


Abstract 

The Global Positioning System (GPS) employs a constellation of satellites 
which provides a stable source of electromagnetic signals available for radio oc- 
cultation purposes about our planet. The atmospheric-induced bending of the 
transmitted rays can be converted into a refractivity profile for each occultation 
using an Abel transform. Since refractivity is related to temperature and hu- 
midity, it may be used for global data assimilation into climate and/or Numer- 
ical Weather Prediction (NWP) models. We implement here a low computing 
cost one-dimensional variational (1DVAR) analysis of GPS refractivity which 
enables retrieving temperature, humidity and sea level pressure. To assess the 
potential information content of the measurements, we perform a linear error 
analysis and fully non-linear MonteCarlo simulations. They show the potential 
impact of the GPS to improve upon an accurate background from a Data As- 
similation System (DAS). lDVAR retrievals based on data collected during the 
GPS/MET 1995 experiment are compared with collocated radiosondes. They 
show an excellent capacity of the GPS measurements to resolve the tropopause. 
In the northern hemisphere, we demonstrate a net reduction of temperature 
bias and standard deviation, as compared with the Goddard Earth Observing 
System (GEOS) DAS and the Finite Volume DAS (FVDAS) backgrounds. We 
point out significant sensitivities of the retrievals to the gravitational constant, 
the number of analysis levels, the surface pressure and the background and ob- 
servation assumed errors. We relate the analysis of refractivity to the lDVAR 
increments (analysis minus background). This represents a step towards us- 
ing the GPS data in data assimilation systems to improve NWP forecasts and 
representation of Earth’s climate. 
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1 Introduction 

The Global Positioning System (GPS) system provides continuous radio signals for 
precise positioning in the immediate vicinity of our planet. The atmosphere affects 
the speed of propagation of these signals. These perturbations in the GPS signals 
can in turn be used to remotely sense the atmosphere. In particular, by placing a 
receiver in Low Earth Orbit (LEO, e.g. 500 to 2000 km altitude) it is possible to 
perform soundings using the limb-viewing radio. occultation (RO) technique. Radio 
occultation has been used for more than thirty years to study the atmospheres of other 
planets [e.g. Fjeldbo et al., 1971; Lindal et al., 1979, 1981; Tyler et al., 1982; Lindal, 
1992; Jenkins et al., 19941. Gorbunow and Sokolowskiy [1993] provided simulations of 
GPS radio occultation measurements. Kursinski et al. [ 19971 also simulated many 
aspects of GPS measurements and their expected error characteristics. GPS/MET 
(1995) was the first radio occultation experiment conducted on Earth using radio 
occultation [e.g. Kursinski e t  al., 1996, Ware et al., 19961. 

Before using the GPS data in a data assimilation system for numerical weather pre- 
diction (NWP) or climate study, a first step is to appraise the impact these data have 
on the analysis. One technique for assessin impact is the Observing System Simu- 
lation Experiment (OSSE). Kuo et al. [19977 have performed OSSE's with simulated 
GPS data. There are known limitations of OSSE's [e.g. Atlas, 19971 and therefore 
care must be taken when interpreting the results. For example, no observation errors 
were included in the Kuo et al. [1997] OSSE. We will give an example of the effect 
of neglecting errors in a simulation. 

In this work, both simulated and real observations are analyzed to gauge the impact 
of GPS data on an analysis. For this purpose, we have developed a one dimensional 
variational (1DVAR) analysis of temperature, humidity and sea level pressure. In this 
approach, background information from a General Circulation Model (GCM) forecast 
is used to constrain the retrievals. Based on the assumed observation and background 
errors, the approach also yields an estimate of the analysis errors. 

The outline of the paper is as follows : First we give a brief description of the GPS 
radio occultation technique and discuss the different possible approaches to retrieve 
and assimilate atmospheric properties from GPS measurements. Then, we describe 
the implementation of a lDVAR analysis of refractivity. After this, we show results 
of Monte-Carlo simulations and linear error analysis. We then discuss sensitivities of 
the GPS analyses to various parameters, and compare GPS/MET 1DVAR retrievals 
with nearby radiosondes. Finally, we attempt to interpret the 1DVAR analyses in the 
light of the refractivity differences between the background and the observations. 

2 The Global Positioning System 

The GPS was designed by the U S .  Department of Defense (USDoD). Its main purpose 
is to aid in navigation. It enables accurate positioning anywhere about the globe. It 
consists of 24 orbiting satellites distributed in six orbital planes. The 20,200 km 
altitude orbits are circular with an inclination of 55" and a period of 12  hours. The 
principle of the GPS is based on the path delay of a propagating radio signal. Two 
L-band frequencies are used : L1 1575.42 MHz (or 19.0 cm) and L2 1227.60 MHz (or 
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24.4 cm). 

The accuracy of GPS measurements is intentionally degraded by encryption for se- 
curity reasons. This is known as “Anti-Spoofing” . First-generation receivers were 
launched on GPS/MET (1995). Their ability to track the occultations is degraded 
when the encryption is on, which is generally the case except during very short peri- 
ods for scientific studies. Second-generation GPS receivers built for the purposes of 
the radio occultation are to  be flown on the missions Champ (Germany) and SAC-C 
(Argentina). These receivers are able to better process encoded signals, for which the 
Lp signal-to-noise (SNR) ratio is very low. 

The accuracy of positioning is limited by several factors [e.g. Doerflinger, 19981. 
First, the exact position and velocity of the GPS satellites must be known perfectly 
(at a given time) to position a receiver relative to them. It follows that (1) orbit 
errors (2 )  clock drifts (3) relativistic effects (4) receiver system errors (antenna and 
receiver noise) and 5 )  use of approximate co-ordinates contribute to  the total error of 

sitioning for a terrestrial receiver are caused by atmospheric refraction and scattering 
which may cause multipath effects. 

