


Abstract 

This office note discusses the design of PILGRIM, a library which will support the manipu- 
lations of grids in Earth Science software currently being designed and implemented at the Data 
Assimilation Office (DAO). I t  allows various grids to be distributed over an array of processing 
elements (PES) and manipulated with high parallel efficiency. 

Unlike many parallel libraries, the developer takes some basic responsibility for laying out 
the data distribution. This adds to the simplicity of the implementation. .Moreover, developers 
generally want some control of and understanding about the data’s distribution. This is partic- 
ularly true in the DAO’s applications, e.g., GEOS DAS, in which data distributions are known 
in advance. 

PILGRIM has three distinct layers: low-level facilities to perform communication as well 
as basic linear algebra operations on distributed vectors, transformation kernels which work on 
distributed sparse matrices, and modules which define grid types and operations on those grids. 

The design of PILGRIM closely follows the requirements of GEOS DAS. On the other hand, 
the library is being designed in a way that ensures it can support other applications which 
employ certain types of grids. It can also be extended with new grid modules to support still 
others. 
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1 Introduction 

The need to discretize continuous models in order to solve scientific problems gives rise to finite grids 
- a set of points at which prognostic variables are sought. So prevalent is the use of grids in science 
that we often forget that a computer-calculated solution is not the solution to the original problem 
but rather of a discretized representation of the original problem, and is only an approximative 
solution at that, due to finite precision arithmetic. Grids are ubiquitous where analytical solutions 
to continuous problems are not obtainable, eg . ,  the solution of many differential equations. 

Classically a structured grid is chosen a priori for a given problem. If the quality of the solution is 
not acceptable, then the grid is made finer, in order to better approximate the continuous problem. 
More recently the practicality of unstructured grids has been recognized. In such grids it is possible 
to cluster points in regions of the domain which require higher resolution, while retaining coarse 
resolution in other parts of the domain. 

Unstructured grids are often employed in device simulation [l], computational fluid dynamics [2], and 
even in oceanographic models [3]. Although these grids are more difficult to lay out than structured 
grids, much research has been done in generating them automatically [4], and thus this disadvantage 
is being alleviated. In addition, once the grid has been generated, there are numerous methods and 
libraries to adaptively refine the mesh [5] to provide a more precise solution. 

Furthermore, the advantages of multiple grids of varying resolutions for a given domain have been 
recognized. This is best known in the Multigrid technique [6] in which low frequency error com- 
ponents of the discrete solution are eliminated if values on a given grid are restricted to a courser 
grid on which a smoother is applied. But multiple grids also find application other fields such as 
speeding up graph partitioning algorithms [7]. 

An additional complication has arisen in the last few years: many contemporary scientific problems 
must be decomposed over an array of processing elements (or PES) in order to calculate a solution 
in an expedient manner. Depending on the parallelization technique, not only the work load but 
also the grid itself may be distributed over the PES, meaning that different parts of the data reside 
in completely different memory areas of the parallel machine. This makes the programming of such 
an application much more difficult for the developer. 

The Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) software currently 
being developed at the Data Assimilation Office (DAO) is no exception to the list of modern grid 
applications. GEOS DAS uses observational data of uncertain accuracy and incomplete global 
coverage to estimate the complete, evolving dynamic, energetic and constituent state of the global 
earth system. The GEOS DAS consists of two main components, an atmospheric General Circulation 
Model (GCM) [8] to predict the time evolution of the global earth system and a Physical-space 
Statistical Analysis Scheme (PSAS) [9] to periodically incorporate observational data. 

At least three distinct grids are being employed in GEOS DAS: an observation grid - an unstruc- 
tured grid of points at which observed or measured physical quantities from instruments or satellites 
are associated - a structured geophysical grid of points spanning the earth at uniform latitude and 
longitude locations at which prognostic quantities are determined and a block-structured computa- 
tional grid which may be stretched in latitude and longitude on which the dynamical calculation 
takes place. Each of these grids has a different structure and number of constituent points, but there 
are numerous interactions between the grids. Finally the GEOS DAS application is targeted for dis- 
tributed memory architectures and employs a message-passing paradigm for the communication 
between PES. 

In this document we describe the design of PILGRIM, a library for grid manipulations, which will 
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Figure 1: PILGRIM assumes the existence of fundamental communication primitives and optimized 
BLAS. At its lowest level, PILGRIM supplies communication subroutines and sparse Linear Algebra 
utilities. Above that transformation kernels are built. Finally, at  the highest level there are grid 
module which describe the nature of the grid, its decomposition and operations on that grid. 

