


Abstract 

The maximum-likelihood method for estimating observation and forecast 
error covariance parameters is described. The method is presented in general 
terms but with particular emphasis on many practical aspects of implementa- 
tion. Issues such as bias estimation and correction, parameter identifiability, 
estimation accuracy, and robustness of the method, are discussed from both a 
theoretical and a practical point of view. 

Three different applications are presented, intended t o  illustrate both the 
generality and the limitations of the method. Different observation and forecast 
error parameters are estimated from a February 1995 time series of observed- 
minus-forecast residuals, using rawinsonde height data,  ship-based sea-level 
pressure reports, and aircraft wind observations. 

It is shown that many statistical parameters usually specified to  be con- 
stant in operational data  assimilation systems in fact vary significantly in both 
space and time. It is also found that systematic errors in both forecasts and 
observations cannot be ignored. Finally, the results reported here demonstrate 
both the necessity and feasibility of on-line tuning of covariance models. 
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1 Introduction 

This rcport describes the tools developed at the DAO for estimating unknown param- 

eters of the PSAS observation and forecast error covariance models. The methodology 

is based on maximum-likelihood covariance parameter estimation as described by Dee 

(1995). During the last two years it has been applied at the DAO to estimate: 

0 rawinsonde observation error standard deviations for height, wind components, 

and relative humidity at different pressure levels; vertical correlation coefficients 

for height and relative humidity; 

0 TOVS height retrieval error standard deviations at different pressure levels, 

both for spatially uncorrelated and correlated error components; horizontal de- 

correlation length scales and vertical correlation coefficients; 

0 parameters of the cross-covariances between TOVS height retrieval errors and 

forecast height errors; 

0 ship-based sea-level pressure observation error standard deviations; 

0 aircraft-based wind observation error standard deviations at various pressure 

levels; 

0 forecast height and wind error standard deviations; horizontal de-correlation 

length scales and vertical correlation coefficients for forecast height errors; and 

various parameters describing the multivariate wind-mass error covariances. 

Error covariance models for convential observations as well as for TOVS retrievals are 

described in DAO 1996, Chapter 5. The initial formulation and implementation of 
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the PSAS forecast crror covariance model will be described in fuii detail in a separate 

report. Here we focus on parameter estimation; Le., we are not primarily concerned 

with the formulation of a covariance model, but rather with the problem of estimating 

unknown parameters of a model from observations. 

The PSAS covariance model development has been guided by the following consider- 

ations: 

0 maximum use should be made of available observations; 

0 there should be no restriction to specific categories of covariance models (e.g., 

isotropic, univariate) or data (e.g., station data, single-level data); 

0 model formulations and estimation methods must be consistent with the general 

estimation-theoretical framework of PSAS. 

The covariance models will be re-tuned and re-formulated as often as necessary, us- 

ing the methods described in this report. We developed a a collection of MATLAB 

programs for solving the following parameter estimation problem: 

Given a multivariate data set {vk : k = 1,2, .  . ., K }  and a covariance 

model S k ( a )  M (vkv$) depending on unknown parameters a,  find the 

maximum-likelihood estimate a = i3. 

The data set { vk} typically consists a time series of observed-minus-forecast resid- 

uals, restricted to a certain spatial region 

S k ( a )  can involve any number of unknown 

and time period. The covariance model 

parameters a (e.g., variance parameters, 
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de-correlation length scales, vertical correiation coefficients), subject only to the con- 

dition that it be positive semi-definite on the model domain. If the parameters are 

identifiable from the data then the software will produce parameter estimates, as well 

as error estimates for the parameter values. 

This report consists of two parts. In the first we present the method, in general 

terms but with particular emphasis on many practical aspects of implementation. 

The second part describes three different applications, intended to illustrate both the 

generality and the limitations of the method. We include the standard example of 

estimating covariance parameters from rawinsonde height data, but also discuss the 

estimation of parameters of univariate and multivariate covariance models, using data 

from moving observers. 
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2 Methodology 

In this section we present the general methodology for tuning forecast and observation 

error covariance models to observational data. We first consider forecast and obser- 

vation errors and their covariances. We then discuss the available observational data 

and the relationship between the data and the covariance models. Finally we present 

the maximum-likelihood method for tuning the models to the data, and discuss some 

important properties of the method. 

2.1 Covariance models 

Suppose that the n-vector w: is a model forecast valid at time tk, and wi  is the 

unltnown true state of the atmosphere at that time. It is convenient to define both 

quantities in terms of the same state representation: w i  is an n-vector as well, con- 

taining, for example, the true grid-point values or spectral coefficients. The forecast 

error is then simply 

For a pk-vector wz of measurements generated by a particular instrument at time tk, 

the observation error is defined by 

The nonlinear pk-vector function hk is the discrete forward observation operator (e.g., 

Cohn 1997), mapping model variables to the data type associated with the instrument. 

We introduce the following notation for the forecast error mean and covariance 
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for the observation error mean and covariance 

b: ( E : ) ,  RI, = ( ( E :  - bg)(Ei - bg)T) 

and for the cross-covariance between observation and forecast errors 

Here (.) denotes the ensemble averaging or expectation operator, whose proper defi- 

nition involves the (typically unknown) joint probability distribution of forecast and 

observation errors. 

Atmospheric data assimilation systems involve many different observing systems, and 

the observation operator hk and its associated observation error must be considered 

separately for each data type. It is of course possible, and sometimes convenient, to 

combine all available observations at a time tI, into the observation vector w;l. In this 

paper the vector wi will always denote a specific subset of the observations, obtained 

by restricting to a single data type and to a limited region in space. It will be clear 

from the context which restriction is implied. We will also have occasion to consider 

simultaneous observations obtained from two different instruments, and in that case 

the notation will be suitably generalized. 

All operational data assimilation systems rely on approximate information about 

error means and covariances. In practice (2 .3-2.5)  are modeled by introducing various 

simplifying assumptions about the underlying error distributions. For example, the 

means b: and bg are often disregarded, amounting to the assumption that the forecast 

model as well as the observing instruments are unbiased. Also, for most data types 

it is assumed that observation errors and forecast errors are independent, so that 

XI, = 0. We will mention several additional assumptions for errors associated with 
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specific data types below. Some are not necessarily realistic, but often the information 

required to remove them is lacking. 

In general, theoretical statements about the error distributions combined with practi- 

cal considerations lead to specific covariance models for the forecast and observation 

errors. Typically such models involve unknown parameters, which must then be esti- 

mated from actual atmospheric data. 

For example, quality-controlled rawinsonde observations are usually regarded as un- 

biased measurements of the true atmospheric state. Measurement errors associated 

with separate vertical soundings are generally assumed independent, and the errors 

for the different measurement variables (temperature, relative humidity, and wind 

components) are assumed to be independent as well. The statistical properties of 

the errors in all individual, univariate soundings are often taken to be identical; i.e., 

independent of time and station. For spatially distributed univariate observations, 

this set of assumptions leads to an observation error covariance model R, with 

The notation [R]!,"") means: the covariance of the error at station i, level rn with 

the error at station j ,  level n. The parameter a(") is the observation error standard 

deviation at pressure level m, and v("") is the vertical correlation between errors at 

levels rn and n. The quantity rij is the (horizontal) distance between stations i and 

j ,  and 

1, if T = 0 
0, otherwise ' 

S ( r )  = 

Thus, a complete univariate rawinsonde observation error covariance model for each 

measurement variable is determined by the set of parameters {a(m) ,  v ( ~ " ) } .  
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T T  u iiderstariding tile Iiature of forecast errors is more complicated, primarily because 

model errors are inherently multivariate and correlated in space and time. By express- 

ing these properties in a forecast error covariance model, the information contained 

in a set of localized, univariate observations can be exploited to estimate multivariate 

atmospheric fields, even in regions where no observations exist. In order for such 

estimates to be meaningful it is of course necessary that the covariance model formu- 

lations be sufficiently realistic. Forecast error covariance modeling is an active field of 

research which we will not attempt to review here. Rather, given a particular formu- 

lation of a forecast error covariance model, our concern in this work is to determine 

the best set of parameters for the model based on the available observations. 

The applications described in Section 3 all involve simple representations of forecast 

error covariances, based on univariate single-level isotropic models of the form 

[ C 0 V l i j  = u 2 p(r& L) .  

These models depend on two parameters only: the error standard deviation o and a 

de-correlation length scale L.  Appendix A describes a few choices for the function 

p ( r ;  L )  as well as a definition of the parameter L. Isotropic models are based on the 

assumption that the correlation between errors at any two locations depends only 

on the distance between the two locations: the isolines of the correlation functions 

are circular, and the parameter L controls the distance between the contours. The 

isotropic assumption is clearly not valid for actual forecast errors, which generally 

depend on local properties of the flow. The widespread use of isotropic univariate 

covariance models in atmospheric data assimilation systems is due to the fact that 

error correlations have traditionally been calculated by averaging data over relatively 

long periods of time, e.g. one to three months (Hollingsworth and Lonnberg 1986; 
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Lonnberg and Hollingsworth 1986). 

