an explicit derivation of the extended fixed-lag Kalman 
smoother). The utility of state augmentation is that the resulting smoothers are often 
computationally less demanding than those arising from some other approaches (e.g., 
Sage and Melsa 1970, Section 9.5). For instance, smoothers based on state augmen- 
tation avoid inversion of the filter error covariance matrices and of the tangent linear 
propagator (e.g., Mknard and Daley 1996; see also the appendix of the present article). 
These inversions are also avoided by an earlier smoother algorithm due to Bryson and 
Frazier (1963), which can be shown to reduce to the FLKS algorithm of CST94 for the 
case of linear systems. Algebraic equivalence between smoothers obtained by state 
augmentation and by methods such as maximum likelihood (Sage and Ewing 1970; 
Sage 1970) or conditional expectation (Leondes et al. 1970) exists in most cases. The 
interested reader is referred to Meditch (1973) and Kailath (1975) for detailed reviews 
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of the iiterature on linear and nonlinear smoothing. The distinction aIrioIig different 
types of smoothing problems, and the connection between fixed-interval smoothing 
and four-dimensional variational (4DVAR) analysis, is drawn in Cohn (1997). 

Brute-force implementation of the (extended) FLKS to build an operational retro- 
spective data assimilation system (RDAS) is not possible for the same reasons that 
a brute-force (extended) KF-based data assimilation system would be impractical: 
computational requirements are excessive, and knowledge of the requisite error statis- 
tics is lacking. Therefore, approximations not only must be employed but cannot be 
escaped from. Thus, in this article, we develop and evaluate the performance of 
potentially implementable approximate schemes. To provide an exact evaluation we 
choose a barotropically unstable linear shallow-water model as a test-bed for this 
investigation. All of the approximate schemes evaluated here have relatively simple 
nonlinear equivalents. 

In the sequel, we first briefly review, in Section 2, the linear FLKS of CST94 and 
outline the performance evaluation technique employed to study the behavior of li- 
near suboptimal filter and smoother algorithms. Section 3 gives a summary of the 
suboptimal filters and smoothers evaluated subsequently in Section 4, in the context 
of the linear shallow-water model. We draw conclusions in Section 5. 

2 Review and performance evaluation equations 

Before we summarize the linear FLKS algorithm and performance evaluation equa- 
tions, let us recall that the linear Kalman filter equations, in the notation of CST94, 
are: 

(14 

(1b) 

(9 
(Id) 

( 14 

f - 

f 

Kklk = P&-lHkrk T -1  7 

Wklk- l  - Ak,k-lW:-ilk-i 7 

P k p - 1  = Ak,k-lP~-illc-iA&-i + Q k  ) 

Wklk-1 f + Kklk (% - HkW;lk4) 7 w i l k  = 

Pilk = (I - Kk,kHk) P;lk-l f 

Here (la) is the expression for the forecast n-vector w & - ~ ,  obtained through evo- 
lution of the analysis n-vector wg-llk-l between two consecutive analysis times t k - l  

and t k  via the propagator Ak,k-l; ( l b )  is the corresponding expression for the n x n 
forecast error covariance matrix Pklk-l ,  where Q k  is the n x n model error covari- 
ance matrix. The state estimate w;,k-l is updated using (Id),  as p k  observations w i  
become available at each time t k :  the difference between the observations and their 
predicted values H ~ w L ~ ~ - ~ ,  expressed via the p k  x n observation matrix Hk, is added 
to the forecast after being weighted by the n x pk Kalman gain matrix Kklk. At each 
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observation time, the gain niairix is conipuied according to ( lc) ,  where 

rlc E HkPilk-lHE t Rk (2) 

is the p k  x p k  innovation covariance matrix and RI, is the p k  x pk observation error 
covariance matrix. The resulting analysis error covariance matrix Pglk is given by 
(le), which completes the Kalman filter cycle. 

The subscript notation utilized here is common in estimation theory, and is par- 
ticularly important when considering smoothing problems. Specifically, the forecast 
vector wLlk-l is the conditional mean of the true state at time t k ,  where the condi- 
tioning is on all observations up to and including those at time t k - 1 ,  hence the double 
time subscript. Similarly, the analysis vector wglk is the conditional mean of the true 
state at time t k  conditioned on data up to and including time t k .  Analogously, the 
forecast and analysis error covariance matrices carry a second time subscript to indi- 
cate the set of observations upon which they are conditioned. A more comprehensive 
explanation of the Kalman filter equations, including the probabilistic assumptions 
from which they are derived, can be found elsewhere (e.g., Jazwinski 1970, Gelb 1974, 
Cohn 1997). 