Communication 
MPI 
SHMEM 
Shared memory primitives 

meet the requirements of GEOS DAS. The design is layered as indicated in Figure 1. Communication 
primitives such as the Message-Passing Interface (MPI) and Basic Linear Algebra Subroutines or 
BLACS [lo] are assumed. The first layer contains a module for high-level communication routines as 
well as modules to define the decomposition of the domain, and to pack and unpack sub-regions of the 
local domain. Above this layer is a sparse linear algebra layer which performs basic sparse matrix 
operations for grid transformations. The final layer contains plug-in modules, each supporting a 
different grid. This layer is extensible - these modules make use of the lower layers and new grids, 
together with the operations performed on them, can be implemented as the need arises. 

BLAS 
SDOT 
SAXPY 
SGEMV 

The design of PILGRIM is object-oriented [ll] in the sense that it is modular, data is encapsulated 
in each design layer, operations can be overloaded, and different instantiations of grids can coexist 
simultaneously. The library is realized in Fortran 90 which partially supports an object-oriented 
paradigm. It also allows the necessary software engineering techniques, e.g., modules and derived 
data  types, while keeping the in line with other Fortran developments at the DAO. The commu- 
nication layer is implemented using MPI [la], however the communication interfaces defined in 
PILGRIM’S primary layer could conceivably be implemented with other message-passing libraries, 
e.g., PVM [13], or with other paradigms, e.g., Cray SHMEM [14] or even with shared-memory 
primitives which are available on shared-memory machines like the SGI Origin or SUN Enterprise. 

This document is structured in a bottom-up fashion: in Section 2 requirements for PILGRIM are 
derived from GEOS DAS requirements. Reasonable design assumptions are made in Section 3 
in order to ease the implementation. The layer for communication, decompositions, and buffer 
packaging is discussed in Section 4. The transformation kernel layer is specified in Section 5. The 
plug-in grid modules are defined in Section 6 to the degree foreseen for the implementation of GEOS 
DAS. In Section 7 some examples and prototype benchmarks are presented for the interaction of all 
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the components. Finally we summarize our work on PILGRIM in Section 8. 

2 Requirements 

The following requirements for PILGRIM are derived requirements from the GEOS DAS component 
requirement documents [15, 161. 

1. Data arrays (possibly multidimensional) need to be distributed over an array of PES, as de- 
termined by an application at run-time. 

The data distribution is not transparent, and the application will decide what decomposition 
is best. This can be an advantage as the application may use this knowledge in order to make 
run-time decisions, e.g., load balancing. 

2. The library has to support different distributions of the same grid, and several different types 
of grids to represent observations, the geophysical view of the earth, and the mesh used to 
perform the dynamical calculation. 

3. The library should be extensible, Le., new grids can be defined as needed. The addition of a 
new grid to the library should only require linking in a new module to the existing library. 

4. It is necessary to support the redistribution of grids a t  run-time for load balancing and other 
reasons. 

5 .  The application must be able to define linear transformations from one grid to another. Again, 
grids do not need to have the same number of grid-points or a similar distribution. 

6. Even though the application defines the data decompositions for the grids and two such de- 
compositions might not be mutually ideal for a given transformation. The library should make 
an attempt to set up the transformation in such a way as to maximize performance when it is 
applied. 

7. The use of the PILGRIM library cannot change the underlying algorithms used in GEOS 
DAS. That is, the numerical results when the library is used should have a t  most round-off 
differences to the current sequential GEOS DAS results. 

A literature search was the first step taken in the PILGRIM design process to find public domain 
libraries which might be sufficient for the DAO’s needs. Surprisingly, none of the common parallel 
libraries for the solution of sparse matrix problems, e.g., PETSc [17], Aztec [18], PLUMP [19] et 
al., was sufficient for our purposes. These libraries all try to achieve transparency the parallel 
implementation to the application developer. In particular, the application is not supposed to know 
how the data are actually distributed over the PES. 

This trend in libraries is not universally applicable for the simple reason that if an application is 
to be parallelized, the developers generally have a good idea of how the underlying data should be 
distributed and manipulated. Experience has shown us that hiding complexity often leads to poor 
performance, and the developer often resorts to workarounds to make the system to perform in the 
manner she or he envisions. If the developer of a parallel program is capable of deciding on the 
proper data distribution and manipulation of local data, then those decisions need to be supported. 
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3 Basic Design Assumptions 

In order to minimize the scope of PILGRIM, we make some simplifying assumptions about the way 
the library will be used. These assumptions do not conflict with the GEOS DAS requirements. 