The applications of GPS to meteorology include positioning in situ measurements 
[Hein et al., 19901, computing wind speed from the drift of radiosondes [Saarnimo, 
19981, and measuring the total column of water vapor above a ground-based receiver 
[e.g. Bevis et al., 1992, Elgered et al., 19971. In this study, we focus on space-based 
GPS receivers. 

the measurement. 6 ther perturbations in signals that degrade the quality of the po- 

3 Radio Occultation with GPS 

We remind here briefly the advantages and concepts associated with the GPS radio 
occult at ion technique. 

3.1 Features of the GPS Radio Occultation Technique 

There are several interesting attributes of GPS occultations as an atmospheric sound- 
ing device. A high-inclination LEO provides a set of observations that covers the 
globe fairly uniformly at a relatively low cost [ Yunck et aE., 19881. The homogeneity 
of the GPS coverage is advantageous for providing global observations in comparison 
to balloon-launched radiosondes (about 800 each 12 hours, the majority of which 
are over the northern hemisphere continents). A single GPS receiver can obtain ap- 
proximately 500 occultations per day [Kursinski et al., 19971. This number per GPS 
receiver is less than the number of profiles obtained by a sounder on-board a mete- 
orological polar-orbiting satellite. In order to  collect more occultations per day, one 
must place more receivers into orbit, which is feasible because the receivers are simple 
and small. 

When compared within Infra-Red (IR) spaceborne sounders, the radio occultation 
(RO) technique with GPS has the advantage of being an “all-weather” system. Like 
MicrcFWave (MW) and unlike IR sounders, it is scarcely sensitive to  aerosols and 
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clouds. In addition, it is also insensitive to rain due to wavelengths of order 20 cm. 
Unlike most other techniques the GPS radio occultation provides a degree of self- 
calibration, because relative phase shifts are the relevant information. Moreover, the 
stability of the transmitter and receiver clocks limits temporal drifts. 

Finally, due to its limb-viewing geometry and Fresnel diffraction, the GPS RO has a 
higher vertical resolution (0.2-1.5 km) than passive nadir sounders [ Kursinski et al., 
19971. This vertical resolution is more comparable to radiosondes. Furthermore, the 
ratio between vertical and horizontal resolution (about 300 km) is consistent with 
that of quasi-geostrophic flows [ Lindzen and Fox-Rabinovitz, 1989; Kursinski et al. , 
19971. 

3.2 Configuration of a GPS Occultation 

Multiple GPS transmitters are tracked continuously to determine position and ve- 
locity. One transmitter is used for clock correction. Another transmitter is used for 
the occultation. The rays from the source (occulted transmitter) traverse the Earth's 
atmospheric limb to reach the receiver. 

Whenever an electromagnetic signal passes through the atmosphere, it is refracted 
according to Snell's law, due to the vertical gradient of refractivity. As compared 
with what would happen in a vacuum, (1) the bending lengthens the ray path and 
(2) the waves travel slower because the refractive index is not unity. Also, the signal is 
affected by atmospheric absorption and scattering. For L-band (large) wavelengths, 
the scattering effect may be neglected with realistic liquid water and ice contents 
[Kursinslci et al., 19951. 

Since the two satellites are in relative motion, the refraction introduces a change in 
the Doppler shift of the received signal. After removal of the phase change due to the 
relative motion of the LEO with respect to the GPS, proper calibration of receiver 
and transmitter clocks, the extra phase change induced by the atmosphere can be 
isolated. 

The overall effect of the atmosphere can be summed up by a total bending angle E 
and an asymptotic ray-miss distance p (commonly called impact parameter) as shown 
in figure 1. The distance between the perigee point and the center of curvature is rt. 
The vertical scanning of the atmosphere is provided by the relative motion between 
the two orbiting satellites as depicted in figure 2. Time dependency of both E and p 
can be derived from accurate measurements of Doppler-shifted frequency. 

3.3 Inversion of Bending Angles to Refractivity 

The bending induced by the atmosphere ranges approximately between (2x at 
80 km altitude and 1" nearby the surface [Kursinski e t  al., 19971. The horizontal path 
covered by this bending is about 1.5 km wide and 200-300 km long, centered on the 
tangent point (see figure 3). A typical occultation lasts between 1 and 2 minutes. 

The variation of refractive index n along a limb path in the Earth's atmosphere is 
dominated by the vertical gradient. To the first order, the refractive index field is 
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LEO receiyer 

Figure 1: Geometry of a GPS occultation under the hypothesis of spherical symmetry 
of the atmosphere. 

Figure 2: Vertical scanning of the atmosphere during an occultation. 
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Figure 3: Bending of the rays during an occultation. 

spherically symmetric. If p is the impact parameter for the tangent ray whose radius 
is r ,  the bending angle E can be expressed by : 

E ( p )  = -2p J M (=) d l n n  (x2 - p 2 ) - $  dx, 
P 

where x = rn [e.g. Fjeldbo et al., 19711. An elegant and direct way to obtain n from 
E and p is to use Abelian transformation assuming a local spherical symmetry, i.e. : 

[e.g. Fjeldbo et al., 19711. 

Errors in computing n by this approach result from [Kursinski et al., 19971 (1) local 
spherical asymmetry [Ahmad and Tyler, 19991, (2) non-coplanar rays, (3) non-vertical 
scanning (because both satellites drift during an occultation Eyre, 19941) and (4) 
an inaccurate upper boundary used to initiate the integral r' Steiner et al., 19991. 
The integral formulation of the Abel transform spreads the errors in this boundary 
condition along the vertical. 