The linear fixed-lag Kalman smoother algorithm of CST94 consists of the Kalman 
filter equations (1)-(2) along with a set of equations appended to those of the Kalman 
filter. We refer to the appended equations as the retrospective analysis portion of the 
FLKS. An improved state estimate, referred to as the retrospective analysis, at some 
past time t k - e ,  say, can be obtained if we process data beyond time t k - e ,  e 2 1, up 
to the current time t k .  This estimate, denoted by w;-!,~, is the conditional mean of 
the true state at time t k - e ,  where the conditioning is on all observations up to and 
including time t k .  It can be calculated according to 

w;t-elk = w;-elk-1 t K k - e l k  (w; - ~ k w L I k - 1 )  , (3) 

where Kk+ is the corresponding retrospective analysis gain matrix. Comparing this 
expression with the usual filter analysis expression (Id),  we see that the retrospective 
analysis update is based on the same innovation vector (wi - HkwL,k-l) at time t k  

as that of the filter, and it represents a further correction to a previously computed 
(retrospective) analysis w ; - ~ ~ ~ - ~  ; notice the contrast to the filter analysis expression, 
which represents a correction to the forecast w ~ ~ ~ - ~ .  f 

The FLKS update equation (3) is only applicable for 1 5 k. If the (fixed) total 
number of lags is L ,  meaning that (3) is to be applied in general for l = 1,2, .  . . , L ,  
then for k = 0,1, .  . . , L - 1, the condition 1 5 k is not satisfied for all e. Therefore, 
the update (3) is only applied for 1 = 1 , 2 , .  . . ,min(k, L ) ,  which is a restricted range 
of when k = 0,1 , .  . . , L - 1. In the language of estimation theory, this restriction 
corresponds to computing fixed-point smoother results for all k up to k = L - 1, after 
which the fixed-lag smoother starts operating. This is an initialization procedure 
for the fixed-lag smoother (e.g., Gelb 1974, pp. 173-176). In practice, because 
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the FLKS algorithm employed by CST94 already has tlie structure of a fixed-point 
algorithm, this procedure simply amounts to controlling the ending points of certain 
loop statements in a computer code. 

In the optimal FLKS algorithm of CST94, the n x Pk retrospective analysis gain 
matrix K k - e l k  is given by 

where the innovation covariance matrix l?k is the same as that used to calculate the 
filter gain matrix K k p  in ( IC) ,  since the retrospective analysis update (3) of the FLKS 
is based on the same innovation vector as the KF. The n x n matrix Pj$-Plk-l is the 
forecast-retrospective analysis error cross-covariance matrix, and evolves according 
to the following set of equations: 

( 5 4  

(5b) 

( 5 4  

fa - aa 
P k , l c - e p - i  - -%-1Pk-i,lc-ellc-i 7 

p t j ” , - e lk  = (I - ~ k l k ~ k )  p & _ e l k - 1 ,  

- - pt-ellc-1 - K k - e l l r H k P & ~ - e l k - l  . 

Here the n x n matrix P g t l , k - e l k - l  is the filter analysis-retrospective analysis error 
cross-covariance matrix, and the n x n matrix P;+ is the retrospective analysis error 
covariance matrix. Equations (1)-(5) complete the description of the FLKS algorithm 
of CST94, with (1)-(2) giving the filter portion and (3)-(5) giving the retrospective 
analysis portion. There are a number of advantages to this FLKS algorithm. In 
particular, model error is incorporated implicitly in the retrospective analysis portion: 
no model error terms appear in (3)-(5). This point is clarified in the appendix, 
where the algebraic equivalence of this algorithm with a more well-known alternative 
formulation is exploited. 

As stated in the introduction, the optimal FLKS algorithm described above is not 
practical for operational implementation of RDASs, due in part to  its computational 
requirements. As a matter of fact, most of the computation arises in the filter portion. 
Consequently, as only approximate filters are feasible in practice, the resulting RDAS 
will be suboptimal. In this article, we investigate closely the effects of approximate 
schemes for either, or both, the filter and the retrospective analysis portions. The 
schemes we consider approximate only  the filter and retrospective analysis gains (IC) 
and (4), respectively, including the innovation covariance (2) on which they depend, 
by replacing them with gains K k l k  and K k +  identical in form to (IC) and (4) but 
involving approximate expressions for Phlk-l and PLrk-elk-l. Thus we will be studying 
approximate expressions for the propagated (predictability) error covariance matrix 

and for the forecast-retrospective analysis error cross-covariance matrix 
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Calculating the exact expressions (6)-(7) is the most computationaily demanding 
part of the optimal smoother algorithm (cf. Todling 1995). To focus on the issue 
of performance due to approximating gains by approximating (6) and (7), we make 
the perfect model assumption, Q k  = 0, in which case the terms predictability error 
covariance matrix and forecast error covariance matrix are interchangeable: PP,(,_, = 

f 
P k l k - 1 .  

For linear systems, filter performance evaluation can be accomplished following the 
procedure of Todling and Cohn (1994), and here is extended to incorporate the ret- 
rospective analysis performance evaluation equations as well. These equations can 
be obtained from the derivation of the FLKS of CST94 [cf. eqs. (2.33), (2.39), and 
(2.45) in e CST941, and are valid for general (filter and retrospective analysis) gain 
matrices Kkp and Kk-elk: 

Together with (6) and (7) calculated exactly, these equations give the update and 
evolution of all of the actual filter and retrospective analysis error covariances. Ex- 
pression (Sa) is the well-known Joseph - formula, and gives the performance of the 
filter analysis for a general gain matrix Kqk, while (8b) gives the performance of the 
retrospective analyses for general gains Kk-e lk .  Notice that the performance evalua- 
tion equations [(6), (Sa)] for the filter are independent of those [(7), (8b), (8c)l for the 
retrospective analysis, whereas the converse is not true. This is simply a consequence 
of the fact that the optimal linear filter is independent of the optimal linear retrospec- 
tive analysis. This independence does not carry over to some nonlinear extensions, 
for example, to the globally iterated smoother (Jazwinski 1970, pp. 280-281). 