1. The local portion of the distributed grid array is assumed to be a contiguous section of memory. 
The local array can have any rank, but if the rank is greater than one, the developer must 
assure that no gaps are introduced into the actual data representation (i.e., by packing it into 
a 1-D array if necessary). 

2.  Grid transformations are assumed to be sparse linear combinations of few grid point values 
of one grid to a given point value on the other. The linear transformation corresponds to a 
sparse matrix with a predictable number of non-zeros per row. This assumption is realistic for 
the localized interpolations used in GEOS DAS. 

3. At a high level, the application can access data through global indices (Le., indices of the 
original, undistributed problem). However, at the level where most compptation is performed 
the application needs to work with local indices (ranging from one to the total number of 
elements in the local contiguous array). The information to perform global-to-local and local- 
to-global mappings must be contained in the data structure defining the grid. However, it 
is assumed that these mappings are performed seldomly, e.g., at the beginning and end of 
execution, and these mappings need not be efficient. 

4. All decomposition-related information is replicated on all PES. 

These assumptions are significant. The first avoids the introduction of an opaque type for data and 
allows the application to manipulate the local data as it sees fit. The fact that the data is contained 
in a simple data structure generally allows higher performance than an implementation which buries 
the data  inside a derived type. The second assumption ensures that the grid transformations are not 
memory limited. The third implies that most of the calculation is performed addressing the data in 
a local fashion. In GEOS DAS it is fairly straightforward to run in this mode, however it might not 
be the case in other applications. The last assumption assures that every PE knows about the entire 
data  decomposition. Since the data are independent of the decomposition, memory requirements 
for this replication are not an issue. 

4 Communication and Decomposition Utilities 

In this layer we isolate functionality which is machine or message-passing-paradigm dependent, or 
which is required by a large number of modules. Among the non-communication-related utilities 
operations for moving sections of data arrays to and from buffers are provided, as well as utilities to 
define and use data decompositions. 

4.1 Data Decomposition Utilities 

The operations on data decompositions are embedded in a Fortran 90 module, which also supplies 
generic DecompType to describe a decomposition. Any instance of DecompType is replicated on all PES 
such that every PE has access to information about the entire decomposition. The decomposition 
utilities consist of the following: 
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The calls which create a new decomposition can be overloaded to DecompCreate and, likewise, the 
I-D and 2-D global-to-local and local-to-global mappings are denoted by DecompGlobalToLocal and 
DecompLocalToGlobal, resulting in five fundamental operations. 

4.2 Communication Utilities 

Communication primitives are defined in this layer for the following reasons: it may be necessary 
at some point to implement communication primitives directly with a message-passing library other 
than MPI, e.g., PVM or SHMEM, or even with shared-memory primitives such as those on the SGI 
Origin, which is the principle platform at the DAO. Thus it is wise to encapsulate all message-passing 
into one module. The communication utilities constitute a Fortran 90 module. For brevity, only the 
overloaded functionality is presented: 

4.3 Buffer Utilities 

In order to perform calculations local to a given PE it is often necessary to “ghost” adjacent regions, 
that is, send boundary regions of the local domain to adjacent PES. For the grids used in GEOS DAS, 
we have defined a module to move ghost regions to and from buffers. The buffers can be transferred 
to another PES with the communication primitives, e.g., ParBeginTransf er and ParEndTransf er. 
Currently, the functionality in this buffer module is as follows: 
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BufferPackGhostPdReal 
BufferUnpackGhost2dReal I Unpack buffer into 2-D array sub-region 

I Pack a 2-D array sub-region into buffer H 
' BufferPackGhost3dReal 

BufferUnpackGhost3dReal 
BufferPackSparseReal 
BufferUnpackSparseReal 

' Pack a 3-D array sub-region into buffer 
U 

Unpack buffer into 3-D array sub-region 
Pack specified entries of vector into buffer 
Unpack buffer into specified entries of vector 

Create a sparse matrix 
Destroy a sparse matrix 
Insert entries replicated on all PES 
Insert entries of local PE 

n 

SparseMatCreate 
SparseMat Destroy 
SparseInsert Entries 
SparseInsertLocalEntries 

These operations are overloaded to Buff erPack and Buff ervnpack. 