3.4 Interpretation of Refractivity 

For microwave frequencies, the refractivity N (defined by N = lo6 (n  - 1)) of the 
atmosphere can be expressed by : 
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[ e g  Kursinslci et al., 19971 where f is the frequency of the signal emitted by the 
transmitter in Hz, P the pressure of air (dry air and water vapor) in hPa, T the 
temperature in K, P, the partial pressure in water vapor in hPa, Ne the electrons 
density in m-3, and W the particulates density (primarily liquid water) in 
The bi are constants; bl = 77.6 N-uniteK-hPa-’, b - 3 . 7 3 ~ 1 0 ~  N-unit.K2.hPa-’, b3 

The four refractivity terms in equation 3 are often referred to as (1) hydrostatic (or 
dry), (2) moist, (3) ionospheric and (4) scattering terms, respectively. The first term 
is due to the polarizability of atmospheric molecules. It is dominant below 60-90 km. 
The second term is due to the fact that the water molecule is polar. The ionospheric 
term results from the free electrons of the ionosphere. It can be removed by the use 
of the two GPS frequencies f~ and f2 [Vorob’ev and Krasil’nikova, 19941. The last 
term can be neglected, as explained in section 3.2. Therefore, after removing the 
ionospheric component, N can be approximated by [e.g. Bean and Dutton, 19661 : 

= 4 0 . 3 ~ 1 0 ~  N-unit.Hz2-m3, b4 = 1.4 N-unit-g-l-m 3 -  . 

4 Use of GPS for Atmospheric Retrievals and Data 
Assimilation 

There are commonly three levels of GPS radio occultation data available for data 
assimilation [Zou et al., 19991: (1) bending angles, (2) refractivity and (3) retrieved 
profiles of temperature or water vapor. To be assimilated, each level requires an es- 
timate of the errors and an observation operator along with its tangent linear model 
(TLM) or adjoint [Eyre et al., 19931. The observation operator converts model con- 
ventional variables (i.e. temperature, humidity, pressure) into observed GPS data 
such as bending angles or refractivity. 

4.1 Assimilation of Bending Angles 

These are considered as the “rawest” data (even though Doppler shifts themselves 
represent an even rawer form of the data). An estimate of the error in each refracted 
angle measurement is needed. One advantage of using these data is that the observa- 
tion errors are relatively uncorrelated with respect to each other. Also, the number 
of processing steps necessary to obtain these data is the smallest. Hence they should 
provide the highest accuracy. 

However, the observation operator is quite complex [Eyre, 19941. First, it has to inter- 
polate the background information (typically gridded fields from a numerical weather 
prediction model) for temperature, humidity and pressure to each measurement lo- 
cation. This requirement stands for all approaches. Second, it has to compute the 
refracted angle E and its tangent linear model for a given value of an impact param- 
eter p .  This implies computing the derivative of the local refractivity at each point, 
which is subject to high variability. 

Full ray-tracing codes have been developed by Mortensen and Haeg [1998] and Zou 
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et al. [1999]. They have the capability to reconstruct the ray path and simulate 
the overall bending angle from a given state of atmosphere. However, assimilating 
30 profiles with a ray-tracing model in the National Centers for Environmental Pre- 
diction Data Assimilation System (NCEP-DAS) requires approximately 4 hours of 
CPU (Central Processing Unit) on a Cray C-90 computer [Matsumurn et al., 19991. 
Currently, the ray-tracing approach is likely to be too expensive for operational data 
assimilation. 

Another approach for the observation operator consists of assuming spherical sym- 
metry. Such one-dimensional operators have been developed by Healy [1998], Palmer 
[1998], and Zufluda et al. [1999]. Like the 3D approach, it still involves local der im 
tives of refractivity, but the computational cost is significantly lower than a full ray- 
tracing. 

4.2 Assimilation of Retrieved Profiles of Refractivity 

In this approach, the bending angles have to first be inverted with an Abel transform 
to obtain profiles of refractivity as a function of altitude. The observation operator 
calculates refractivity from interpolated model variables using (4). This is much 
simpler and less comput ationally burdensome than simulating bending angles. 

The drawback to this approach is that additional errors are introduced by the Abel 
transform as described in section 3.3. The vertical correlation in these errors must 
be accounted for to achieve accurate assimilation. 

4.3 Assimilation of Retrieved Profiles of Temperature and/or 
Humidity 

Using the refractivity information, temperature and/or humidity can be retrieved 
Kursinski et al., 19951. The retrieval error can be separated into three components 1 Rodgers, 19901 : (1) random error due to measurement noise (2) systematic error 

due to uncertain model parameters and inversion model bias (3) null-space error due 
to the inherent finite vertical resolution of the observing system (this is actually the 
background error component). The main point is that temperature and humidity 
errors in the retrievals are correlated both vertically and horizontally. These errors 
are difficult to estimate. 

The simplicity of assimilating retrieved profiles of temperature and/or humidity is 
that the data are essentially the same as those used in a NWP model. Therefore, the 
observation operator is trivial. 

4.4 Summary on the Various Approaches 

Bending angles have the simplest error but the most complicated and expensive ob- 
servation operator. Conversely, retrieved temperature or humidity profiles have the 

7 



simplest observation operator, but the most complicated errors. The errors accu- 
mulate all the approximations made during the conversion of raw GPS data into 
meteorological values. Assimilating refractivity represents a good alternative with a 
relatively low computing cost. 

The approach chosen here is to retrieve both temperature and humidity in a one- 
dimensional ( lD,  over the vertical) 'off-line' analysis based on a model forecast first 
guess and refractivity measurements. 

5 GPS-1DVAR Implementation 

We describe now the one-dimensional variational (1DVAR) analysis scheme and its 
components in detail. 

5.1 Variational Theory 

The application of variational analysis to the retrieval of geophysical parameters has 
been discussed extensively by several authors [e.g. Rodgers, 1976; Eyre at al., 19931. 
We try to minimize a cost function 3 with respect to a variable state of atmosphere 
x (state vector). This function is 

3[x] = (h (x )  - YO)~(O + F)-*(h(x)  - yo) + (x - ~ ~ ) ~ B - l ( x  - x'), ( 5 )  

[ e g  Jazwinski, 19701 where yo is the observation vector, h is the observation operator 
(non-linear), xb is the background information (for example a 6-hour forecast), 0, B, 
and F are the error covariance matrices of the observations, observation operator, and 
background, respectively. Hence h(z)  is an estimate of the observations that would 
be made with a state of the atmosphere x. 