3 Summary of suboptimal filters and smoothers 

We now summarize the suboptimal schemes to be evaluated here in the context of 
the linear shallow-water model of the next section. The following are the suboptimal 
schemes considered in this article for the filter portion of the fixed-lag smoother 
algorithm (see Cohn and Todling 1996, CT96 hereafter; Todling et al. 1996; and 
Todling and Cohn 1996a,b): 

(1 .a) Constant Forecast Error Covariance Filter (CCF): 

Here the predictability error covariance matrix PP,lk-l given by (6) is replaced in the 
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- fiiter gain expression ( ic )  by 
= a k S  , (9) 

where the parameter  CY^ is tuned adaptively following the algorithm of Dee (1995), and 
s is a prescribed time-independent error covariance matrix. This scheme resembles 
current operational global analysis schemes. In the experiments of the following 
section the structure of s is given by a weighted outer product of the slow eigenmodes 
of the governing dynamics over one time step. 

( I .  b)  Partial Singular- Value Decomposition Filter (PSF). 

In the PSF (see CT96 for details), the dynamical operator Ak,k-l is approximated by 
the leading part of its singular value decomposition, here abbreviated by & , k - l ,  and 
the predictability error covariance matrix is simplified for use in (IC) as: 

spklk-l = & k - l s ; + l ~ ; k - l  + T k l k - 1  , (10) 

where the matrix T k l k - 1  is an estimate of the trailing error covariance matrix due to 
the replacement of the dynamics by its leading part. 

(1.c) Partial Eigendecomposition Filter (PEF). 

In the PEF (see CT96 for details), the entire predictability error covariance matrix is 
replaced for use in (IC) by the leading part of its eigendecomposition, which ideally 
explains most of the predictability error variance, that is, 

spklk-l = ( W N h J q r ) k , k - l  + T L l k - 1  , (11) 

where WN;k,k-l is the matrix of the N dominant eigenvectors, with the corresponding 
N largest eigenvalues arranged along the diagonal of the diagonal matrix S ~ ; k , k - l ,  and 
T;ilk-l is an estimate of the trailing error covariance matrix of this approximation, in 
general distinct from T k l k - l .  This approach resembles the reduced-rank square-root 
filter of Verlaan and Heemink (1995). 

(1.d) Reduced Resolution Filter (RRF): 

This approximation follows the approach of Fukumori and Malanotte-Rizzoli (1995; 
see also Cane et al. 1996, and Todling and Cohn 1996b) and involves carrying the 
error covariances at lower resolution than that of the state estimates. In this case, 
the predictability error covariance matrix is approximated for use in (IC) by 

= (B+Ak,k-lB)s~-llk-l(B+Ak,k-~B)T + T l l k - 1  7 (12) 

where Tllk-l stands for an estimate of the trailing error covariance matrix accounting 
for neglected structures due to the approximation; B is an n x m matrix representing 
an interpolation operator that takes vectors from the m-dimensional reduced space 
where the error covariance matrices Si-llk-l and S:lk-l are represented to the n- 
dimensional space of the state estimates; the matrix Bf represents an m x n pseudo- 
inverse of the interpolation operator B, which in our experiments is taken to be the 

- - 
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Moore-Penrose pseudo-inverse (e.g., Campbell and Meyer 1991). The matrix B has 
columns corresponding to coefficients of a two-dimensional cubic spline interpolation 
- a spline interpolant with period boundary conditions in the zonal direction and an 
Akima spline in the meridional direction. 

It should be pointed out that the approach of reduced resolution filtering is very 
general, falling in the broad category of order reduction schemes commonly known in 
estimation theory. In this regard, the PSF scheme described above can be seen as a 
reduced-order approximation with the matrix B chosen appropriately. 

The following are the suboptimal schemes considered here for the retrospective anal- 
ysis portion of the fixed-lag smoother algorithm: 

(2. a )  Partial Singular- Value Decomposition Retrospective Analysis (PSRA/PSRA2): 

In this category, there are at least two possibilities. The PSRA scheme extends 
the PSF approximation of the filter gain (IC) to the retrospective analysis gains (4), 
while the PSRA2 scheme extends the PEF approximation to the retrospective analysis 
gains. 

Thus the PSRA scheme approximates the forecast-retrospective analysis error cross- 
covariance matrix given in (7), for use in (4) by 

where Xk,k-elk-l is a trailing error cross-covariance matrix. Notice that, in principle, 
the number of singular modes included in &k-1 here does not have to be the same as 
in the PSF. However, in the experiments discussed below the same singular modes are 
retained in both cases. Also, in the experiments reported here we take Xk,k-elk-l = 0, 
at all times tk. 