In this module, as with most others, the indices local to the PE are used. Clearly this puts respon- 
sibility on the programmer to keep track of the indices which correspond to the ghost regions. In 
GEOS DAS this is fortunately fairly straightforward. 

5 Sparse Linear Algebra 

The concept of transforming one grid to another means to perform an interpolation of the values 
defined on one set of grid-points to values defined on another set. Irrespective of the rank of the 
grid, these values are stored as vectors with a given length and distribution, as defined by the grid 
decomposition. Thus this layer is little more than facility to perform linear transformations on 
distributed vectors. 

A vector is a contiguous array of REALs which are addressed from 1 . .  . N ~ o c o ~  Le., local indices 
ranging from the first to the last local entry. The contiguous array is one-dimensional although it 
might actually represent a multi-dimensional array at a higher level. Local indices are used when 
referring to individual matrix entries, but the mappings DecompGlobalToLocal can be used for the 
translation from global to local indices. 

As in all parallel sparse linear algebra packages, e.g., Aztec and PETSc, the linear transformation 
is stored' in a distributed sparse matrix format. The application of the linear transformation is a 
matrix-vector multiplication where the matrix is not necessarily square, and the resulting vector 
may be distributed in a different manner than the original. 

There are many approaches to storing distributed sparse matrices and many ways to perform a the 
matrix-vector product. PILGRIM uses a format similar to that described in [19], which is optimal 
if the number of non-zeros per row is constant. 

5.1  Matrix Creation and Definition 

Assumption 3 in Section 3 implies that the matrix definition is not time-consuming. For example in 
GEOS DAS, the template of any given interpolation is initialized once, but the interpolation itself 
is performed repeatedly. Thus fairly little attention has been paid to the optimization of the matrix 
creation and definition. The basic operations for creating and storing matrix entries are: 
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TWO scenarios for inserting entries are supported. In the first scenario, every processor inserts 
all matrix entries. Thus every argument of the corresponding routine, SparseInsertEntries, is 
replicated. The local PE picks up only the data which it needs, leaving all other data to the 
appropriate PES. This scenario is the easiest to program if the sequential code version is used as 
the code base. 

In the second scenario the domain is partitioned over the PES, that is, each PE is responsible for 
a disjoint subset of the matrix entries, and the matrix generation is performed in parallel. Clearly 
this is the more efficient scenario. The corresponding routine, SparseInsertLocalEntries assumes 
only that no two PES try to add the same matrix entry. However, it does not assume that the all 
matrix entries reside on the local PE, and it will perform the necessary communication to put the 
matrix entries in their correct locations. 

5.2 Matrix Multiplication 

The efficient application of the matrix to a vector or group of vectors is crucial to the overall per- 
formance of GEOS DAS, since the linear transformations are performed continually on assimilation 
runs executing for days or weeks at a time. 

The most common transformation is between three-dimensional arrays of two different grids which 
describe global atmospheric quantities such as wind velocity or temperature. One 3-D array might be 
correspond to the geophysical grid which covers the globe, while another might be the computional 
grid which is more appropriate for the dynamical calculation. The explicit description of such a 3-D 
transformation would be prohibitive in terms of memory. But fortunately, all the transformations 
performed in GEOS DAS have dependencies in only two of the three dimensions, for example, the 
transformation of 2-D horizontal cross-sections of the geophysical and computational grids. Matrices 
therefore correspond to these transformations of 2-D arrays, however, the transformation might be 
applied to any number of 2-D arrays, for example all vertical levels of a physical quantity. 

To fulfill the requirements of GEOS DAS, a 2-D array is unwrapped to a vector G to which the 
matrix is applied. Using this representation the transformation become simple matrix-vector rnulti- 
plications. The following two operations which realize matrix-vector and a matrix-transpose-vector 
multiplications: 

SparseMatVecMult 
SparseMatTransVecMult I Perform y t aA”z + py 

1 Perform y t aAz + ,By 

In order to transform several arrays simultaneously, the arrays are grouped into multiple vectors, 
i.e., into a n x rn matrix where n is the length of the vector (number of values in the array), and m 
is the number .of vectors. The following matrix-matrix and matrix-transpose-matrix multiplications 
can group messages in such a way as to drastically minimize latencies and utilize more efficient 
BLAS-2 operations: 

SparseMat Mat M ul  t 
SparseMatTransMatMult I Perform Y t aA”X + ,BY 

I Perform Y t a.4X -r ,BY 

The distributed representation of the matrix contains, in addition to the matrix information itself, 
space for the communication pattern. Upon entering any one of the four matrix operations, a check is 
made on the consistency of the matrix, Le., whether new entries to the matrix have been added since 
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its last application. If the matrix has been modified, the operation first generates the communication 
pattern - an optimal map of the information which has to  be exchanged between PES - before 
performing the matrix operation. This is a fairly expensive operation, but in GEOS DAS it only 
needs to be done once when the matrix is first defined. After that ,  the matrix operation can be 
repetitively performed in the most efficient manner possible. 