Models of the form (2.8) will be used in this study to describe univariate forecast 

height errors at a fixed pressure level within a limited spatial region, so that the 

parameter is represents the forecast height error standard deviation for that particular 

level and region. Estimation of this parameter based on regional time series data will, 

at best, produce a spatial and temporal average of the actual forecast error standard 

deviations. We will consider different choices for the horizontal correlation function 

p ( r ;  L )  in (2.8), only in order to examine the effect on covariance parameter estimation 

of some of the uncertainties inherent in the description of forecast errors. 

Spatially correlated multivariate wind error covariances can be modeled based on (2.8) 

as follows. Let P,  E’’ denote the wind error components at a location (x, y )  on a fixed 

pressure level. Define an error stream function $I and error velocity potential x on 

that pressure level, and write 

Note that the stream function and velocity potential, in the present context, are as- 

sociated with the error fields rather than with the flow itself. A multivariate wind 

error covariance model can then be constructed based on separate univariate covari- 

ance models for II, and x. See, for example, Daley (1991, Section 5 . 2 )  for details. 

The simplest such model results from the assumption that $I and x are statistically 

independent, and that the covariance of each can be modeled by (2.8). 

For the applications in section 3 we will use this simple approach to represent forecast 

wind error covariances at fixed pressure levels. This model does not provide any 

information about the cross-covariances among wind errors and height errors. The 
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coupling between wind and height errors is known to be strong in mid-latitudes; this 

information must be incorporated in a multivariate forecast error covariance model 

in order to take full advantage of the observations in a data assimilation system 

(Hollingsworth and Lonnberg 1986). However, if the object is only to estimate wind 

observation error covariance parameters, then a model derived from (2.9) will be 

adequate. 

We have just discussed some examples of forecast and observation error covariance 

models, all of which involve several unknown parameters. In the following section 

we consider the general relationship between the covariance models on the one hand, 

and the actual observed data on the other. Without referring to specific models we 

will write 

(2.10) 

with af, a', and az unknown parameters whose definition depends on the particular 

modeling assumptions. Our goal will be to determine values for these parameters 

which, in a sense to be made precise below, are most compatible with the actual 

observed data. 

2.2 0 bservational residuals 

The observation operator introduced in (2.2) is a device for comparing forecasts with 

observations. The observed-minus-forecast residuals defined by 
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are routine!y computed in operational data assimilation systems. The residual P k -  

vector time series { v k }  depends on actual observation and forecast errors, since 

where the linearized observation operator H k ,  a p k  x n-matrix, is defined by 

(2.13) 

Equation (2.12) is obtained by linearizing (2.11) about the forecast state and using 

(2.1) and (2.2). The accuracy of the approximation (2.12) depends on the size of the 

forecast errors; it is exact for linear observation operators. 

If two distinct observing systems simultaneously measure the same quantity, one can 

also define the observed-minus-observed residuals 

(2.14) 

where the second superscript refers to the instrument. For (2.14) to make sense the 

observation operators h: and hg associated with the two separate instruments must 

be compatible, in the sense that they both map to the same observation space; see 

(2.2). They need not be identical, however, and so it follows from (2.2) applied to 

each data type that 

(2.15) 

As an example, consider a set of temperatures retrieved from remotely sensed ra- 

diances, valid at a particular time t k .  If the retrievals are co-located with a set of 

rawinsonde temperature observations, then the residuals (2.14) can be computed. In 

this case the observation operators, although very different, are compatible. Some 

kind of interpolation will generally be required in order to co-locate the retrievals 
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with the rawinsonde observations, and therefore (2.15) is not exact. Provided the 

interpolation errors are small compared with the observation errors themselves, the 

observed-minus-observed residuals contain useful information about the observation 

errors associated with the two data types. 

The mean and covariance of the observed-minus-forecast residuals defined by (2.11) 

are easily obtained from (2.12): 

We used the additional approximation (Hk 

exact for linear observation operators. 

) x Hk( ); both (2.16) and (2.17) are 

Dee and da Silva (1997) show how the mean equation (2.16) can be used to esti- 

mate forecast bias in a statistical data assimilation system, using unbiased (or bias- 

corrected) observations. They also discuss, in general terms, the implications of using 

biased forecasts and/or biased observations in an analysis system. For the purpose 

of covariance estimation based on data residuals we will need to specify the mean of 

the residuals; i.e., 

For now we regard the mean pk as known; see however Section 2.3.2 below. 

The covariance equation (2.17) can be used to tune parameters of the forecast and ob- 

servation covariance models discussed in the previous section. Substitution of (2.10) 

and (2.18) gives 

(2.19) 



where 

S&) = S&f, a0,CYZ) (2.20) 

= Rk(a") - Xk(az)H; - HkX;(d) + HkP;(d)H;. (2.21) 

Thus, models for forecast and observation error covariances imply a model for the 

observed-minus-forecast residuals, and (2.19) provides a relationship between the 

models and the data. 

Similarly, the mean and covariance of the observed-minus-observed residuals for two 

sets of co-located observations are 

(2.22) 

(2.23) 

where Yk is the cross-covariance between the observation errors: 

Yk ( ( E ; '  - b;')(Ei2 - biz")). (2.24) 

The mean equation (2.22) can be used to estimate and correct the bias in one set 

of observations based on another unbiased (or bias-corrected) set; see, for example, 

[refs]. For now we assume 

with Ck known. We then have 

with 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Here we have introduced the possibiiity of parameterizing the cross-covariance Y k  

as well. In this case, models for observation error covariances imply a model for the 

observed-rninus-observed residuals; equation (2.26) establishes a relationship between 

the models and the data analogous with (2.19). 

2.3 Covariance tuning 

In the previous section we developed relationships between forecast and observation 

error covariance models and residuals obtained from observed data. We now consider 

a general method for adjusting the free model parameters in order to improve the 

consistency between the models and any finite subset of the data. To simplify the 

presentation we will use the notation for observed-minus-forecast residuals (;.e., the 

data are vk and the covariance model is S k ( a ) ) ;  however the following applies equally 

well to observed-minus-observed residuals. 

2.3.1 Maximum-likelihood estimation 

One way to fit a model to a dataset is by maximizing the likelihood that the actual 

observed data did in fact arise from the model. To be precise, suppose that the actual 

sequence of residuals {vk} is a realization of a multivariate stochastic process {Vk}, 

whose joint probability density function (pdf) is p (  {vk}; a). If the functional form of 

the pdf is known, then its value for a fixed dataset {vk, k = 1, .  . . , IC} depends on a 

only: the function of a thus defined is called the likelihood function (Fisher, 1922). 

The mazimum-likelihood estimate 2 is obtained by finding the maximum (the mode) 

of the pdf. 

To apply the maximum-likelihood method to our problem, we need to assume a 
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probabiiity density for the underlying process { v k }  which has the covariances given 

by (2.21). To this end we postulate that the process is white and Gaussian, with 

covariances at times t k  given by S k ( a )  for some a. We also assume that the means 

pk are known, or that they can be estimated independently. Using the familiar 

expression for the multivariate Gaussian pdf (Jazwinski 1970, Section 2.4),  

K 

P ( { v k > ;  a) = n P ( v k ;  a> 
k = l  

The maximum-likelihood estimate 6 is obtained by maximizing (2.29), or equiva- 

lently, by minimizing the log-likelihood function 

(2.30) 

Note that this function depends on the data, is therefore random, and that there is 

no guarantee of a unique minimum. 

For a fixed data set { V k }  and given formulations of the covariance models s k ( ( Y ) ,  the 

function f ( a )  can be minimized using standard optimization software (e.g., Press et 

al. 1992, Chapter 10). Forecast and observation error covariance models implemented 

in current atmospheric data assimilation systems are relatively simple to evaluate; 

they have to be in order for the assimilation of large volumes of data to be computa- 

tionally viable. The effort involved in tuning models such as (2.6) and (2.8) therefore 

depends primarily on the size of the data set. As we show below, the error variance in 

the parameter estimates is proportional to l /v ,  with v the size of the data set. The 

constant of proportionality varies from case to case (it depends on the identifiability 

of the parameters), but as a rule it requires on the order of a hundred data items to 

estimate a single parameter with meaningful accuracy. 
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The iog-likelihood [unction formuiation (2.30) is appropriate for estimating parame- 

ters associated with a time-dependent covariance model S , ( a ) .  Referring to (2.21), it 

is clear that time-dependence arises when either the forecast and/or the observation 

error covariance model formulations involve time as an independent variable, or when 

the observation operator itself depends on time. This is the case, for example, for 

observation operators associated with moving platforms such as ships or aircraft. 