The PSRA2 scheme approximates (7) by performing a partial singular value decom- 
position of the complete forecast-retrospective analysis error cross-covariance matrix. 
That is, 

(14) sk,k+-1 fa = (UNDkV;G)k,k-elk-l + Xk,k-elk-l , 
where the columns of the n x N matrix UN and the rows of the N x n matrix Vg 
contain the N leading left and right singular vectors of the propagated analysis- 
retrospective analysis error cross-covariance matrix, and the N x N diagonal matrix 
Dg contains the N leading singular values. It is important to recognize that the 
main difference between this scheme and the PSRA scheme in (13) is that in (14) the 
complete dynamics operator is utilized. As before, the matrix XL,k-jlk-l represents 
the trailing error cross-covariance matrix, which in the experiments discussed in the 
sequel is neglected. 

(2.b) Reduced Resolution Retrospective Analysis (RRRA) :  
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In the RRRA scheme, by analogy with the RRF approximation, we compute the 
forecast-retrospective analysis error cross-covariance matrix at reduced resolution: 

where the matrices B and B+ are the interpolation matrices as introduced before, the 
matrices Si:l,k-t,k-l and Sk,k-tlk-l “ f a  are m x rn error cross-covariance matrices in the 
reduced space, and the matrix Xi,k-tlk-l stands for a trailing error cross-covariance 
matrix. The matrices B and Bt here do not have to be identical to those used in the 
RRF, however, in the experiments discussed below they are chosen to be so. Also, in 
the experiments reported here, we take XL,k-elk-l = 0, at all times t k .  

x 

Many other suboptimal schemes have been proposed for filtering, particularly in 
the atmospheric data assimilation literature (see Todling and Cohn 1994, and ref- 
erences therein). Since fixed-lag smoothing can always be regarded as filtering for 
an augmented-state system (e.g., Todling and Cohn 1996a), in principle all of these 
suboptimal strategies carry over to the fixed-lag smoothing problem. In this article 
we choose to concentrate only on the approximations presented above. 

It is possible to construct approximate RDASs by combining different strategies for 
approximating the filter and the retrospective analysis portions of the RDAS. For 
instance, one could choose to approximate both portions equivalently, i.e., with two 
similar schemes like the RRF and RRRA at the same resolution; or one could choose 
to approximate the filter and calculate the retrospective analysis portion exactly, 
that is, to approximate (6) and use (7); one could also build hybrid approximations 
in which the filter and the retrospective analysis employ different strategies. In any 
case, since our formulation of the fixed-lag smoother is based on the filter, whenever 
the filter is approximated the smoother becomes suboptimal. The converse is not true, 
in the sense that if the filter is kept exact and the retrospective analysis equations are 
approximated - if we use (6) and approximate (7) - only the smoother becomes 
suboptimal, but not the filter. This, however, may not be a very useful approach, 
since the major computational requirements are associated with the filter equation 
(6). 

4 Results for a shallow-water model 

To evaluate the performance of the suboptimal schemes described above, we use the 
barotropically unstable model of CT96, a shallow-water model linearized about a 
merid- ionally-dependent squared-hyperbolic secant jet (Bickley jet; Haltiner and 
Williams 1980, p. 175). We refer the reader to Fig. 1 of CT96 for the shape, extent 
and strength of the jet. The model domain is shown in Fig. 1 here. The assimilation 
experiments employ the observing network of CT96: 33 radiosonde stations observing 
winds and heights every 12 hours and distributed outside the strongest part of the 
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jet. The tick marks in the figure indicate the 25 x 16 model grid. 111 the experiments 
referring to a trailing error covariance matrix we construct it,  exactly as in CT96, 
using the slow eigenmodes of the autonomous unstable dynamics of our shallow-water 
model. 

Before evaluating the performance of a few suboptimal RDASs, we discuss results 
obtained for the opt imal  FLKS. The performance of the optimal filter and fixed- 
lag smoother can be seen in Fig. 2, which shows the domain-averaged expected 
root-mean-square (ERMS) analysis error in the total energy as a function of time. 
The top curve corresponds to the filter analysis every 12 hours, while successive 
retrospective analysis results are given by successively lower curves, which refer to 
analyses including data 12, 24, 36 and 48 hours ahead in time, that is, lags ! = 1,2,3,  
and 4. The filter curve is the same as that in Fig. 2 of CT96 (shown, here, only 
up to 5 days). The most relevant results are those for the transient part of the 
assimilation period, before the filter and smoother begin to approach steady state. 
Incorporating new data into past analyses reduces the corresponding past analysis 
errors considerably. The largest impact is on the initial analysis, which would not be 
the case if a significant amount of model error were present. 

Further illustration of the behavior of the opt imal  FLKS is given in Fig. 3, where we 
display maps of the analysis error standard deviation in the height field at t = 0.5 
days. The panels are for the filter analysis errors [panel (a)], and for the retrospective 
analysis errors for lags e =  1 [panel (b)] and e = 4 [panel (c)]. Thus, in panels (b) and 
(c) the analysis errors are reduced by incorporating data 12 and 48 hours ahead of the 
current analysis time ( t  = 0.5 days), respectively. We see not only the overall decrease 
in error levels from panel (a) to panel (c), as expected from Fig. 2, but also that within 
each panel errors are largest in the central band of the domain, where there are no 
observations and where the jet is strongest. Furthermore, the error maximum in the 
center of the domain moves westward and diminishes as more data are incorporated 
into the analysis through the smoothing procedure [from panels (a) to (c)]. This 
property of the FLKS of propagating and reducing errors in the direction opposite 
of the flow has already been observed in the experiments of CST94 and Mknard and 
Daley (1996). 