6 Supported Grids 

The grid data structure describes a set of grid-points, a decomposition of the grid-points over a group 
of PES, and other information, for example, the size of the domain. The grid data structure itself 
does not contain data, and, since it does not require much memory, is replicated on all PES. Data 
are contained in other arrays, which are distributed over the PES, and are given meaning by the 
information in the grid data structure. 

For example, the temperature on a regular three-dimensional geophysical grid in GEOS DAS might 
be held in a 3-D array. The decomposition of the this array might be into vertical columns, Le., a 
block-block decomposition of the two-dimensional cross-section of the array. The grid data structure 
contains the information to describe the grid and its decomposition, and is replicated on all PES. 
The data itself is a 3-D array with the dimensions of the column local to that PE (information which 
the application must supply for the definition of the decomposition). That is, the 3-D temperature 
array is local to the PE and can be manipulated by the application as it sees fit. 

6.1 Latitude-Longitude Grid 

This grid corresponds to a lat-lon coordinate system, i.e., a regular grid with all points in one row 
having a given latitude and all points in a column a given longitude. The grid encompasses the 
entire earth from --A to -A longitudinally and from -7r/2 to ?r/2 in latitude. The AX and A@ are 
constant for a given latitude and longitude respectively. 

Latitude 

Longitude 

Figure 2: 

The decomposition of this grid is in a checkerboard fashion, with the participating PES mapped into 
a Cartesian coordinate system (see Figure 2). That is, the grid decomposition is two dimensional: 
the underlying three-dimensional data comprises all levels of a column of data designated by the 
2-D decomposition of the horizontal cross-section. One PE gets a sub-block of the entire grid. This 
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decomposition can contain a variable sized rectangle of points - it  is not necessary for each PE to 
be assigned an equal number of points, and thus some freedom for load balancing is available. 

The basic data structure for the lat-lon grid is the following: 

TYPE LatLonGridType 
TYPE (DecompType) :: 
INTEGER * .  
INTEGER . .  
REAL . .  
REAL .. 
REAL .. 
REAL.POINTER .. 
REAL,POIWTER .. 

.. 

. .  

. .  

.. 

.. 

.. 

.. 
END TYPE LatLonGridType 

Decomp 
ImGlobal 
JmGlobal 
Tilt 
Rotation 
Precession 
dLat ( : ) 
dLon(:) 

! Decomposition 
! Global Size in X 
! Global Size in Y 
! Tilt of remapped NP 
! Rotation of remapped NP 
! Precession of remapped NP 
! Latitudes 
! Longitudes 

This grid can adequately describe both the GEOS DAS computational grid used for dynamical 
calculations, and the geophysical grid in which the prognostic variables are sought. The former 
makes use of the parameters Tilt, Rotation and Precession to describe its view of the earth (see 
Figure 3), and the dLat and dLon grid box sizes to describe the grid stretching. The latter is denoted 
by the normal geophysical values for Tilt, Rotation and Precession = ($,O, 0) and uniform dLat 
and dLon. 

6.2 Observation Grid 

The observation grid data structure describes observation points over the globe, as described by 
their lat-lon coordinates. In contrast to the lat-lon grid, the point grid decomposition is inherently 
one-dimensional since there is no structure to the grid. 

TYPE ObsGridType 
TYPE (DecompType) :: Decomp ! Decomposition 
INTEGER :: Nobservations ! Total points 

END TYPE ObsGridType 

The data corresponding to a this grid data structure is a set of vectors, one for the observation 
values and several for attributes of those values, e.g., the latitude, longitude and level at which an 
observation was taken, etc. 

6.3 Finite Element Grid 

This grid is a possible extension for later needs and would support a decomposed finite element grid. 
Currently only finite difference methods are employed in the DAO’s software, but improvements 
could very well include finite element methods which support the irregular nature of many portions 
of atmospheric science codes. 