In the special case when the covariance model (2.21) is stationary; i.e., 

the log-likelihood function simplifies to 

f ( a )  = logdet S ( a )  + trace [S- ' (a)s]  

where s is the sample covariance of the data defined by 

Equations (2.32) and (2.30) are equivalent when (2.31) holds because 

~ 

= trace [~ - ' (a ) s ]  . 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Note that s is the unconstrained maximum-likelihood covariance estimate for a white, 

stationary Gaussian time series (e.g., Muirhead 1982). Minimization of (2.32) pro- 

vides instead the constrained maximum-likelihood covariance estimate-constrained 
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to be of t,he form S ( a )  for some a. This approach to the estimation of structured 

covariance matrices from stationary time series was first proposed by Burg et  al. 

(1982). 

The stationary form (2.32) of the log-likelihood function is appropriate (and computa- 

tionally convenient) when neither the covariance models nor the observation operator 

depend on time. The procedure in this case is first to compute the sample covariance 

of the data (2.33), and then to minimize (2.32) with respect to a. Many of the co- 

variance models currently implemented in operational data assimilation systems do 

not depend on time. Time-independent observation operators arise from stationary 

observing systems, such as rawinsonde networks. Truly stationary observation oper- 

ators do not occur in practice, however, because of occasional missing reports or data 

rejected by quality control. Still, in case of a stationary observing network the matrix 

S can be constructed element by element, by considering, for each pair of stations, 
- 

the set of all simultaneous quality-controlled reports. The sample covariance between 

data from stations i and j can then be estimated from this set by 

(2 .35 )  

where [.Ii denotes the element associated with station i and K i 3  is the number of 

simultaneous reports at stations i and j .  If K i j  is small then s;j is generally not an 

accurate estimate of the covariance between stations i and j. One might exclude a 

number of stations in order to insure that all I<;j exceed a certain threshold; however, 

our experience indicates that the parameter estimates are not very sensitive to this. 

16 



2.3.2 Bias estimation 

In order to implement the parameter estimation procedure outlined above, it is nec- 

essary to specify the residual means & in (2.30) or in (2.33). These depend on the 

mean observation errors bi and on the mean forecast errors b[ (see (2.16)), neither 

of which are accurately known in practice. 

For the purpose of tuning covariance models there are two choices. The first is to 

simply ignore the bias by assuming it to be zero; Le., to set p,k = 0. This choice will, 

of course, affect the parameter estimates. For example, variance parameters will tend 

to be overestimated when bias is ignored. This approach is not unreasonable if the 

tuned covariance models are to be used for a statistical analysis system which does 

not explicitly account for bias. In that case the total (systematic plus random) root- 

mean-square analysis error will actually be smallest when the forecast and observation 

error variances are suitably inflated in order to account for the bias (Dee and da Silva 

1997). 

The alternative is to estimate the residual mean p,k prior to-or concurrent with- 

the estimation of covariance parameters. If independent information about forecast 

and/or observation bias is available, then this should naturally be used. In practice 

this is unlikely to be the case and therefore PI, must be estimated from the data. 

One approach would be to generalize the maximum-likelihood estimation procedure 

by formulating a parameterized bias model 

pk = pk(p) (2.36) 

and then to produce maximum-likelihood estimates of the bias parameters as well. 

For example, bias over a fixed domain might be modeled by a truncated spectral 
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expansion. Psramcter estimation would involve minimizing the log-likelihood func- 

tion (2.30), after substitution of (2.36), with respect to both a and ,B. Estimating 

bias parameters in this fashion amounts to a weighted least-squares bias estimation 

procedure in which the weights (determined by the covariances) are adjusted adap- 

tively. Although the generality of this approach is appealing, we do not think it very 

practical. The difficulty in bias estimation lies not so much in the techniques as in 

the ability to formulate sensible bias models. 

Error statistics used in data assimilation are generally defined in terms of time av- 

erages, because true ensemble averaging is not possible with only a single available 

realization. Accordingly one can estimate p k  by calculating the time average of the 

residuals. In the stationary case (;.e., for stationary observing systems) we then have 

where 

(2.37) 

(2.38) 

with I<; the number of reports from station i. In the general (non-stationary) case 

when observation locations vary with time, one might define a spatially varying bias 

estimate on some arbitrary grid by means of a successive correction scheme. We 

will experiment with such a technique in Section 3. 

The presence of bias which is not properly accounted for will generally result in 

inaccurate covariance parameter estimates. More importantly, biased data and/or 

forecasts will result in a biased analyses, independently of the covariance models used 

for the analysis. Although it is not the subject of this report, bias estimation and 

correction should take precedence over covariance modeling and estimation. 
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2.3.3 Identifiability of the parameters 

The maximum-likelihood method is appealing because of its generality: it can be 

used to estimate any set of parameters of the pdf, provided those parameters are 

jointly identifiable. This is a fundamental requirement for the estimation problem to 

be well-posed. There exist different technical definitions of this notion (e.g., Chavent 

1979), but we will take it to mean that the log-likelihood function (2.30) must have 

a unique global minimum with probability one; i.e., for almost all realizations of the 

process (V,}. In practice this imposes requirements on the model formulation as well 

as on the data: there must be no dependency among the model parameters, and the 

data must provide an adequate sampling. 

Consider, for example, two independent scalar random variables w1 and w 2  with 

identical means but different variances, and suppose that only the residual w1 - w2 is 

observed. It is clearly impossible to estimate the variances of w1 and w2 separately, 

no matter how many sample residuals are available: only the sum of the variances 

can be estimated. (The means of w1 and w2 are not identifiable either in this case). 

Suppose now that w1 and w2 are independent vector random variables, representing, 

for example, two spatially distributed random fields. If w2 is spatially correlated with 

constant variance but w1 is spatially uncorrelated with constant variance, then it is in 

fact possible to estimate both variances from the residuals, provided the residuals are 

sampled at more than a single location. Thus there is a data requirement as well as 

a model requirement. This example is prototypical for the applications described in 

the next section, in which the data contain both a spatially correlated and a spatially 

uncorrelatcd error component. 
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Tt, is not possible in genera! to prove idcatifiability for a given parameter estimation 

problem, although simple examples such as the above can lead to useful insights about 

the types of parameters one can hope to estimate from a given data set. However, it 

is easy to check numerically for indications that identifiability might be a problem by 

evaluating the Hessian of the log-likelihood function at its minimum: 

(2.39) 

The Hessian matrix can be approximated by finite differences, or it may in fact be 

available as a by-product of the optimization of the function f. At the minimum the 

gradient of the log-likelihood function vanishes, so for a near G ,  

1 
f ( a )  M f ( G )  + 2(a - &)'A((. - Z),  (2.40) 

provided f is a sufficiently smooth function of a 

Equation (2.40) shows that the sensitivity of the log-likelihood function f to the 

parameters a near its minimum is controlled by the Hessian. A small perturbation 

of & along the direction of an eigenvector of A produces a change in f by an amount 

which is proportional to the corresponding eigenvalue. If the Hessian has a large 

condition number then the identifiability of the parameters is poor along the directions 

associated with the smallest eigenvalues. 

Since the nonlinearity of the function f is not quadratic, the Hessian matrix A only 

describes the local identifiability of the parameters. Note however that the analysis 

does not depend on any properties of f other than its differentiability with respect to 

the parameters. Identifiability is a notion which is not specifically connected with the 

maximum-likelihood method; it is simply a practical requirement for any parameter 

estimation method which is based on minimizing a cost function. 
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2.3.4 Accuracy of maximum-likelihood parameter estimates 

The maximum-likclihood method has many appealing theoretical properties (Cram& 

1946); in particular it is asymptotically eficient. This means that in the limit of 

infinite data there is no other unbiased estimator which produces more accurate pa- 

rameter estimates. In practice we only have finite data sets at our disposal, and more 

importantly, many of the assumptions required to implement the method are in fact 

violated. The parameter estimates produced in any realistic application therefore will 

not be true maximum-likelihood estimates. Nevertheless, it is useful to compute the 

asymptotic accuracy of the maximum-likelihood estimates along with the parameter 

estimates themselves. 

Here we suppose, for the moment, that the modeling assumption holds: all assump- 

tions about the data as expressed by the likelihood function are actually valid. In that 

case the parameter estimates produced by minimizing (2.30) are truly the maximum- 

likelihood estimates. Then it can be shown (e.g., Sorenson 1980, Theorem 5.4) that 

in the limit of infinite data the estimates approach a normal distribution with 

2 
(ii) = a*, ((6 - a*)(& - a*)') = -A-'. 

v 
(2.41) 

Here A is the Hessian of the log-likelihood function (see (2.39)), and v is the num- 

ber of degrees of freedom associated with the estimation problem. In the general 

(instationary) case corresponding to (2.30) we have 

(2.42) 

In the truly stationary case where nk = n = const, we would have v = nK;  how- 

ever, (2.42) should be applied to account for missing data (see the discussion follow- 

ing (2.34)). If bias parameters are estimated from the same data used for covariance 

21 



estima.tion, t,ben the number of degrees of frcedom v should be reduced accordingly. 