The minimum variance problem can be solved using a quasi-Newton iteration, i e . ,  

xi+l = xb + (Hi  T R -1 Hi + B-')-' HTR-' (yo - h (x) + Hi (xi - x')) , (6) 

[e.g. Rodgers, 19761 where the subscript i denotes the iteration number, R = 0 + F, 
Hi is the tangent linear model of the observation operator h, or Jacobian, and HT 
the adjoint. We define convergence as the iteration at which the quantity 3 [xi] has 
changed by less than 2% from the previous iteration, because further iterations did 
not make appreciable changes in the analysis. Healy and Eyre [2000] and Palmer et 
al. [2000] have found that the cost function at convergence can be used to quality 
control the GPS observations. 

After convergence, (6) represents a solution (the analysis) that has an optimal posi- 
tion or distance with respect to both the observations and the background provided 
that the background and observation errors are unbiased, normally distributed, and 
uncorrelated with respect to each other. Since these three postulates may not always 
be true, we obtain a suboptimal solution, A bias estimate is one way to address one 
aspect of the problem [Dee and da Silva, 19981. 
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5.2 The State Vector 

Our state vector includes the temperature, the negative of the log of the specific 
humidity at the background pressure levels, and the sea level pressure. Since GPS 
has virtually no sensitivity to humidity less than 0.1 g/kg [Kursinslci and Hajj, 20001, 
the humidity is removed from the state vector above a specified level (50 hPa). 

In the implementation, the state vector extends only to the lowest perigee point 
of the occultation. If nT is the number of temperature levels, np, the number of 
background levels with water vapor in the state variable, the state vector x contains 
(nT + np, + 1) elements : 

5.3 Background Information 

We used four different types of background for our analysis. The first two date back 
from 1995, and the two others date from 2000. 

5.3.1 GEOS Background: forecast and assimilation 

We first used background information from the Goddard Earth Observing System 
(GEOS) Data Assimilation System (DAS) version 1 for our analysis. It included 
upper stratospheric levels (GEOS-Strat). Since the 6-hour forecast [ Tukacs et al., 
1994;Schubert et al., 19951 was only archived on 18 selected pressure levels (surface 
up to 0.4 hPa), we used a second set of background information, a product called the 
‘assimilation’, available on the 46 levels of the General Circulation Model (GCM) 
from the surface up to 0.1 hPa. 

The Data Assimilation Office DAO) GEOS-DAS version 1 uses an Incremental Anal- 
ysis Update (IAU) approach \ Bloom et al., 19961 in an Optimal Interpolation (01) 
framework [Pfaendtner et ul., 19951. It consists of applying gradual analysis incre- 
ments to the model integration within the 6-hour assimilation window. The ‘assimi- 
lation’ is the result of this operation in the middle of the window. So this second set 
of background information already contained some information from the observations 
available during the assimilation period (especially radiosondes). 

In the rest of the paper, we will subsequently refer to these two backgrounds as ‘GEOS 
Forecast’ (18 levels), and ‘GEOS Assimilation’ (46 levels). 

5.3.2 FVDAS Background: NESDIS TOVS and DAOTOVS forecasts 

Since the previous background information showed obvious discrepancies when com- 
paring with radiosondes, especially temperature biases at the tropopause (see later), 
we decided to use a state-of-the-art background. The Finite-Volume DAS (FVDAS) 
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IDAO, 20001 combines a Physical-space Statistical Analysis System (PSAS) assim- 
ilation scheme [Cohn et al., 19981 and a NASA/NCAR (National Aeronautics and 
Space Administration/National Center for Atmospheric Research) GCM. One signif- 
icant feature of the FVDAS resides in the dynamical core of the GCM which uses 
a Lagrangian vertical coordinate system [Lin, 19971. As will be seen later, the im- 
provements between the GEOS and the FVDAS systems are obvious in terms of 
temperature when comparing with radiosondes. To initialize the model we used At- 
mospheric Model Inter-comparison Project (AMIP) climatological ‘cold’ runs, and 
then did a spin-up of three weeks by assimilation of the observations (mainly Rs and 
TOVS) from June 1st 1995 until the June 2lst-July 4th 1995 period. 

One important source of observations for the DAS comes from the TIROS Opera- 
tional Vertical Sounder (TOVS) soundings. The National Oceanic and Atmospheric 
Administration (NOAA) National Environmental Satellite, Data, and Information 
Service (NESDIS) provides operationally profiles of retrieved temperature and hu- 
midity. These profiles are obtained wia a complex retrieval method which does not 
involve short-term GCM forecast [Reale et al., 19941. Another source of TOVS ob- 
servations is the DAOTOVS system, which relies on a variational cloud-clearing em- 
bedded in the assimilation cycle. It uses the latest available &hour forecast as a 
background to  initiate the retrievals and includes a Kalman-filtered bias correction 
based on radiosondes [Joiner and Rokke, 20001. Considering the very different results 
obtained using either NESDIS TOVS or DAOTOVS as observation sources, we chose 
to include both backgrounds in the present paper in order to show that the impact 
of GPS refractivity data on an analysis can change depending on the quality of the 
background, and of the other data types (independent of GPS) which are assimilated. 

In the rest of the paper, we will subsequently refer to these two 6-hour forecasts back- 
grounds as ‘FVDAS NESDIS TOVS’ and ‘FVDAS DAOTOVS’. Both are specified 
on the same 46 u levels as the GEOS Assimilation. 

5.3.3 Background error covariance matrix 

The same background error covariance matrix is used in the four sets of backgrounds. 
It uses variances from Joiner and Rokke [2000]. For temperature, it includes inter- 
level correlations through the following formula : 

where Cow(Z, 2’’) expresses the temperature error covariance between two levels i 
and j, CT, is the temperature error standard deviation for the pressure level Pi, T! 
is the temperature at that level, AL = 4.1, and AT = 3 are constants which were 
experimentally adjusted. Using this formulation, two levels close in log of pressure 
and temperature have highly-correlated errors. In order to take into account the 
variable altitude of the tropopause, we added a feature to  the scheme to fit the local 
maximum of model error to the altitude of the minimum of temperature. Figure 4 
shows the diagonal of the background error covariance matrix for temperature. 