TYPE FinElType 
TYPE (DecompType) 
TYPE (DecompType) 

: :  DecompVertices ! Vertex decomposition 
:: DecompElements ! Element decomposition 
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INTEGER 
INTEGER 

END TYPE FinElType 

: : Nvertices ! Global number vertices 
:: Nelements ! Global number elements 

The distribution of the finite element grid implies not only a decomposition of the vertices, but also 
of the elements. As is the case of other grids, the actual data is not carried in the grid data structure 
but rather in arrays whose distribution is dictated by the decompositions. For example, a vector 
with the decomposition DecompElements with length Nlocal elements will contain the constituent 
vertices for each element. There will be several vectors with decomposition DecompVertices of 
length N~ocal vertices which contain the coordinates of the vertices, as well one or more such vectors 
to describe the physical quantities sought in the vertices. 

7 Examples and Results 

Several examples of the PILGRIM library are presented here. These arise from the GEOS DAS 
application, generally in the interfaces between different code sections which work on different grids. 
It is important to remember that the two grids involved do not need to have the same distribution 
or the number of grid points. There are several different grids in use in GEOS DAS a t  run-time and 
correspondingly several different transformations between pairs of these grids. 

7.1 Grid Rotation and Stretching 

An example of a non-trivial transformation employed in atmospheric science applications is grid ro- 
tation [20]. Computational instabilities from finite difference schemes can arise in the polar regions 
of the geophysical grid when a strong cross-polar flow occurs. By placing the pole of the computa- 
tional grid to the geographic equator, however, the instability near the geographic pole is removed 
due to the vanishing Coriolis term. 

It is generally accepted that the physical processes, such as those related to long- and short-wave 
radiation can be calculated directly on the geophysical grid. Dynamical processes, where the numer- 
ical instability occurs, need to be calculated on the computational grid. An additional refinement 
is to calculate the dynamics on a rotated stretched grid, in which the grid-points are not uniform 
in latitude and longitude: To reiterate, the LatLonGridType allows for both variable lat-lon coordi- 
nates as well as the three parameters (tilt, rotation, and precession) to describe any lat-lon view of 
the world when the poles are assigned to a new geographical location. The grid rotation (without 
stretching) is depicted in Figure 3. 

The routine GridTransf orm defines a distributed sparse matrix based on a bi-linear or bi-cubic 
interpolation from the geophysical grid (GeoPhysGrid of type LatLonGridType) to the computational 
(CompGrid of type LatLonGridType). A similar call is needed to create the reverse transform from 
the computational grid back to the geophysical. 

GridTransform( GeoPhysGrid, CompGrid, MatrixGeoToComp 
GridTransform( CompGrid, GeoPhysGrid, MatrixCompToGeo ) 

It would be natural to use the same decomposition for both the geophysical and computational grids. 
It turns out, however, that this ignores data locality inherent to this transformation (see Figure 4). If 
the application could have unlimited freedom to chose the decomposition of the computational grid, 
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Figure 3: The use of the latitude-longitude grid (a) and (c) as the computational grid results in 
instabilities a t  the poles due to the Coriolis term. The instabilities vanish with on a grid (b) where 
the pole has been rotated to the equator. The computational grid is therefore a lat-lon grid (d) 
where the “poles” on the top and bottom are in the Pacific and Atlantic Oceans, respectively. 

the forward and reverse grid rotations would have excellent data locality, and the matrix application 
would be much more efficient.’ Unfortunately, practicality limits the decomposition of both the 
geophysical and computational grids to be a “checkerboard” decomposition of the horizontal cross- 
section. 

However, there is still several degrees of freedom in the decomposition, namely the number of points 
on each PE and the assignment of local regions to PES. While an approximately uniform number of 
points per PE is generally best for the dynamics calculation, the assignment of PES is arbitrary. The 
following optimization is therefore applied: before the grid rotation, the potential communication 
pattern of a naive computational grid decomposition is analyzed by adopting the decomposition of 
the geophysical grid. With a heuristic method, this analysis leads to a permutation of PES for the 
computational grid which reduces communication (Figure 4). After this the decomposition of the 
computational grid is defined as a permuted version of the geophysical grid. An outline of the code 
is as given in Algorithm 1 

Algorithm 1 (Grid Permutation) Given the geophysical grid decomposition, find a permutation 
of the PES which wall maximize the data locality of the geophysical-to-computational grid transfor- 
mation, create and permute the computation grid decomposition, and define the transformation in 
both directions. 