The estimation error covariance in (2.41) is the lower bound of the Cram&-Rao 

inequality (Sorenson 1980, Section 3B). The Cram&-Rao inequality can be regarded 

as an uncertainty principle for parameter estimation: it expresses the fact that the 

random nature of the data imposes a fundamental limitation on the accuracy with 

which parameters of the pdf can be estimated from the data. The Hessian matrix A 

is related to the curvature of the pdf of the data at its mode; the broader the mode, 

the harder it is to estimate parameters within a certain accuracy. The theory states 

that, under rather general conditions, the error covariance of the maximum-likelihood 

estimates tends to the Cram&-Rao bound as the size of the data set increases (see 

also Lupton 1993, Chapter 10). 

We routinely use (2.41) to estimate the standard errors of the parameter estimates 

under the modeling assumption. For any given data set and covariance model formula- 

tion, the validity of (2.41) for finite v can be checked using a Monte-Carlo experiment 

with synthetic data; it turns out to be quite accurate for the applications described 

in Section 3. 

It is important to keep in mind that the maximum-likelihood standard errors rep- 

resent idealized accuracy estimates; in practice they should be regarded as a lower 

bound on the true accuracy. These error estimates are useful in practice because 

they quantify the effect of sampling error, which is the only source of error under the 

modeling assumption. Thus, the standard error estimates indicate whether a given 

set of covariance parameters can be actually identified from the available data, and 

whether the parameter uncertainty due to sampling error is acceptable. 
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2.3.5 Robustness of the parameter estimates 

The fa.ct hhat parameters associated with a particular covariance model can be es- 

timated from a data set (;.e., that they are identifiable) does not imply that the 

estimates are actually meaningful. There are many possible reasons why a tuned co- 

variance model may not in fact provide a good fit to the actual data. First of all, the 

covariance model may be incorrect for any set of parameter values. For example, the 

model might be isotropic while actual covariances are highly anisotropic: there may 

be a strong state-dependent component of error which cannot be accounted for in an 

isotropic model. To some extent the validity of the assumptions that enter into the 

formulation of a covariance model can be examined using standard statistical tech- 

niques. This requires long-term monitoring of the actual residuals produced by an 

operational data assimilation system. We will address these issues and some practical 

tools for dealing with them in a separate report. 

A second group of possible reasons for a poor fit concerns the additional assumptions 

involved in tuning the model. Even if the covariance model is appropriate, the pa- 

rameter estimates may be far from optimal because, for example, the bias is handled 

incorrectly, or the data may be serially correlated. In fact it is very likely that some- 

if not all-of these violations apply in practice. Yet the maximum-likelihood method 

does depend on the complete specification of the pdf of the data. In the absence 

of information, it is common practice to default to a standard set of assumptions. 

For example, lacking any specific indications to the contrary, it is almost always as- 

sumed that the data are Gaussian and white. This raises the issue of robustness of 

the maximum-likelihood method with respect to the information it requires; we will 

address this issue experimentally in Section 3. 
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It is worth noting at this point that all currently operational alrnospheric data assim- 

ilation systems can be regarded as particular applications of the maximum-likelihood 

method to the problem of estimating the state of the atmosphere from observations 

and model information (Lorenc 1986; Cohn 1997). Different assumptions about the 

underlying probability distributions lead to different solution methods, but in all 

cases that have been tried so far the errors (after quality control of observations) are 

assumed to be Gaussian and white. In the present work we try to be consistent in ap- 

plying the same framework to the estimation of parameters of the covariance models, 

although the maximum-likelihood method is completely general in this respect. 

Let us take the pragmatic point of view, then, that the majority of assumptions 

about error distributions are made primarily for practical reasons, and not necessarily 

because they are believed to be valid. Then the log-likelihood function (2.30) (or 

(2.32)) in the stationary case) is simply one of many possible cost functions that 

could be used for fitting a parameterized family of covariance models to a data set. 

Traditional methods for determining covariance parameters from observed data are 

generally based on a least-squares criterion (Rutherford 1972; Thikbaux e t  al. 1986; 

Bartello and Mitchell 1991). 

As stated earlier, an advantage of the maximum-likelihood criterion is that it can be 

made entirely consistent with the complete set of assumptions that have been invoked 

in the actual data assimilation procedure. However, if these assumptions are wrong, 

one might legitimately ask whether there are any other criteria that lead to a more 

robust parameter estimation procedure. 

One candidate for such a criterion follows from the Generalized Cross Vulidution 

(GCV) method (Wahba and Wendelberger 1980). The cross-validation approach is 
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based on ma,xim-iz,ing the capability of a model to predict withheld data, and it does 

not require as many assumptions on the nature of the error distributions as does the 

maximum-likelihood method. Wahba e t  al. (1995) show how GCV can be applied 

to the estimation of covariance parameters and possibly other tuning parameters of 

an atmospheric assimilation system. Using our notation, they specifically consider 

covariance models of the form 

(2.43) 

where S1 is constant, and both S1 and S2 are positive definite. Such a model is 

sufliciently general for most applications considered in this report: the first term 

typically represents observation error covariances, while the second term can be used 

to model forecast error covariances. The GCV method estimates the parameter X 

defined by 

2 

A=(:), (2.44) 

and possibly additional parameters 8 as well, from data residuals. We summarize the 

GCV estimation procedure in Appendix B. 

The scalar X is actually the single most important parameter of the covariance 

model (2.43), being the ratio of the variances of the two signals present in the data 

residuals. Estimates of the separate variances 01 and n2 are obtained as a by-product 

of the GCV estimation procedure. Note that the identifiability requirement still holds; 

no method can produce meaningful estimates of poorly identifiable parameters. See 

Appendix A of Wahba e t  al. (1995) for a discussion of identifiability in the context 

of GCV. 
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The GCV approach as formulated by Wahba c t  a!. (1995) applies to the estimation 

of the parameters o1,g2, and 8 based on a single vector of residuals valid at a fixed 

time t k .  As in Dee (1995), their method was originally intended to be used on-line in 

a data assimilation system, for the adaptive tuning of system parameters. However, 

it can also be applied off-line for covariance estimation based on data {vk} collected 

over a finite interval, as we show in Appendix B. From a practical point of view the 

GCV method and the maximum-likelihood method differ only in that they involve 

different cost functions; compare (B.lO) with (2.30) (or, for stationary models, (B.15) 

with (2.32)). It is the case for both methods that if either the covariance model 

formulation or the data change, so will the parameter estimates produced by both 

methods change. Both methods are similar in terms of computational complexity, 

although we have found that the localization of a minimum of the GCV cost function 

is occasionally easier when starting from a poor initial guess. The parameter estimates 

obtained by the two methods from the same data set can be compared by simply 

interchanging the cost functions. Our experiments, some of which are reported in 

Section 3, indicate that the differences are insignificant. 
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3 Applications 

We now discuss three different applications of the methodology described in the pre- 

vious section. The quality-controlled data used in this study were obtained from a 

February 1995 time series of observed-minus-forecast residuals produced by the God- 

dard EOS Data Assimilation System, Version 1.2 (GEOS-1.2 DAS) (Pfaendtner e t  

al. 1995). 

3.1 Rawinsonde height residuals 

We first consider the estimation of rawinsonde height error standard deviations and 

forecast height error covariance parameters from observed-minus-forecast height resid- 

uals over North America for the month of February 1995. This represents a classic 

example of covariance parameter estimation for atmospheric data assimilation; see 

e.g., Gandin (1963, Section 2.3); Daley (1991, Section 4.3). Our purpose here is to 

test the performance of the maximum-likelihood method, and to assess the accu- 

racy of the parameter estimates in light of various uncertainties inherent in both the 

models and the data. 

We will use (2.6) for modeling rawinsonde height error covariances. At  each fixed 

pressure level this model reduces to 

where i , j  are station indices, rij is the chordal distance between the stations and G: 

is the observation height error standard deviation. As stated in Section 2, this model 

assumes that observation errors associated with different soundings are statistically 

independent, and that their standard deviations are identical. The latter assump- 

27 



tion may not be adequate if instruments from more than a siiigie manufacturer are 

involved. Moreover, the model (3 .1)  cannot properly account for representativeness 

error, which is state-dependent and therefore spatially correlated (Daley 1993). 

Single-level forecast height error covariances will be modeled by (2.8),  using the spline- 

windowed powerlaw function pw (see Appendix A)  to represent horizontal correlations. 