We follow here a conservative approach to estimate the impact of the GPS data on 
the quality of a lDVAR analysis. Therefore, we assume relatively small background 
errors, Le. that the background accuracy will be of the order of 1K. While these values 
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ADAPTATION OF THE B MATRIX TO THE TROPOPAUSE 
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Figure 4: Assumed temperature errors for the background : solid line : for a 
tropopause at 250 hPa (typically mid and high latitudes) - diamonds : for the tem- 
perature profile with dashes (latitude 7"N). 
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Altitude of the lowest point North Tmpics 
5 km or less 81% 60% 
4 km or less 63% 42% 
3 km or less 44% 24% 
2 km or less 24% 4% 
1 km or less 10% 1% 

Table 1: Percentage of occultations penetrating the troposphere down to a low al- 
titude in the GPS/MET 1995 June-July data. 'North' designates latitudes between 
30"N and 90"N, 'Tropics' 30"S-30°N and 'South' 3O"S-9O0S. 

South 
94% 
89% 
80% 
60% 
41% 

are indicative of forecast accuracies over data rich areas (such as North America) 
or future data assimilation systems, current accuracies over areas such as Southern 
hemisphere oceans are lower. Therefore, the impact the GPS data can have on the 
analysis may be somewhat underestimated. However, we also did an experiment in 
which we multiplied the background temperature errors by a factor 2 with the GEOS 
Assimilation. The comparisons with radiosondes (to be shown later) were virtually 
unchanged. 

For humidity, we assumed different sets of variances. In the rest of the paper we will 
always state clearly what background error estimates are used. For the humidity error 
inter-level correlation only the term representing the exponential decrease related to 
the vertical distance between two levels in (8) is taken into account. 

We assume a sea level pressure error standard deviation of 2.5 hPa. We also neglect 
cross-correlations between the different variable types in the background (tempera- 
ture, humidity, and sea level pressure). 

5.4 The GPS Observations 

During the GPS/MET mission, there were some time periods when the Anti-Spoofing 
(A/S) encryption was turned off by the United States Department of Defense (US- 
DoD). We used the data from one of these, called 'Prime Time 2' from June 21st to 
July 4th 1995. We chose this period because the software then on the receiver en- 
abled tracking the occultations deeper in the troposphere [Kursinslci and Hujj, 20001. 
Table 1 shows the percentage of occultations which probed the troposphere down 
to 5 km altitude or less; this number is higher in dry regions such as the Southern 
hemisphere (winter) than in the Tropics. The GPS data used here were processed 
by the Jet Propulsion Laboratory [Kursinski et al., 19971. The locations of the 797 
occultations of the data set are shown in Figure 5. 

We assumed the following errors in the refractivity data : 1% below 5 km, 0.2% up 
to 30 km, based on the estimations of Kursinski et al. [1997]. Above 30 km, several 
sources of error, negligible in the troposphere, become gradually more important as 
the refractivity becomes very small [Kursinski et al., 19971. Hocke [1997] identified 
"wavelike structures" in the upper stratosphere in GPS retrieved temperatures. Since 
we cannot determine whether these are real or result from errors in the observations, 
we simply chose not to give weight to  the GPS refractivity observations above 30 km, 
and assigned a 50% error in refractivity above that altitude in the present analysis. 
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Figure 5 :  GPS/MET Occultations with no GPS encryption, June-July 1995. The 
chart is one map per day and the dates are shown at the bottom of each map, with 
the number of occultations for the day in parentheses. Different symbols are used for 
different synoptic periods. 
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We incorporate inter-level observation error covariances using a Gaussian-type d e  
crease: 

(9) 
(zi - zj) 

Cow(Ni, N j )  = aNinNj exp (- ALiALJ2) 7 

where Cov(Ni, Nj)  expresses the refractivity error covariance between two levels i and 
j ,  ON. is the refractivity standard deviation for the refractivity observation Ni. The 
scale height ALi depends on the spacing of the two levels surrounding the observation 
altitude zi: 

(10) 
1 AL. - - (zi+l - ~ i - 1 )  . 

' - 4  
This formulation was derived empirically and enables the observation error covariance 
matrix to remain positive definite even when the refractivity observations are very 
close (500 meters vertical spacing or less). The idea is to avoid too strong correlations, 
while still correlating adjacent measurements. 

5.5 The Observation Operator 

The observation operator converts temperature, humidity, and pressure profiles into 
refractivity profiles expressed as a function of altitude. It contains the physics of 
the measurement and an appropriate space-time interpolation. We assume here that 
all observations happen at the synoptic time for which our background estimate is 
valid. The background profile at the observation location is obtained by interpolating 
bilinearly between the model grid points. It follows that (1) computing refractivity 
and (2) mapping pressure levels onto altimetric levels are the two main features of 
this operator. 

Instead of performing the analysis on the levels of the forecast, it is possible to work 
on more levels, for example the levels of the observations. Such an approach can yield 
analyzed profiles that account for the high resolution features detected by the GPS 
that cannot be represented by a relatively coarse analysis [Kursinslci e t  al., 20001. 
However, the profiles are to be assimilated in a global circulation model (GCM) and 
thus can be brought back to a lower vertical resolution more consistent with the 
model's dynamics. This is the reason why we choose to work on the levels of our 
background information. Moreover, the computational cost of analyzing on 18 or 46 
levels is much smaller than the typical 60-90 observation altitudes. 

There are two different ways of performing the forward operation : (1) computing 
refractivity at each model level, then interpolating refractivit profile expressed in 
pressure levels into a profile expressed in altimetric levels ; (21 interpolating model 
variables from each pressure level to the altitudes of the GPS observations, then 
computing at each point the refractivity value. 

Since our goal was to obtain the best profiles for further assimilation, we choose to 
calculate refractivity first and to interpolate it after. This requires only one interpo- 
lation. In addition, calculating refractivity with interpolated values for temperature 
and water vapor content makes the Jacobian more complex. 

Refractivity values are computed for each model level. For each of these levels, the 
altimetric altitudes are calculated using a hydrostatic integration. Assuming Paeareve, 
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corresponds to 0 meter altitude, the refractivity values are interpolated to the alti- 
tudes of the observations using a linear in log of pressure interpolation scheme. 