We now study the behavior of suboptimal RDASs. We start with schemes that ap- 
proximate the filter and retrospective analysis portions similarly. In this category, we 
investigate the behavior of the RRF-and-RRRA corresponding to expressions (12)- 
and-( 15)) respectively, as well as the behavior of the PSF-and-PSRA corresponding 
to expressions (10)-and-( 13), respectively. 

The results of Todling and Cohn (1996b) showed that the RRF described above, with 
resolutions 13 x 16 and 13 x 12, provides good filter performance in our shallow-water 
model context. This was attributed mainly to the fact that at these resolutions the 
barotropically unstable jet is fairly well resolved. As a matter of fact, the meridional 
jet is fully resolved at resolution 13 x 16. In Fig. 4 we show results of the performance 
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evaluation for the RRF arid RRRA algorithms at these resolutions [panel (a) for 
13 x 16; panel (b) for 13 x 121. As in Fig. 2, the upper curve in each panel is for 
the performance of the filter analysis while the lower curves in each panel are for 
the performance of the successive retrospective analyses. Comparison of panel (a) 
with the optimal FLKS results of Fig. 2 shows remarkable agreement between the 
filter and retrospective analysis results when the jet is fully resolved. The agreement 
with the coarse meridional resolution result in panel (b) is still quite good, especially 
during the transient part of the assimilation. Asymptotically, the analysis error levels 
for the case of 13 x 12 resolution are somewhat higher than those at 13 x 16 resolution. 

Along similar lines, we investigate the performance of an RDAS using the PSF algo- 
rithm for the filter portion, and the PSRA algorithm for the retrospective analysis 
portion. From the experiments of CT96, we know that using the first 54 singular 
modes of the 12-hour propagator of the linear shallow-water model - those with 
singular values greater than or equal to one - is enough to produce a stable subop- 
timal filter. Moreover, we learned in CT96 that adaptively tuning a modeled trailing 
error covariance matrix T k ~ k - ~  improves the filter results; we use the same procedure 
here. However, we do not model the trailing error cross-covariance matrix for the 
retrospective analysis portion, that is, we take Xk,++l = 0 at all times. 

Fig. 5 shows performance results for the PSF-PSRA suboptimal RDAS when the 
first 54 modes are used for both approximations (out of a total of 325 slow modes). 
The filter results, when compared to the optimal results of Fig. 2, are once again 
quite good - the reader is encouraged to compare the top curve of Fig. 5 with the 
curve labeled S54 in Fig. 11 of CT96; results now are better due to the adaptively 
tuned trailing error covariance matrix. The PSRA results, on the other hand, are not 
nearly as good as those for the optimal smoother (Fig. a), with little difference among 
results for lag ! = 1 and those for higher lags ! = 2,3, and 4 in Fig. 5. The next 
two experiments demonstrate that this poor smoother performance can be attributed 
mostly to neglecting the trailing forecast-retrospective analysis error cross-covariance 
matrix Xk,k-elk-l in the PSRA algorithm. A further experiment later in this section, 
where the PSF scheme is combined with the exact retrospective analysis algorithm, 
also shows much better smoother performance than that seen in Fig. 5 .  

To investigate the PSRA scheme further, we compare performance results between 
two RDASs using the KF for the filter portion, with the retrospective analysis portion 
given by either the PSRA scheme or the PSRA2 scheme, both with 54 singular modes 
retained. Thus, the suboptimality in these two RDASs is solely in the retrospective 
analysis portion. Fig. 6 shows the ERMS errors in the total energy for these two 
cases: panel (a) corresponds to the RDAS using the PSRA scheme, while panel (b) 
corresponds to the RDAS using the PSRA2 algorithm. The filter curves in both 
panels (top-most curves) are identical to one another, as well as to the filter curve 
in Fig. 2 for the optimal FLKS case. Comparison between the lower curves in the 
two panels of Fig. 6 shows the superiority of the PSRA2 scheme: beyond lag k' = 1 
little is gained in the PSRA scheme, even when based on the KF (compare Fig. 6a 
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with Fig. 5 ) ,  whereas successively higher lags do have a significant inipact in the 
PSRA2 scheme (Fig. 6b). The poor performance of the PSRA scheme indicates 
that its neglected trailing part contains a large amount of cross-( co)variance when 
retaining just the 54 singular modes of the propagator with singular values larger than 
or equal to one. The PSRA2 scheme with 54 modes, on the other hand, captures most 
of the cross-(co)variance, as comparison of Fig. 6b with the optimal result in Fig. 
2 indicates. We conclude from these experiments that the trailing cross-covariance 
matrix is more significant in some approximate retrospective analysis schemes than in 
others. Moreover, the singular modes of the propagated filter analysis-retrospective 
analysis error cross-covariance matrix (employed in the PSRA2 scheme), rather than 
the singular modes of the propagator itself (employed in the PSRA scheme), contain 
most of the information relevant for retrospective analysis. This distinction between 
the PSRA and PSRA2 schemes is completely analogous to the distinction between 
the PSF and PEF schemes drawn in CT96, where somewhat better performance of 
the PEF scheme over the PSF scheme was demonstrated. This distinction is even 
more pronounced in the retrospective analysis context, as seen in Fig. 6. 