For our experiments we set r+ = 6000km, which is the distance beyond which the 

modeled correlations are identically zero. Later we will consider alternative correla- 

tion models as well. Thus, the covariance between forecast height errors at locations 

i and j is modeled by 

with 0," the forecast height error standard deviation and Lh the de-correlation length 

scale; see (A.3). 

Combining (3.1) and (3.2) with the assumption that observation errors are uncorre- 

lated with forecast errors, the covariance of the observed-minus-forecast height resid- 

uals is 

This expression completely specifies the residual covariances, except for the three 

parameters CT;, a i ,  and L h  which will be estimated from the data. 

We now turn our attention to the data. Day-time rawinsonde temperature measure- 

ments are affected by sunlight, which can cause systematic errors in reported heights. 

Corrections may be applied to the data in order to reduce the effects of solar radiation; 

the method of correction generally depends on the manufacturer of the rawinsonde 

equipment (Mitchell et al. 1996). In some cases corrections are applied at the source; 

28 



i.e., prior to commiinicating the reports to the operational weather centers. Other 

than that, no corrections were applied to the data used for this study. In order to 

eliminate the possible contaminating effect of this aspect of quality control, we use 

night-time observations only for this study. 

We consider a report to be a night-time report when the sun is below the horizon at the 

time and location of the observation. When selecting a set of stations for covariance 

parameter estimation we also require that all stations in the set produce a certain 

minimum number (usually 10) of simultaneous night-time reports during the period 

in question. Figure 1 shows, for example, a subset of the North American rawinsonde 

stations which produced at least 10 simultaneous night-time 500mb reports during 

the month of February 1995. 

Having selected a subset of stations in this manner, we computed the mean residuals 

by averaging all night-time residuals at each station (see (2.37, 2.38)). The results 

are shown at four different pressure levels in Figure 2. Closed disks indicate positive 

mean residuals; circles correspond to negative values. The diameter of each disk or 

circle is proportional to the absolute value of the mean; the minimum, median, and 

maximum values at each level are indicated in each panel. 

It is likely that the occasionally large monthly mean residuals are primarily due to 

systematic errors in the forecast model. For example, the means at lOOmb clearly 

show a large-scale spatial pattern; it is difficult to imagine that this would be due 

to observational bias. The magnitudes of monthly mean height residuals computed 

for different periods are similar, although the detailed spatial distributions generally 

depend on the prevailing large-scale circulation. By introducing the assumption that 

the observations are unbiased, it is possible to estimate forecast bias from the time 
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Figure 1: Locations of North- American rawinsonde stations which produced 
at least 10 simultaneous 500mb night-time reports during the 
month of February 1995. 

series of residuals. Dee and da Silva (1997) have developed a sequential forecast bias 

estimation algorithm that can be incorporated into existing statistical data assimi- 

lation systems. The algorithm will produce multivariate forecast bias estimates that 

can be used to reduce climate errors in assimilated data sets. 

The data set consists of 3447 night-time reports from 86 North-American stations 

at 850mb) 3684 reports from 95 stations at 500mb) 3628 reports from 95 stations at 

250mb, and 3195 reports from 84 stations at 100mb. The covariance model (3.3) does 

not depend on time so that the stationary form (2.32) of the maximum-likelihood cost 

30 



1 OOmO 250mb 

140W 1 oow 60W 

500mb 

75N 

60N 

45N 

30N 

75N 

60N 

45N 

30N 

140W 1 oow 60W 

850mb 

140W 1 oow 60W 140W 1 oow 60W 

Figure 2: Mean observed-minus-forecast night-time height residuals for 
February 1995, at stations with at least 10 simultaneous night-time 
reports, at 100mb, 250mb, 500mb, and 850mb. These are station 
averages of all night-time residuals during the month. Closed disks 
correspond to positive values; open circles to negative values. The 
diameter of each disk or circle is proportional to  the absolute value 
of the mean. Maximum, median, and minimum values are indi- 
cated in each panel. 

function may be used in this case. We therefore first estimated the sample covariance 
- 
S from the data at each pressure level by applying (2.35), using the threshhold Kij 2 

10. Changing the threshold value to 1 (the lowest possible) or to 40 (the maximum 

number of reports per station being 5 6 )  did not have a significant effect on any of the 

parameter estimates. The reason is that the total number of data is not significantly 
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reduced by removing these stations which rcport infrequently. 

Given the sample covariance 3 at a fixed pressure level, the cost function (2.32) can 

be minimized as a function of the covariance parameters ai, a i ,  and L h .  We use a 

quasi-Newton method with a BFGS update (Gill e t  al. 1981) for this purpose, allow- 

ing the scheme to approximate cost function gradients as needed by finite differences. 

Occasionally the scheme has trouble converging when the initial guess for the param- 

eters is poor; then a simplex search method (Nelder and Mead 1965) is used instead. 

Optimization is considered complete when an iteration results in a relative change of 

less than in each parameter estimate as well as in the value of the cost function. 

We also computed the maximum-likelihood parameter accuracies as in (2.41), using 

finite differences to approximate the Hessian matrix A. The entire procedure requires 

repeated evaluation of the cost function-typically on the order of 50-100 times in 

this three-parameter example, depending on the initial guess for the parameters-and 

takes only a few seconds on a moderately powerful desktop computer. 

The maximum-likelihood parameter estimates as well as their estimated standard 

errors are shown in Figure 3. As expected, observation and forecast error standard 

deviations increase with height, although not monotonically. The estimated standard 

errors for the observation error standard deviations are roughly 2 - 3% at all levels, 

indicating that this is the most easily identifiable parameter. The standard errors for 

the forecast error standard deviations increase to about 6% at higher levels. The fore- 

cast error de-correlation length scale estimates vary between 53051 lOkm at 1000mb, 

520f20km at 500rnb, and 1250fllOkm at 20mb. The relatively large uncertainties 

in the length scale estimates at lOOOmb and at 20mb are due to the fact that there 

are fewer data available there. 
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Figure 3: Maximum-likelihood estimates, based on night-time data only, of 
rawinsonde height error standard deviations (in meters), forecast 
height error standard deviations (in meters), and forecast height er- 
ror de-correlation length scales (in thousands of kilometers), shown 
as a function of pressure (thick curves). Also shown are the es- 
timated standard errors (thin curves), although these are barely 
visible in the left-most panel. 

The estimated standard errors, obtained from the asymptotic theory described in 

Section 2.3.4, do not necessarily provide a realistic measure of the actual uncertainties 

in these monthly parameter estimates. The reason for this is that the estimates 

are not truly maximum-likelihood estimates, since many of the assumptions about 

the data that enter into the maximum-likelihood formulation are in fact violated. 

Let us introduce, for the sake of discussion, the model hypothesis which states that 

all assumptions made in modeling the data are in fact satisfied. Under the model 

hypothesis the uncertainty in the parameter estimates is due only to sampling error: 

the estimates depend on a finite number of noisy data. The effect of sampling error 
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is different for each parameter and depends on the nature of lhe modei. For example, 

the error bars on the de-correlation length scale estimates in Figure 3 are relatively 

large compared to those on the estimates of the standard deviations: the data contain 

more useful information about the latter. Ultimately, the standard errors obtained 

from the asymptotic theory are useful because they indicate ( i )  whether a parameter 

can be actually identified from the available data and (ii) whether the parameter 

uncertainty due to sampling error is acceptable. The answer to both questions, for 

the three-parameter case presented here, is affirmative. 

A better indication of the actual uncertainty in the monthly parameter estimates 

can be obtained by changing the data selection in various ways. The standard error 

estimates obtained for the data selection presented above suggest that the sampling 

error would still be acceptable even if the number of data were significantly smaller. 

Surely it does not require thousands of observations to estimate only three identifiable 

covariance parameters; this insight provided the basis for on-line method proposed 

by Dee (1995). This opens up a number of interesting possibilities for studying the 

dependence of the parameter estimates on the spatial and temporal selection of data. 

As an example, we emulated an on-line estimation procedure by cycling through the 

month of February 1995 and re-estimating covariance parameters each day, based on 

the most recent 10 days of data. We used night-time rawinsonde reports only, so that 

the daily parameter estimates are always based on a subset (a sliding 10-day window) 

of the one-month data set described earlier. The procedure starts on February 10, 

using night-time reports from the period February 1-10 only. The resulting parameter 

estimates at four pressure levels are shown as a function of time in Figure 4.  