5.6 Linearized Version of the Observation Operator 

In (6) we must not only have an observation operator h, but also its Jacobian H ,  the 
partial derivatives of the observation operator with respect to the various elements 
of the state vector. We derived an analytical formulation for H .  As a check, it was 
compared with a computation by finite differences as in [Eyre e t  al., 19931. 

The refractivity at one level is sensitive to a variation in temperature and humidity 
at that level and under that level. This is the result of the altitude calculation 
using hydrostatic integration starting from the surface. A change in the state vector 
at a given altitude has no influence on the simulated refractivities located below, 
but influences the altitudes of the pressure levels above, and hence the refractivity. 
Figure 6 shows a few columns of the H matrix. 

A positive perturbation in temperature corresponds to a decrease in refractivity at 
the same level. It has no influence on the calculated refractivities at lower altitudes. 
The value of the refractivity at each pressure level located above does not change. 
However, due to  the increase in temperature and hydrostatic integration, all the 
pressure levels above are moved to higher altitudes. This shifts upwards the upper 
part of the refractivity profile versus height, and increases refractivity for a given 
altitude . 
Increasing humidity increases the local refractivity (the plot is for -Zog(q)). It has 
only very little influence on other levels through the hydrostatic integration. 

The sea level pressure has no direct influence on the refractivity values of each model 
pressure level. However, it increases the pressure difference between each model level 
and the sea level, which is the equivalent to increasing the altitudes. The final effect 
of a positive perturbation in sea level pressure is hence to increase refractivity for a 
given altitude. 

6 Theoretical Improvement of GPS Data over Back- 
ground Information 

With an estimate of the errors contained in the GPS measurements and the back- 
ground, it is possible to estimate the improvement in an anal sis due to these data 
without having real GPS observations, using, for example, (131 linear methods from 
Rodgers [1990] and (2) fully non-linear Monte-Carlo simulations. The first method 
does not require simulated observations. The results given by both methods must 
be viewed with some caution, because of the assumptions: e.g. no bias, no assumed 
correlation of errors of the different types of variables, and perfectly estimated back- 
ground and observation Gaussian errors. In order to evaluate the robustness of the 
results, we applied various error estimates and different climatological conditions. 
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6.1 Experimental Design 

6.1.1 Linear Analysis 

Under the hypothesis of linearity and zero-mean Gaussian error distributions, the 
error covariance matrix of the analysis P is given by 

P“ = ( H Y H  + B - y ,  (11) 

[e.g. Rodgers, 19901. The elements on the diagonal represent the variance of the 
solution with respect to the ‘true state’ that we try to estimate. 

6.1.2 Monte- Carlo simulations 

These are carried out in order to confirm the linear results and to test the 1DVAR. In 
each experiment, 1000 atmospheric profiles are created. A basic atmospheric profile 
(the “truth”) is perturbed. The direction of the perturbations originate from the 
eigenvectors of the background covariance matrix. In each orthogonal direction, the 
intensity of the perturbation is obtained by multiplying the corresponding square root 
of the eigenvalue by a random number (normal distribution). Finally, the sum of all 
the perturbations and the original “true state” gives the background estimate. 

For the observations we assume a GPS refractivity vector containing 56 elements, 
from 1 to 56 km altitude. For the background we use information on 18 pressure 
levels, and assume for the moment that the sea level pressure is correct (i.e. not 
included in the state vector). Later in the paper we evaluate the impact of adding 
errors to the background sea level pressure. 

6.2 Conservative Error Estimates 

In this section we assume observation errors of 2% below 5 km and 0.2% above (up 
to the top). We overestimate the errors in GPS data in the lower troposphere: 2% 
instead of 1% estimated by Kursinski et al. [1997]. This provides a conservative 
estimate of the impact the GPS may have on the analysis. To gauge the influence of 
the latitude, we use the same model-generated atmospheric profiles as in Joiner and 
da Silva [1998]. In the calculations, we assume the same background errors for all 
latitudes. These errors, derived from Joiner and Rokke [2000], are shown in Figure 7. 

6.2.1 Linear Analysis Results 

Figure 7 shows the estimated temperature and humidity error standard deviation at 
various levels for the analysis (see legend as “Linear analysis”), for an atmospheric 
profile located at 30”N latitude, during the winter. According to the Figure 7, the 
analysis should present a net reduction of error in temperature, when compared with 
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log(5pecific humidity) stondord deviation 

Figure 7: Standard deviation of : top : temperature ; bottom : log specific humidity. 
Solid line : assumed background errors ; dotted line : background errors generated in 
Monte-Carlo simulation ; short dashes : linear error analysis with observation errors ; 
long dashes : Monte-Carlo analyses errors (no errors added to the observations). 
Winter case, latitude 30"N. 
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Figure 8: Atmospheric profiles used to perform the linear error analyses and Monte- 
Carlo simulations. Solid line is latitude 18"N, cmsses and diamonds are winter con- 
ditions, 37"N and 63"N, respectively. Dotted line is a tropical profile, the curve with 
dashes is a mid-latitude summer profile. 

the errors a priori. In terms of humidity, the expected improvement is relatively 
smaller. 

For lower latitude conditions (e.g. 18"N profile in Figure 8), below the 400 hPa level, 
the water vapor content is important enough to play a role via the wet term in the 
refractivity in (4). This results in a larger reduction of humidity error in the analysis, 
as shown in Figure 9. But at higher latitudes and for winter conditions (37"N and 63"N 
profiles in Figure 8), the contribution of water vapor to refractivity is much smaller. 
Hence, GPS refractivity provides little constraint on water vapor. The retrieval is then 
not as accurate in deriving fractional water vapor content, and the analysis does not 
improve much upon the background humidity errors (see Figure 10). Concerning the 
temperature, the analysis has for all latitudes a significantly lower standard deviation 
error than the background, as shown in Figure 7. 