The good performance of the PSRA2 scheme when combined with the KF suggests 
evaluating the performance of two hybrid RDASs. In Fig. 7, panel (a) shows results 
for the combined PSF-PSRA2 algorithm, with 54 modes, and panel (b) shows results 
for the combined PEF-PSRA2 algorithm, with 54 modes as well. Both the PSF and 
PEF filtering strategies include an adaptive tuning procedure for the modeled trailing 
error covariance matrices Tkpl and Tilk-l, respectively, following CT96. Because 
the performance of the PEF is only slightly better than that of the PSF (top curve 
in each panel), both with 54 modes, the RDASs using these suboptimal filters yield 
retrospective analyses differing only slightly from each other, as a comparison of the 
two panels in Fig. 7 indicates. Comparing Fig. 7a (PSF-PSRA2) and Fig. 7b (PEF- 
PSRA2) with Fig. 6b (KF-PSRA2) shows that employing a suboptimal filter degrades 
the performance of the retrospective analyses, especially beyond lag two. Comparing 
Fig. 7a (PSF-PSRA2) against Fig. 5 (PSF-PSRA), however, demonstrates again 
the superior performance of the PSRA2 scheme, especially for the first two lags. 

We evaluate next the performance of schemes that approximate only the filter portion 
and carry out the retrospective analysis calculations exactly. We start with an RDAS 
in which the adaptive CCF scheme is used for the filter part. Fig. 8 shows the 
evolution of the actual ERMS errors up to day 5 (same as Fig. 3 of Todling et 
al. While the performance of the CCF scheme (top curve) is worse than 
that seen in Fig. 2 for the optimal KF, it is significantly worse only beyond day 
one; adaptive tuning of more than a single parameter would likely improve this filter 
result. As a consequence of suboptimality of the CCF scheme, the performance of 
the CCF-based retrospective analyses shown in Fig. 8 is also suboptimal. However, 
a comparison between Figs. 2 and 8 indicates that retrospective analysis based on a 
suboptimal filter can be viewed as a way of improving suboptimal filter performance 
toward optimal filter performance. For instance, notice that by day 2.5, the lag-2 
suboptimal retrospective analysis of Fig. 8 has about the same error level as that of 

1996). 
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the optimai filter analysis of Fig. 2. 

When comparing the RDAS using the CCF scheme (Fig. 8) with the RDASs using 
the RRF-RRRA of Fig. 4 and the PSF-PSRA of Fig. 5, we see that the performance 
of the CCF scheme itself is not much different than that of the RRF with 13 x 12 
resolution and that of the PSF with 54 modes (top curve in each figure). The perfor- 
mance of the CCF-based retrospective analysis, however, exceeds that of the 13 x 12 
RRF-based RRRA scheme and the 54-mode PSF-based PSRA scheme, for every 
lag, beyond the initial transient assimilation period. During the transient period, 
the RRF-RRRA algorithm shows better performance, for high lags, than either the 
CCF-based retrospective analysis algorithm or the PSF-based PSRA algorithm. 

Analogously to Fig. 3, we show in Fig. 9 maps of the actual height analysis error 
standard deviation at day 0.5, for the experiment of Fig. 8. The panels are arranged 
as before: (a) filter analysis; (b) lag e = 1 retrospective analysis; and (c) lag l = 4 
retrospective analysis. Comparing panels (a) and (b) with the corresponding panels 
in Fig. 3, we see that the CCF scheme and the resulting lag l = 1 retrospective 
analysis perform remarkably well. However, the retrospective analysis for lag e = 4 
(Fig. 9c) is not significantly better than for lag e = 1 (Fig. 9b), as one might expect 
from Fig. 8 at day 0.5, and in fact compares poorly with the optimal case (Fig. 3c), 
particularly over the data-void central band. 

Finally we examine the performance of the more sophisticated PSF and PEF subop- 
timal filters and the corresponding suboptimal RDASs, using the exact retrospective 
analysis formulas. In both cases we retain only 54 leading modes and we adaptively 
tune the trailing error covariance matrices as before. In Fig. 10, the top curve in 
panel (a) refers to the performance of the PSF, while that in panel (b) refers to the 
performance of the PEF. The PSF result is identical to that displayed in Fig. 5 
since the filter here retains the same number of modes as before. A comparison of 
the PSF-based retrospective analyses of Fig. loa, which use the exact retrospective 
analysis formulation, and the PSF-based retrospective analyses of Fig. 5, where this 
formulation was approximated by the PSRA algorithm, shows clearly the superior 
performance of the exact formulation. The PSF-based RDAS (Fig. loa) perfor- 
mance is similar to, and the PEF-based RDAS (Fig. lob) performance is superior 
to, that of the CCF-based RDAS of Fig. 8. The RDAS using the PEF (Fig. lob) 
presents very good long-term performance, with its results being fairly close to those 
of the optimal FLKS in Fig. 2, and only slightly inferior to those of the 13 x 16 
RRF-RRRA scheme of Fig. 4a. 