The variability in the estimates is remarkable in several respects. The estimated 
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Figure 4: Maximum-likelihood covariance parameter estimates as a function 
of time (in days). Shown are the estimated rawinsonde height error 
standard deviations (in meters), forecast height error standard de- 
viations (in meters), and forecast height error de-correlation length 
scales (in thousands of kilometers) at 100mb, 250mb, 500mb, 
850mb. The estimates are produced once a day and are based 
on the latest 10 days of available night-time reports. The thin 
curves indicate the estimated standard errors. 

observation error standard deviations range between 14.7m and 16.4m at 100mb, 

between 9.6m and 12.lm at 250mb, between 5.0m and 8.0m at 500mb, and between 

3.3m and 6.4m at 850mb. Those are rather large variations for a parameter which is 

usually presumed to be a function of pressure only! The sampling error, even with 

a 10-day data set, is too small to be of influence (the standard error curves for the 

estimates are barely visible in the figure). The variability of the estimated forecast 
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error standard rleviat,ions is not unexpected, since forecast errors are state-dependent. 

Note that the estimated forecast error standard deviations at 500mb actually exceed 

those at lOOmb during most of the month. The length scale estimates at 500mb, for 

example, change from 527km on February 21 to 313km on February 28. 

Current operational data assimilation systems use constant (in time) parameters to 

describe most observation error statistics; these values are usually tuned on the basis 

of at least a month of data. The variability observed in the 10-daily parameter 

estimates can be interpreted as an uncertainty estimate for the monthly parameter 

estimates: our results indicate, for example, that this uncertainty for the rawinsonde 

height error parameter at 500mb is at least 40%. This result is disturbing since this 

parameter, among all parameters used to describe observation error statistics, is the 

easiest to estimate, and probably has the largest impact on analysis accuracy. 

Another way of assessing parameter uncertainty is by changing the model hypothesis 

and examining the effect of such a change on the parameter estimates. There are 

many dubious aspects to the model hypothesis, and a complete sensitivity analysis 

would not be practical. On the other hand, even a limited analysis can be valuable if 

it helps to identify particular components of the model formulation that can have a 

significant impact on the results. 

Consider, for example, the specific form of the function used to represent forecast 

height correlations in the present application. Simultaneous estimation of observa- 

tion and forecast error standard deviations from residuals is possible only by virtue 

of the fact that the forecast errors are spatially correlated. The precise nature of the 

correlations is highly uncertain and the choice of the function used to model them 

must have an effect on the estimated standard deviations, because the values of the 
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likelihood functim depend 0:: this choice. To illustrate this, we repeated the pa- 

rameter estimation procedure for night-time data, using the same residual covariance 

model ( 3 . 3 ) ,  but now with the powerlaw and the compactly supported spline (see Ap- 

pendix A)  representing the isotropic forecast error correlations. Figure 5 shows the 

results. The impact on the estimates of the error standard deviations is not much 

larger than that of sampling error; compare Figure 3 .  The de-correlation length scale 

estimates do change significantly depending on the choice of correlation model, but 

this is not surprising since this parameter describes only the behavior of the model 

near the origin (see Figure 14). We conclude that, in this case at least, the choice of 

forecast error correlation model does not significantly affect the estimates of forecast 

and observation error standard deviations. 

An intriguing question is whether any of the isotropic correlation models considered so 

far actually describe the forecast errors well. The minimum values of the maximum- 

likelihood functional obtained for each choice of correlation model provides some 

information about this: since each of the models depends on the same number (one, 

in this case) of parameters, the value of the functional indicates which model provides 

the better fit. When the parameters are tuned to the complete month of night-time 

data it is found that, of the three candidate models considered, the spline-windowed 

powerlaw consistently provides the best fit at all levels. However, this is not true 

when only a lo-day window of data are used. In the cycling experiment described 

above, there was no clear preference toward any of the three candidate models: the 

smallest cost function value was obtained with different models depending on the 

particular time and pressure level. 

It is probably the case that none of the models considered here fit the data well. 
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Figure 5: The effect of the choice of forecast error correlation model on 
the maximum-likelihood parameter estimates. Estimates of rawin- 
sonde height error standard deviations (in meters), forecast height 
error standard deviations (in meters) and de-correlation length 
scales (in thousands of kilometers) are shown as a function of 
pressure. The thick solid curves were obtained using the spline- 
windowed powerlaw function (identical to Figure 3 ) ,  the thin solid 
curves with the powerlaw function, and the dashed curves with 
the compactly supported spline function. Parameter estimates are 
based on North-American night-time February 1995 data. 

Isotropic models are perhaps appropriate for describing forecast error correlations 

averaged over a sufficiently long (seasonal) time period, but on a shorter time scale 

the forecast errors are state-dependent and their spatial correlations must therefore 

be anisotropic. See Riishojgaard (1997) for a promising approach toward covariance 

modeling for state-dependent forecast errors. In any case, since we question the 

model hypothesis it would be more meaningful to study goodness-of-fit of various 

candidate models based on independent data sets and on a variety of parametric and 
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rionpararneteric statistical tests. We will report 011 such a study in a subsequent 

report. 

As a final experiment with this data set we produced parameter estimates using 

the Generalized Cross- Validation (GCV) method (Wahba and Wendelberger 1980), 

briefly described in Section 2.3.5 and summarized in Appendix B. Figure 6 shows 

the GCV estimates superimposed on the maximum-likelihood estimates. The only 

difference between the two sets of estimates is that they are based on the minimization 

of two different cost functions. The estimates are not significantly different in light 

of the parameter uncertainties alluded to earlier, except perhaps near the surface 

where the GCV estimates of the observation error standard deviations are consistently 

smaller. The GCV estimate at lOOOmb is zero, which is suspicious; yet it is not 

possible in general to determine which method is more accurate. 

As discussed in Section 2 .3 .5 ,  the likelihood cost function leads to  asymptotically 

(;.e., for large number of data) optimal parameter estimates under the model hypoth- 

esis. This property is academic if the model hypothesis is violated, as it invariably 

is in practice. A practical advantage of the maximum-likelihood method is that it 

produces standard errors of the parameter estimates, which can be interpreted as es- 

timates of the parameter uncertainty due to sampling error. Conceptually we prefer 

the maximum-likelihood formulation because it is consistent with current implemen- 

tations of statistical analysis systems. However, we have found the GCV method to be 

computationally more robust in some cases when the initial parameter estimates were 

very poor. In those cases the initial phase of the optimization process (the bracketing 

or approximate localization of the minimum) was more rapidly achieved for the GCV 

cost function than for the log-likelihood function. This is probably due to the fact 
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that the GCV method first estimates the ratio of the observation and forecast error 

variances (see (2.44)); this ratio is generally more easily identifiable from the data 
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Figure 6: The effect of the choice of estimation method on the parameter es- 
timates. Estimates of rawinsonde height error standard deviations 
(in meters), forecast height error standard deviations (in meters) 
and de-correlation length scales (in thousands of kilometers) are 
shown as a function of pressure. The thick curves were obtained 
with the maximum-likelihood method (identical to Figure 3); the 
thin curves are the Generalized Cross-Validation parameter esti- 
mates. The spline-windowed powerlaw function was used to model 
forecast error correlations in both cases, and the parameter esti- 
mates are based on the same set of North-American night-time 
February 1995 data. 
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3.2 Sealevel pressure residuals from ship reports 

In this section we apply the maximum-likelihood method to the estimation of sea- 

level pressure observation and forecast error parameters. We use ship reports for this 

purpose, obtained during February 1995 in a section of the North Atlantic situated 

off the East Coast of the United States. Figure 7 shows the locations of each of the 

3573 reports included in the data set. Superimposed is an estimate of the monthly 

mean residuals, which will be discussed below. The data distribution in this area is 

fairly uniform, and some major shipping routes are clearly visible. 

An interesting aspect of this application is that the observing system is not station- 

ary. Consequently the general, time-dependent formulation (2.30) of the maximum- 

likelihood cost function must be used in this case. This does not present any serious 

difficulties as long as the covariance between residuals at any two locations can be 

evaluated as a function of the parameters to be estimated. Computations are slower 

than in the stationary case, typically by a factor of 10 or so, depending on the size of 

the data set. Still, the examples in this section were easily calculated on a desktop 

computer . 

The covariance model for this case is similar to that for rawinsonde height residuals; 

i.e., observation errors are assumed to be uncorrelated in space, and forecast errors are 

modeled using a simple univariate isotropic model. The covariance of the observed- 

minus-forecast sea-level pressure residuals is therefore represented by 

where ap” and a,/ are the observation and forecast sea-level pressure error standard 

deviations, respectively, and L, is the de-correlation length scale associated with the 
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Figure 7: Locations of February 1995 ship reports, and mean observed- 
minus-forecast sea-level pressure residuals for that month. The 
mean field was computed using a successive correction method; 
see text for details. The four different shades of gray, from darkest 
to lightest, correspond to mean values in the intervals (-3mb,-2mb], 
(-2mb,-lmb], (-lmb,Omb], and (Omb,lmb]. 

forecast sea-level pressure errors. Given the coordinates of any two locations, this 

expression completely specifies the residual error covariance, except for the three 

parameters op0, a:, and L, which will be estimated from the data. 