6.2.2 Monte-Carlo simulation with no error added to the observations 

In this first Monte-Carlo experiment the refractivity profile is taken as the exact result 
of the observation operator applied to the true state. No error is added. We ensure 
that 1000 profiles are sufficient to generate a distribution with no significant bias as 
assumed in the theory (e.g. after generation of the population the temperature bias 
is less than 0.06K). Figure 7 shows the statistical results of the experiment. They are 
better than that expected from the linear error analysis which assumed observational 
errors. This indicates that the impact of the observations can be overestimated if 
observational errors are not simulated in an OSSE. 
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Figure 9: Standard deviation of log specific humidity, latitude 18"N. Curves are as 
described in figure 7 with the difference that noise is added to the observations in the 
Monte-Carlo simulation. 

6.2.3 Monte-Carlo experiments with errors added to the observations 

Here, the observed refractivity profiles are perturbed. Errors are added about the 
exact simulated refractivity obtained from the true state, using the eigenvalues and 
eigenvectors of the observation error covariance matrix R. Three experiments are 
conducted for the three different atmospheric profiles of the linear analysis. 

Figures 9 and 10 (Figure 11) show a good agreement with the humidity (tempera- 
ture, respectively) linear error analysis results. We have also shown that the lDVAR 
works correctly with simulated data. In all of 3000 analyses the lDVAR algorithm 
converged. 

To summarize, under winter conditions and with conservative error assumptions (Le. 
we take some caution not to overweight the observations), refractivity data are ex- 
pected to bring significant improvement for temperature at all latitudes. For the 
humidity, the best improvements appear in regions of relatively high amount of water 
vapor (i.e. Tropics, mid to lower troposphere). 

6.3 How Refractivity Constrains the Retrievals 

Figure 12 shows how the refractivity can constrain the errors in humidity and/or 
temperature ver differently, in a more visual manner using the technique of Kursin- 
ski et al. [2000[ We assume that both observations and background information 
are non-biased, and that the altitudes of the considered pressure levels are known 
without ambiguity. Two very different cases are shown: tropical conditions at the 
850 hPa level (specific humidity greater than 10 g/kg), and high latitude winter con- 
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Figure 10: Same as figure 9, but for latitudes 37"N (top) and 63"N (bottom), winter 
cases. 
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Figure 11: Same as figure 9, latitude 18"N, but for the temperature. 

ditions at the 500 hPa level (specific humidity close to 1 g/kg). The knowledge of 
the refractivity gives a constraint represented in both cases by a tilted solid line of 
constant refractivity. The error in refractivity primarily shifts the center line into 
two extreme positions, 1% (for tropical cases, 0.2% for high-latitude cases) above or 
below the central refractivity value. The humidity (temperature) background errors 
are represented by the vertical (horizontal) error bars: 0.3 in log for the 850 hPa level 
and 0.4 in log for the 500 hPa level (0.85 K and 0.66 K for temperature, respectively). 

For the tropical case, the refractivity line is nearly horizontal. This constrains the 
humidity estimate to an uncertainty smaller than the background error. The un- 
certainty in temperature (about 1.5 K) remains larger than that of the background 
(0.85 K). It is important to note that properly assimilating such analyzed tempera- 
ture into a DAS would still add a little bit of information. For the other case (i.e. 
high latitude winter conditions), the constant refractivity line is tilted significantly 
towards the vertical. Therefore, the uncertainty in specific humidity is only slightly 
reduced over the background. The reduction of error in temperature is now more 
significant. 

The middle and high latitude profiles used to perform the previous Monte-Carlo and 
linear error analyses correspond to rather dry conditions (in the specific humidity 
sense, i.e. lower number of water molecules) similar to that which would be observed 
in the winter. During the summer, more water would be present in the atmosphere. 
We hence conduct a new analysis under summer conditions. 

6.4 Modified Error Estimates 

Based on the differences between the assumed observation errors (see section 6.2) on 
the one hand, and the analysis minus observation refractivity results (to be discussed 
later) on the other hand, we revisit here the potential impact the GPS data may 
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Figure 12: Illustration of the temperature and humidity constraints induced by a 
refractivity observation. The boxes show an enlarged view of two selected points. The 
two solid tilted lines represent the temperatures and humidity combination that would 
produce a constant refractivity. The dotted lines represent the spread in temperature 
and humidity due to uncertainty in refractivity. The vertical (horizontal) error bars 
are the errors of the humidity (temperature, respectively) background information. 
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have on the analysis of temperature and humidity. The refractivity residual standard 
deviation in Figure 24 (see explanation in section 9.1) is smaller than 2% below 5 km 
altitude, rather close to 0.4% in the North and 1% in the Tropics. Refractivity errors 
will be smaller than the refractivity residuals but we will use the residuals as an upper 
bound on the errors. At high altitudes, we have assigned a 50% error to the observed 
refractivity above 30 km. 

For the background, we have assumed errors which are typically smaller than those 
of Healg et al. [2000] and Palmer et ab. [2000], who have conducted similar sim- 
ulation studies to evaluate the impact of GPS data on the quality of an analysis. 
Since our background errors may have been underestimated, we multiply the original 
background standard deviation errors by a factor of two, both for temperature and 
humidity. Background humidity errors below the 850 hPa level are assumed to be 0.3 
in log of specific humidity to simulate specific humidity errors higher than 25% (see 
Figure 23). So we basically give more weight to the GPS observations in the lower 
troposphere, and remove nearly all influence of the GPS data above about 10 hPa. 

Another restriction of the simulation studies shown above is that the sea level pressure 
was assumed to be known perfectly. We show here results of an experiment where 
the sea level pressure has been included in the state vector. 

6.4.1 Mid-latit ude, summer-type conditions 

We choose an atmospheric profile observed during GPS/MET, located at 42"N and 
30"W (June 29, 1995 at 122, see Figure 8). This profile is representative of the mean 
conditions for latitude 42"N for the GPS/MET 95 June-July period [Kursinslei and 
Hajj, 20001. 