’The reader will note that a simply connected region in one domain will map to at most two simply connected 
regions in the other 
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Unpermuted Communication Matrix: 

5905 172 0 97 507 12 - 
690 2 1 303 132 0 
136 0 53 5727 516 0 
335 4 3 366 5942 165 
53 5727 136 0 3 477 

2 341 371 4 0 61 
0 61 5941 172 0 183 
1 302 760 1 54 5661 - 

Permuted Communication Matrix: 

0 219 
53 5731 
3 477 
0 97 

516 0 
5967 166 
543 12 
133 0 

5967 166 
53 5731 

0 219 
516 0 
543 12 

3 477 
0 97 

133 0 

2 
690 

5905 
53 
0 

136 
335 

1 

341 
2 

172 
5727 

61 
0 
4 

302 

371 4 
1 303 
0 97 

136 0 
5941 172 

53 5727 
3 366 

760 1 

0 
132 
507 

3 
0 

516 
5942 

54 

61 
0 

12 
477 
183 

0 
165 

5661 

Figure 4: The above matrices represent the number of vector entries requested by a PE (column 
index) from another PE (row index) to perform a grid rotation for one 72 x 48 horizontal plane 
(i.e., on matrix-vector multiplication) on a total of eight PES. The unpermuted communication 
matrix reflects the naive use of the geophysical grid decomposition and P E  assignment for the 
computational grid. The permuted communication matrix uses the same decomposition except the 
assignment of local regions to PES is permutated. The diagonal entries indicate data which can be 
fetched from the local PE without message-passing and represent work which can be overlapped with 
the asynchronous communication involved in fetching the non-local data. The diagonal dominance 
of the communication matrix on the right translates into a considerable performance improvement. 

SparseMatrixCreate( . . . , MatrixCeoToComp ) 
SparseMatrixCreate( . . , , MatrixCompToCeo ) 
DecompCreate( . . . ,  GeoPhysDecomp ) 
LatLonCreate( GeoPhysDecomp, ...., GeoPhysCrid 
AnalyzeGridTransform( CeoPhysDecomp, . . . . , Permutation 
DecompCopy( GeoPhysDecomp, CompDecomp 
DecompPermute( Permutation, CompDecomp 
LatLonCreate( CompDecomp, . . . . , CornPCrid ) 
GridTransform( CeoPhysCrid, CornPCrid, MatrixGeoToComp ) 
GridTransform( CornPCrid, CeoPhysCrid, MatrixCompToCeo ) 

In CridTransform the coordinates of the original lat-lon grid are mapped to a new lat-lon grid. 
Interpolation coefficients are determined by the proximity of rotated grid points of one grid to grid 
points on the other grid (see Figure 3) .  Various interpolation schemes can be employed, e.g., bi- 
linear or bi-cubic; the latter is employed in GEOS DAS. Clearly the transformation matrix can be 
completely defined by the two lat-lon grids - the values on those grids are not necessary. 

Once the transformation matrix is defined, sets of grid values, e.g., individual levels or planes 
of atmospheric data, can be transformed ad infinitum using a matrix-vector (or matrix-matrix) 
multiplication. 

DO L = 1, GLOBAL-Z-DIM 
CALL SparseMatVecMult ( MatrixGeoToComp, 

?4 1.0, In(i,i,~), 0 . 0 ,  Outi(i,i,L) 
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END DO 

10' 

100 l L  

x 

* 
lo-' : 

1 ;  
I * 

= x u  

lo" '.. 

Alternatively, it  the transformation of the entire 3-D grid can be performed in one swoop with a call 
to the matrix-matrix product. 

10' ! 

loo:! 
X 

1 t d ' .  

> 
10-2 - < 

lo-' 

CALL SparseMatMatMult ( MatrixGeoToComp, LOCAL-X-DIM*LOCAL-Y-DIM, 
a! GLOBAL-Z-DIM, 1.0, In, 0.0, Out2 ) 

Note that the pole rotation is trivial (embarrassingly parallel) if any given plane resides entirely on 
one PE,  i.e., if the 3-D array is decomposed in the z-dimension. Unfortunately, there are compelling 
reasons to distribute the data in vertical columns with the checkerboard decomposition. 