Bias estimation is more complicated in this case, since there are no station locations 

that can be used to define the bias estimates. As discussed in Section 2.3.2, several 

possibilities present themselves, and we will experiment with a few of them here. The 
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obvious approach is to construct a grid which covers the data locations, and then 

to define and estimate the bias on the grid. (The grid may or may not coincide 

with the forecast model grid, but this is not relevant here). For example, the mean 

field shown in Figure 7 was computed by first constructing a 2" x 2" grid and then, 

for each grid location, averaging all nearest residuals. Subsequently the estimate 

was smoothed by applying two iterations of a successive correction method, using a 

Gaussian weighting function with a length scale of 200km. The gridded bias estimates 

are ultimately interpolated back to the data locations for the purpose of covariance 

parameter estimation, since the likelihood functional (2.30) involves the specification 

of the bias at the data locations. 

The bias estimation and correction procedure just outlined is simple to implement, 

but involves a number of choices regarding the technical details: the definition of 

the grid, the method of estimation, and the interpolation scheme. Accurate bias 

estimates may be of interest for reasons other than covariance estimation, but our 

working assumption here is that the covariance parameter estimates are not greatly 

sensitive to the details of the bias estimation procedure. This assumption needs, of 

course, to be tested, and we will do so below. If in fact a small change in the bias 

estimation procedure causes a great change in the covariance parameter estimates, 

then the latter are not very meaningful. 

Figure 8 shows, as a function of time, the maximum-likelihood estimates of the pa- 

rameters $, a!, and L, based on a sliding 10-day window of data. The estimated 

standard errors are included as well. Bias was estimated at each time step from the 

data themselves (i.e., using the same 10 days of data) on a 2" x 2" grid. The gridded 

bias estimates were calculated by applying two iterations of a successive correction 
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method, using a Gaussian weighting function with a leIigtli scale of 200krn. Bias 

2 -  

1 -  

estimates at  the data locations were obtained by means of bilinear interpolation. 
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Figure 8: Maximum-likelihood parameter estimates as a function of time (in 
days). Shown are the estimates ship sea-level pressure error stan- 
dard deviations (in millibars), forecast sea-level pressure error stan- 
dard deviations (in millibars), and forecast sea-level pressure error 
de-correlation length scales (in thousands of kilometers). The esti- 
mates are produced once a day and are based on the latest 10 days 
of available reports. Also shown are the estimated standard errors 
(thin curves). 

Figure 9 shows the results of introducing various modifications to the bias estimation 

and correction procedure. The thick curves in this figure are identical to those in 

Figure 8, while the dotted curves were obtained by not correcting for bias at all. 

Ignoring the bias altogether results in significantly larger de-correlation length scale 
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estimates and somewhat larger variance estimates. This is not surprising, since the 

bias here is mistaken for a spatially correlated random component of error. The 

thin solid curves are the result of using bias estimates which are less smooth: the 

estimation procedure involves only a single pass of the successive correction method 

with a more localized weighting function (using a length scale of 100krn). These 

curves are barely visible in the figure since they almost exactly coincide with the 

thick solid curves in most places. The thin dashed curves correspond to a radical 

simplification of the bias estimation procedure: the bias at each time was taken to be 

constant in space, with the constant obtained by simply averaging all the data within 

the 10-day period. This crude change in the procedure appears to mostly effect the 

estimates of the forecast error standard deviation, which turn out somewhat larger. 

The differences among the parameter estimates which involve some form of spatially 

variable bias estimation and correction are generally small; in fact they appear to 

be comparable to the standard error estimates which are plotted in Figure 8. This 

implies that, in this case at least, the details of the bias correction procedure do not 

significantly affect the covariance parameter estimates. 
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Figure 9: The effect of the bias estimation procedure on covariance parameter 
estimates. The thick solid curves are identical to  those in Figure 8. 
The dotted curves were obtained by not correcting for bias at  all. 
The thin solid curves (mostly hidden by the thick solid curves) 
correspond to a slight change in the bias estimation procedure- 
see text for details. The dashed curve was obtained by taking bias 
to be constant in space. 
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3.3 Wind residuals from aircraft reports 

The final application we present here involves aircraft wind data, and the estimation 

of observation wind error standard deviations from these data. We use wind reports 

obtained from various flights over a North-Eastern portion of the North American 

continent during February 1995. Figure 10 shows the 1295 locations of all two- 

component wind observations reported at pressure levels between 225mb and 275mb 

during that month. The data distribution is highly irregular and mostly concentrated 

about fixed flight paths. 
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Figure 10: Locations of February 1995 aircraft wind observations with re- 
ported pressure levels between 225mb and 275mb) within a 
15" x 15" degree portion of the North American continent. 
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As before, we will check the sensitivity of our resuits to the treatinelit of bias. In 

Figure 11 we show the February 1995 mean observed-minus-forecast wind residuals 

computed on a 1" x 1" grid. The mean was computed at each grid location by first 

averaging (over time) all nearest data and then applying two iterations of a successive 

correction method, using a Gaussian weighting function with a length scale of 200km. 

The figure shows a consistent pattern in the residual wind directions along the major 

flight paths toward the north-east. The maximum residual wind speed is 8.4ms-',  

while the median is 2.0rn.s-l. 
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Figure 11: Mean observed-minus-forecast wind residuals from aircraft data, 
computed using February 1995 reports at levels between 225- 
275mb. The maximum residual wind speed is 8.4ms-',  the me- 
dian is 2.0ms-'. 
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In Figure 12 we show the weekly mcans, for cach of the four wccks of the liionth, 

plotted at the same scale as in the previous figure. The number of reports during each 

week was 353, 408, 255, and 279, respectively. Although the predominant direction 

of the arrows is still visible in each of the four panels, there are obvious differences as 

well. One might suspect that covariance parameter estimates will be quite different, 

depending on the manner in which bias is estimated and removed from the data. 
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Figure 12: As in Figure 11, but computed for each week. The scale of the 
residual wind arrows in all four panels is identical to that in Fig- 
ure 11. 

Aircraft wind data comprise an important source of information about upper level 

atmospheric flow, yet the error characteristics associated with these data are not very 
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well known. Here we attempt to estimate o~ily the standard deviation of the (spatially 

and temporally) uncorrelated component of observation error. This does not properly 

account for the contribution of representativeness error, which may very well be highly 

significant in this case. Since both forecast errors and representativeness errors are 

likely to be state-dependent and spatially correlated, it is not clear that the two can 

be statistically separated. This is a good example of an identifiability problem; i.e., a 

fundamental limitation of the approach of. estimating observation and forecast error 

covariance parameters from residuals. 

Aircraft wind observation errors are modeled simply by 

R = [ " "  0 R" " 1  
with 

(3.5) 

Here d" and oVo are the observation error standard deviations for the u- and 

v-components, respectively. There is no obvious reason to expect that these two 

quantities are greatly different, but for the moment we will retain the extra degree of 

freedom. 

Wind forecast errors are modeled as described in Section 2.1, by introducing an error 

streamfunction $ and error velocity potential x and postulating simple univariate 

covariance models for each of these scalar fields. Here we assume that + and x are 

independent with covariances 

[P$] ; j  = (g1L)2pw(ri j ;  L $ ) ,  

[P"],j = ( a X ) ' p w ( r i j ;  LX), (3.9) 

(3.8) 
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depending on the four parameters a i ,  L$ and ox, Lx. Combining (3.8, 3.9) with (2.9) 

results in an anisotropic forecast wind error covariance model (Daley 1991, Figures 

5-2 and 5-4). 

We estimated all six parameters from the entire month of data, using the general, 

time-dependent formulation (2.30) of the maximum-likelihood cost function. The 

monthly mean shown in Figure 11 was subtracted from the wind residuals prior to 

covariance tuning. The resulting parameter estimates and their estimated standard 

errors were 

ouo = (2.75 f 0.07)ms-', 

0'' = (2.77 f 0.07)ms-', 

ai = (18.46 f 2.03)ms-', 

0' = (19.77 f 2.59)ms-', 

L* = (0.51 f 0.04) x 106m, 

Lx = (0.57 f 0.05) x 1O6m. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Note that the standard error estimates indicate that all six parameters are simultane- 

ously identifiable from the data; i.e., the Hessian at the minimum of the cost function 

is well-conditioned. 

The six-parameter estimation from a month of data took about an hour on a desktop 

workstation; the software we used for this purpose was designed for flexibility rather 

than efficiency. Still, it appears that the computation is unnecessarily expensive 

since ( i )  the estimates indicate that the observation error standard deviations can be 

represented by a single parameter and (ii) it is questionable whether four parameters 

are really needed to describe the forecast wind error covariance. We therefore repeated 

51 



the calculation after reducing the number of parameters to three, by setting 

(yo - ( y o  = - - O0, 

a*-  x =  f 

L* = LX L. 