In Fig. 11 we show maps of the actual height analysis error standard deviations for 
the experiment using the PSF of Fig. loa. Performance relative to the optimal case 
(Fig. 3) tends to worsen with increasing lag number, particularly over the data-void 
central band. Compared to the maps of Fig. 9, however, there is improvement in the 
analyses over specific regions of the domain. In particular, the lag e =  4 retrospective 
analysis in Fig. l l c  shows a considerable error reduction beyond that of Fig. 9c over 
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the central part of the domain and the Atlantic Ocean. 

5 Conclusions 

In this article we evaluated the performance of approximate (suboptimal) retrospec- 
tive data assimilation systems (RDASs) based on the fixed-lag Kalman smoother 
(FLKS) formulation of Cohn et al. (1994). This formulation has several practical ad- 
vantages over more commonly known smoother formulations. In particular, it avoids 
a number of large matrix inversions. This formulation also separates naturally into 
a filter portion and a retrospective analysis portion, enabling a variety of suboptimal 
implementations. Model error is incorporated implicitly in the retrospective analysis 
portion, because the filter portion is based directly on the Kalman filter, which al- 
ready takes model error explicitly into account. Thus, a version of the retrospective 
analysis portion could be implemented operationally and remain unchanged while 
improvements in the filter portion, such as accounting for model error, take place. 

For linear dynamics and observing systems, performance evaluation equations for ap- 
proximate RDASs based on the FLKS formulation follow directly from the approach 
of state augmentation and the usual performance evaluation equations for linear fil- 
ters utilizing general gain matrices. In this way, we examined the performance of 
a variety of suboptimal RDASs for a barotropically unstable shallow-water model. 
We concentrated on evaluating the performance obtained when using approximate 
expressions for the error covariance propagation in the filtering portion of the RDAS, 
as well as for the error cross-covariance propagation in the retrospective analysis 
portion of the RDAS. Our experiments indicate that successful retrospective data as- 
similation schemes can be designed by approximating either the filter portion alone or 
by approximating both the filter and retrospective analysis portions simultaneously. 
An important conclusion from these experiments is that a few lags of suboptimal 
retrospective analysis may accomplish the performance of an optimal filter analysis. 
Sophisticated approximate filters that take dynamics of error covariances into account 
present the best suboptimal retrospective analysis performance. 
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APPENDIX 
Implicit account of model error in retrospective analysis 

In this appendix we wish to clarify how the retrospective analysis formulation, eqs. 
(3)-(5), takes model error into account implicitly. For the sake of argument, we 
assume here the existence of the inverses of the forecast and analysis error covariance 

the inverse of the forecast error covariance matrix, we can relate the retrospective 
analysis gain matrix Kk-elk to the filter gain matrix Kklk by 

matrices Pklk-l f and P i l k ,  respectively, as well as that of the propagator Ak,k-l. Using 

where we used (4), (IC) and ( lb) .  This equation already shows one way in which 
the model error covariance matrix Q k  is embedded in the retrospective analysis gain 
matrices. 

A way to make the model error contribution explicit in the expression for the retro- 
spective analysis wi-elk is to convert (3) into a more well-known expression found in 
the literature (e.g., Gelb 1974, p. 175). After a tedious manipulation of the formula 
for the retrospective analysis gain matrix (A. l ) ,  using both the filter and retrospective 
analysis update expressions (Id) and (3), it can be shown that 

f + Bk,! (Wi,k - Wklk-1) 7 

where the n x n matrices Uk-e,k-e-1 and Bk,! are given by 

(A.3b) 

and correspond to the gain matrices in formulation (A.2). The retrospective analysis 
equation (A.2) and the gains (A.3) are the well-known forms found in Gelb (1974), 
in a different notation. 

For retrospective data assimilation purposes, expression (A.2) presents no advantage 
over (3), particularly due to the appearance of the inverses of the adjoint propagator 
and of the forecast and analysis error covariance matrices in the gain matrices Bk,e 
and Uk_e,k-e-1.  However, (A.2) provides a useful bridge to clarify further the way 
model error is implicit in the FLKS formulation employed in CST94. Mere algebraic 
manipulation converts (3) into the more commonly-known equation (A.2). In this 
latter expression, the model error covariance matrix Q k - e  appears explicitly through 
the definition of the gain matrix U k - e , k - e - l .  This matrix represents the weights 
given to the difference between the retrospective analysis W ~ - ~ - l l k - l  at time tk-e-1, 
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iricludirig data u p  to time t k - 1 ,  and the filter analysis WE-e-llk-e-l at the szme time 
t k - e - l ,  but using data up to time t k - t - 1  (see also the discussion in Meditch 1969, pp. 
239-240). 