Figure 5: With a naive decomposition of both the geophysical and computational grids and a 
straightforward MPI implementation, the performances at  the left for the'72 x 46 x 70 (*), 144x 91 x 70 
(x), and 288 x 181 x 70 (0 )  resolutions yield good scalability only to some 10-50 processors. The 
optimized MPI-SHMEM hybrid version on the right scales to nearly the entire extent of the machine 
(5 12 processors). 

Figure 5 compares the performance of the naive, non-permuted rotation with that of the permuted 
rotation on the Cray T3E. In the latter case, a further optimization is performed in that the non- 
blocking MPI primitives used in ParBeginTransf er are replaced by faster Cray SHMEM primitives. 
The result of these optimization is the improvement in scalability from tens of PES to hundreds of 
PES. The absolute performance in GFlop/s is presented in Figure 6. 

7.2 Interpolation Lat-lon to Observation Grid 

In GEOS DAS, observationaly data is incorporated into the time evolution of the GCM with the 
PSAS package. Every six hours of assimilation, approximately 80,000 observations are read in 
which contain values and associated attributes, such as latitude, longitude and level. Currently 
the observations are replicated on all PES, although in the future they may be distributed over 
the observation grid described in Section 6.2.  The parallelization of this portion of the observer is 
considered here. 
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Figure 6: The GFlop/s performances of the grid rotation on grids with 144 x 91 x 70 (o), and 
288 x 181 x 70 (x) resolutions is depicted. These results are an indication that the grid rotation will 
not represent a bottleneck for the overall GEOS DAS system. 

The forecast of the former must be interpolated to the grid of observations, on which the latter then 
operates. This is a linear transformation which depends only on the latitude, longitude and level 
attributes. Thus at every analysis step, the following interpolation operation must be performed 

The interpolation is 3-D bi-linear and requires only the eight points surrounding a given observation 
(perhaps fewer if some of the forecast grid values are undefined). The number of non-zeros in A 
is therefore 640,000, making the problem tractable to solve with the sparse linear algebra utilities. 
The key question is whether the overhead of constructing a distributed matrix is worthwhile for 
the small number of transformations (8) at every analysis step. The answer seems to be yes if 
the matrix entries are inserting in parallel using the SparseInsertLocalEntries primitive and if 
the local indices required by it can be determined in an efficient way. Indeed, the decomposition 
of the lat-lon grid is simply the 2-D block-block decomposition of the cross-section, and therefore 
determining local indices is efficient.’ The matrix row index corresponds to the local index of the 

2Look-up tables further improve performance 
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distributed observation vector and does not require a conversion from a global index. 

The routine to define the transformation matrix takes arrays of length N1ocalobs for the the latitudes, 
longitudes and levels, and, given the geophysical grid decomposition, returns the transform matrix: 

VertInt ( N-localobs , Lats, Lons , Levels, GeoDecomp, MatrixGeoToDbs ) 

Algorithm 2 contains a summary of this routine's internal structure. 

Algorithm 2 (Define Geophysical to Observation Grid Transformation) Given the attributes 
latitude, longitude, levels, and the decomposition of the geophysical grid, define a distributed sparse 
matrix to describe the linear transformation from the geophysical grid to the observation locations. 

For all i over all local observations: 
1. Using the geophysical grid decomposition find the local indices and PE assignments 

of the eight neighbors surrounding observation i as defined by its latitude, longitude 
and level. 

2. Take into account whether any of the neighbors is an undefined geophysical point. 
9. Construct the coeficients for the eight (or fewer, if some are undefined) neighbors. 
4. Input the i th row of the matrix with SparseInsertLocalEntries 

The actual linear transformation then becomes a straightforward application of the sparse linear 
algebra utilities3: 

SparseMatVecMult( MatrixGeoToObs, 1.0, Forecast, 0.0, ObsValue ) 

8 Summary 

We have introduced the parallel grid manipulations needed by GEOS DAS and the proposed PIL, 
GRIM library designed to implement them. PILGRIM is modular and extensible, allowing us to 
support various types of grid manipulations and perform with high performance and scalability 
onlarge on state-of-the-art parallel computers with a large number (> 100) of processors. 

t 

Results from the grid rotation problem were presented, and they indicate that PILGRIM will perform 
adequately even on the most communication-bound grid manipulations needed in our applications. 
We are hoping to extend the usage of PILGRIM in GEOS DAS to the interface between the forecast 
model and the statistical analysis, to perform further optimizations on the library, and to offer the 
library to the public domain in the future. 
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3Sorne post-processing must be performed to locate and set observation values which are undefined. 
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