- e  - 0 ,  

The resulting parameter estimates and their estimated standard errors were 

8 = (2.77 f 0.05)ms-',  

of = (19.09 f 1.14)rns-', 

L = (0.54 f 0.03) x 106m. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

It appears that in this case the observation wind error standard deviation can be 

estimated well using three parameters only. 

We repeated this procedure for each week of data separately, and obtained similar 

results-that is, the estimated u- and v-observation error standard deviations are 

not significantly different, whether six or three parameters are used to describe the 

residual covariances. The estimates do vary from week to week, as shown in Figure 13. 

The horizontal lines in each panel correspond to (3.19-3.21): these are the estimates 

and their standard errors obtained from the entire month of data. The circles and plus 

signs in each panel mark weekly parameter estimates, using two different methods for 

bias correction. In case of the circles the estimates truly depend on one week of data 

only: the bias was estimated from the same week of data (see Figure 12). When, 

instead, the monthly mean (Figure 11) was used as a bias estimate for each week 

of data, slightly different estimates were obtained (marked by the plus signs). The 

discrepancy between the two sets of estimates is indicative of the uncertainty due to 

the treatment of bias. 
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Figure 13: Wind error covariance parameters estimated from February 1995 
near-250mb aircraft data. Shown are the estimated aircraft obser- 
vation wind error standard deviation 0' (in meters per second), 
the forecast wind error standard deviation parameter of (in me- 
ters per second), and the forecast wind error de-correlation length 
scale parameter L (in thousands of kilometers). The horizontal 
lines in each panel correspond to the estimates and their stan- 
dard errors obtained from the entire month of data. The circles 
and plus signs in each panel mark weekly estimates, using two 
different methods for bias correction; see text for details. 
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4 Summary and conclusions 

We presented a general method for estimating forecast and observation error covari- 

ance parameters, based on the maximum-likelihood principle. We discussed issues 

such as bias estimation and correction, parameter identifiability, estimation accuracy, 

and robustness of the method, both from a theoretical and from a practical point of 

view. 

Three different applications were used to describe the flexibility and limitations of 

the method. The maximum-likelihood method produces estimates of the effect of 

sampling error upon parameter uncertainty. By making sure that this effect is small, 

one can study the variability of the covariance parameters by changing the selection of 

data. In addition, by changing some of the assumptions that enter into the maximum- 

likelihood criterion, one can gain insight into the actual parameter uncertainty. 

Using this approach, we infer the following general conclusions from the reported 

experiments: 

0 Many statistical parameters usually specified to be constant in operational data 

assimilation systems in fact vary significantly in both space and time. For 

example, we found that rawinsonde height error standard deviations estimated 

from a sliding 10-day window of 500mb reports ranged between 5m and 8m 

within less than a month. Some of these differences may be explained by the 

effects of solar radiation and other quality control issues, but they are more 

likely due to representativeness error. 

0 Systematic errors in both forecasts and observations cannot be ignored and 
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can induce iarge uncertainties in the covariance parameter estimates. In some 

cases, rnonthly mean observed-minus-forecast residuals can be as large as the 

estimated standard deviations. Nevertheless, our results appear to be fairly 

robust with respect to the treatment of bias. 

0 Forecast error parameter estimates vary greatly, depending on the selection of 

data. This is true for both variance and correlation parameters. The assump- 

tion that forecast error correlations are isotropic may be appropriate when in- 

terpreted in a time-average (rather than ensemble-average) sense, but only on a 

seasonal time scale. Different isotropic models fit equally well (or equally badly) 

on shorter time scales. 

0 On-line estimation of covariance parameters is both necessary and feasible. Es- 

timates of parameter uncertainty due to sampling error confirm that it requires 

on the order of a hundred data items to estimate each parameter, and the com- 

putational effort involved in doing so is small. Whether to use highly localized 

data spaced in time, or nearly instantaneous but spatially distributed data, is 

a matter of modeling strategy. 

0 A fundamental limitation of this and other estimation methods is identifiabil- 

ity. Simultaneous estimation of multiple parameters is possible only when all 

parameters are jointly identifiable from the data. This imposes requirements 

on the model formulation as well as on the data. In practice, observation errors 

and forecast errors can be statistically separated only to the extent that they 

have distinguishable characteristics. 

Work is currently underway to automate some aspects of the estimation procedures 
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described in this report, so that certain parameters of the PSAS covariance specifi- 

cations can be updated in real time based on recent observations. The applications 

presented here show that this type of automation is feasible. The result will be an 

adaptive PSAS in which, for example, time- and space-dependent changes in forecast 

accuracy will be automatically reflected in updated forecast error statistics used by 

PSAS. This should improve analysis accuracy, which, in turn, will improve forecast 

accuracy, which, in  turn, will improve analysis accuracy, which, in turn,  will improve forecast 

accuracy, which, in turn, will improve analysis accuracy, whlch,  In t u r n ,  W I I I  improve forecast accuracy, 
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A Correlation models 

The general univariate isotropic covariance model is of the form 

with ~ ( x )  a positive real-valued function and r(x,y) = IIx - yII the Euclidean dis- 

tance between locations x and y. The representing function p must satisfy certain 

conditions for (A.l)  to be a legitimate (i.e., positive semi-definite) covariance model; 

see Gaspari and Cohn (1997) for details. 

In this study we consider the following alternatives for the representing function p. 

The powerlaw: 

p ( r )  = p p ( r ; L )  = [ 1 + - 1 (22]-1 - 

The parameter L is the de-correlation length scale defined by 

see Daley (1991, Section 4.3). 

The compactly supported spline (Gaspari and Cohn 1997, section 4.3): 

with 

c = L J 3 .  10 
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and L is the de-correlation length scale defined by (A.3). 

Covariances modeled by the compactly supported spline are identically zero whenever 

the distance between two locations exceeds the threshold r = r* = 2c: 

Taking advantage of this property can result in significant computational savings in 

the context of a global statistical analysis system (DAO 1996). However the Legen- 

dre spectrum of the compactly supported spline is quite different from that of the 

powerlaw; see figure 14. 

The spline-windowed powerlaw: 

which also has compact suppport. Using (A.3) and the fact that p(0)  = l,p’(O) = 0 

for each of the functions considered here, it is easy to show that 

1 1 1  _ - -  - +-. 
L2 L? L; 

The support of the spline-windowed powerlaw can be controlled by means of the 

parameter L2: the function is identically zero for r > r* when 

(A.lO) 

If we consider the de-correlation length scale L as the single free (tunable) parameter 

in (A.8), one should take 

L 
(A . l l )  

which follows by substituting (A.lO) into (A.9). 

Figure 14 shows plots of the three functions for identical values of the length scale 

parameter L ,  as well as their discrete Legendre spectra. 
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Figure 14: Correlation models and Legendre coefficients. 

B Multiple-sample GCV 

Wahba e t  al. (1995) show how to obtain GCV estimates of the covariance parameters 

cl, 02, 8 in (2.43) based on a single residual v.  It is assumed that 

with p,  SI,  and & ( e )  known with the exception of the parameters 8 .  First, let 
2 

A=(:). 

h h  

Then find A, 8 which minimize 
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where 

h 

and S:” is the symmetric square root of S I .  This determines 8, and then 

A h  

-2 crl = {trace[I - A(X,O)]} x V ( x , $ ) ,  

In case the data consist of a timeseries {vk} one can simply concatenate the vk into 

a single random vector v: 

(B.8) 
T T T  v = (vl . . . V K )  , 

formulate a covariance model for this concatenated vector, and apply the previous 

formulae. For simplicity we assume here that the vk are independent. Suppose the 

mean and covariance models for the vk are 

The covariance model (B.l)  for v is block-diagonal, with blocks given by (B.9). It is 

easily checked that 

where 

(B . l l )  

(B.12) 
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If we further assiime that the covariance models are stationary with S k l  = S1 and 

S k 2  = S2, then the function V(X, 0 )  simplifies as follows. For the numerator, 

k = l  k = l  
1; 

= C trace{yc [I - A(x, e)12 Yk} 

k = l  
K 

k = l  

(B.13) 112- -112 = K x trace{[I - A ( x , o ) ] ~  S, SS, 1, 

where s is the sample covariance of the data defined in (2.33). For the denominator, 

11- 

trace [I - Ak(X, e ) ]  = I< x trace [I - A(X, e)] 
k = l  

so in case of multiple samples of a stationary time series the GCV criterion is 

112- -112 1 trace{[I - A(X, 6)12 S, SS, } 
I<' v(x,e) = - x 

{trace [I - A(X, e)]}2 

(B.14) 

(B.15) 
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