We emphasize that in the formulation of the FLKS employed in CST94, the retro- 
spective analysis (3) is a system driven exclusively by appropriately weighted in- 
novations (cf. Moore 1973): updates the filter analysis wE-llk-l by the 

on w ~ - 2 1 k - l ,  which in turn updates the filter analysis ~ i - ~ ~ ~ - ~  by the weighted inno- 

are obtained by adding weighted innovations to filter analyses, each of which already 
have incorporated the contribution from model error. On the other hand, the retro- 
spective analyses computed from (A.2) are not retrospective analysis updates. The 
retrospective analysis (A.2) is a system driven not only by filter analysis increments 
[last term in (A.2)], which are weighted innovations, but also by a weighted difference 
between the retrospective analysis at the previous time and the filter analysis at that 
time [second term in (A.2)]. 

weighted innovation w;l. - H ~ w ~ ~ ~ - ~ ;  f w ~ - 2 1 k  depends on the same innovation and 

vation ~ ; l . - ~  - Hk-1wk-llk-2; f and so on. Therefore the retrospective analysis updates 

An illustration of the fact that model error is accounted for implicitly in the FLKS 
formulation of CST94 can be given for the case of a perfect model, i.e., when Q k  = 0 
for all t k .  In this case, it follows immediately from (A.l) and (5a) that 

T 
Kk-tlk = (pE:l,k-tlk-l) X , k - l  (Ak,k-lp;-llk-lA[k-l )-lKklk 

= (pas k-1 ,k-ep- 1 )  ~ i - 1  Ilc- 1 I-' Ai,:- 1 Kklk 7 

T 
(A.4) 

which for f2 = 1 reduces to 
Kk-llk = Ai,',-,Kklk , 

since PETl,k-llk-l = Pt-l,k-l. For e = 2, we have 

T 
Kk-2lk = (P;:l,k-21k-l) (P;-lp-l)-lKk-llk , 

Kk-2lk = P;-21k-2A;-l,k-2 (I - Kk-llk-1Hk-1) (p;-llk-l)-lKk-llk 

( A 4  

where we used result ('4.5). Taking e = 1 and replacing IC + k - 1 in (5b) and (5a), 
and substituting the result in the expression above, we have 

T 

- f - E- 2 I k- 2 1 ,k - 2 ( k- 1 1 k - 2 ) - k- 1 I k 

= A&k-2Kk-llk , ('4.7) 

where the second equality follows from ( le)  and the last equality is obtained from 
( l b )  with null model error. Continuing inductively, we can write 

&-elk = Ai!e+1,k-eKk-e+ilk , ( A 4  

for ! = 1,2, .  . . ) L ,  which is a simple recursion for the retrospective analysis gain 
at lag f2 in terms of the gain at lag f2 - 1, beginning with the filter gain K+. An 
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equivalent expression, also for the case of no model error, can be found in W:nsch 
(1996; p. 355)  for the fixed-interval smoother gain. 

One might consider using (A.8) as an approximation for the retrospective analysis 
gains (A.l)  in the case when model error is present. Although the assumption of in- 
vertibility of the propagator is extremely stringent for atmospheric data assimilation, 
a quasi-inverse approximation similar to that of Pu et al. (1996) and Wang et al. 
(1997) could be employed. Performance evaluation experiments, like those in Section 
4 of the present article, have been conducted using both of these approximations. 
Results indicate that the quasi-inverse approximation performs well when (A.8) is 
used, for the perfect model case; the use of (A.8) together with the quasi-inverse 
propagator approximation in the presence of model error, however, does not perform 
very well in general (results not shown here). 
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Figure 1: Model domain and observational network composed of 33 radiosonde sta- 
tions observing winds and heights every 12 hours (same as Fig. 2 of CT96). 
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Figure 2: ERMS analysis error in total energy for the Kalman filter (upper curve) 
and fixed-lag Kalman smoother (lower curves). 
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Figure 3: Analysis error standard deviation in the height field at  time t = 0.5 days. 
Panel (a) is for the filter analysis; panels (b) and (c) are for the retrospective analyses 
with lags ! = 1 and 4, respectively. Contour interval is 1 m. 
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Figure 4: As in 2, but for an approximate RDAS using the RRF and RRRA schemes 
for resolutions: (a) 13 x 16, (b) 13 x 12. 
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Figure 5 :  As in Fig. 2, but for an approximate RDAS using the PSF and PSRA 
schemes simultaneously, both with 54 modes. 
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Figure 6: As in Fig. 2, but for an RDAS using the KF and approximate retrospective 
analysis schemes: (a) PSRA, and (b) PSRA2, both with 54 singular modes. 
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Figure 7: As in Fig. 2, but for an RDAS using the PSRA2 scheme for the retrospective 
analysis portion, and either the (a) PSF, or (b) PEF for the filter portion, all with 
54 modes. 
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Figure 8: As in Fig. 2, but for the adaptive CCF scheme and exact retrospective 
analysis equations. 
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Figure 9: As in Fig. 3, but using the CCF-based RDAS of Fig. 8. 

28 



2 0  

- 
m t 
L 1 . 5  
3 

w 
> 
c 
1 
W 
[r 

I 

5 1 . 0  

- 
t 

0 . 5  
W 
z 
W 

0 . 0  

2 0  

- 
m c I 
z 1 5  
3 

W 
> 
+ 
1 
W 
E 

- 
Q 1 . 0  

I 

> 
0 . 5  

W 
z 
w 

0 . 0  

0 1 2 3 4 5 
T I M E  I D A Y S I  

(b) 

I I I I I I 
0 1 2 3 4 5 

T I M E  I D A Y S I  

Figure 10: As in Fig. 2, but using the PSF [panel (a)] and the PEF [panel (b)], both 
with 54 modes. 
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Figure 11: As in Fig. 3, but using the PSF-based RDAS of Fig. loa. 
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