Due to the good agreement between these the linear error analysis and a Monte- 
Carlo experiment based on 1000 profiles, we only show here the results of the Monte- 
Carlo simulation. The impact of the GPS on the humidity as depicted in Figure 13 
is significantly larger than that in Figure 10 (note the change in the vertical scale 
between the two Figures). Reasons for the larger humidity impact are: increased 
background humidity errors, decreased GPS observed refractivity errors in the bottom 
5 km (0.4% instead of 2%), and significantly higher specific humidity. 

The impact on the temperature as shown in Figure 14 is not as large in the lower 
troposphere as in Figure 7 (here also note the change in the vertical scale). From 
100 hPa to 30 hPa, the analysis temperature errors in Figure 14 are larger than 
that in Figure 7, which reflects the higher background errors. The degradation of 
the temperature analysis above 30 hPa due the increase in the observation errors 
from 0.2% to 50% is also apparent. 

In order to account for an incorrect sea level pressure, we conduct another experiment 
which includes errors in the background sea level pressure (assumed error standard 
deviation: 2.5 hPa, with no bias). After performing the Monte-Carlo simulation the 
analysis sea level pressure error is reduced to 2 hPa, which is fully consistent with 
the result of a linear error analysis (square root of the last diagonal element of the 
Pa matrix with the state vector expressed in equation (7)). Figure 13 shows that the 
reduction of error in humidity is nearly unchanged as compared to the experiment 
when no error was added to the sea level pressure. In terms of temperature, the impact 
of the GPS refractivity data is slightly reduced in the lower part of the troposphere 
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Figure 13: Impact of GPS on the analysis of humidity with different background 
and observation errors as explained in the text. Diamonds : assumed background 
errors ; solid (dotted) line : Monte-Carlo simulation for a tropical profile (summer 
mid-latitude profile, respectively). Line with dashes is the same as dotted line but 
with errors added to the background sea level pressure. 
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Figure 14: Same as figure 13 but for temperature. 
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when the background sea level pressure contains errors (see Figure 14). 

6.4.2 Tropical conditions 

We perform the same study as above but for tropical conditions such as those observed 
during GPS/MET, at latitude 11"N, longitude 123"E, on July 2, 1995 at 01Z. The 
assumed errors for the background are identical. However, for the refractivity, we 
specify an error of 1% below 5 km, accordingly to Figure 24. The following results 
rely on the assumption that the occultations can penetrate down to 1 km altitude in 
the tropics, which was infrequently observed during GPS/MET 1995 (see Table 1 for 
the June 2lst-July 4th time period) but is expected to become more common with 
the new missions. 

Figure 13 shows the humidity impact. On the one hand, the tropical conditions 
present higher specific humidity than in the mid-latitude summer (see Figure 8, t r o p  
ical profile). On the other hand, the assumed observed refractivity errors are higher 
in the lower 5 km (1% instead of 0.4%). The net result is a larger humidity impact in 
the upper troposphere for the tropical profile than for the mid-latitude summer case. 

In terms of temperature, the result is reversed: Figure 14 shows that the tempera- 
ture impact is lower in the tropics than it is for mid-latitude summer conditions as 
explained in section 6.3. 

To summarize, the impact of GPS is significantly modified when different error esti- 
mates are used. Under winter conditions and with conservative error estimates, the 
weight given to the GPS data is relatively small and improvement is mainly observed 
in terms of temperature. With summer mid-latitude conditions and error estimates 
that give more weight to GPS in the lower troposphere, the improvement in tempera- 
ture is reduced but an improvement in analyzed humidity is observed. With tropical 
conditions, the improvement in humidity is always expected, but the temperature 
impact depends on the error estimates. Finally, we note that GPS always give a pos- 
itive absolute impact in temperature and humidity, so a better background implies a 
better analysis. 

6.5 Averaging Kernels 

The repartition of information from a GPS lDVAR analysis can be visualized using 
the concept of averaging kernels [Rodgers, 19901. They are computed the following 
way: (1) for temperature, a 1 K impulse is added in the state vector at a single 
level, (2) the observation operator is applied to that state of atmosphere to obtain a 
refractivity profile which contains the 1 K impulse, (3) we perform a lDVAR analysis 
using the unperturbed state vector for the background, (4) the difference between the 
retrieved temperature and the original state vector gives the response of the system. 
This is repeated for each level of the background state vector. Figure 15 shows that 
the lDVAR analysis does not significantly spread the input impulse. 

In the given example, the GPS observations start at 4.8 km altitude. The state vector 
is shortened so that the background information of only the levels located above the 
lowest GPS observation are modified by the analysis, as mentioned in section 5.2. 
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Figure 15: Temperature averaging kernels for the GPS lDVAR, for an occultation 
reaching down to 4.8 km altitude. 
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Consequently the averaging kernels shown in Figure 15 start at 4.8 km. 

A linear formulation of the averaging kernels is 

A = D,H, (12) 

[Rodgers, 19901, where A is a matrix containing the averaging kernels and D, is the 
contribution function. D, can be evaluated from 

[Rodgers, 19761. We checked that the averaging kernels obtained by this method were 
consistent with the results shown in Figure 15. Also, we can verify from equation (13) 
that if no weight was given to the background (i.e. if B-' was to  equal the zero 
matrix), the response would be equal to  the original unit impulse, and focused at the 
appropriate level only (A would be the identity matrix). 

7 Sensitivity of the Retrievals to Various Param- 
eters 

We now apply the lDVAR analysis to  data collected during GPS/MET. We first look 
at a few individual cases and point out sensitivities of the retrievals to  some physical 
parameters. 

7.1 Sensitivity to the Number of Levels in the Background 

We will now focus on a single occultation which occurred on June 21st 1995, at 
00:03UTC, at ( 10°S, 168"W). Three relevant temperature profiles are discussed here : 
the background (also called first-guess estimate, a 6-hour forecast of the GEOS 
model), the analysis obtained through the 1DVAR retrieval, and the direct retrieval 
assuming an a priori humidity profile [Kursinski et al., 19971. We assume a refrac- 
tivity error standard deviation of 0.2% because the refractivity data start at 6600 m 
altitude for this occultation. 

7.1.1 Analysis on 18 levels 

Figure 16 shows the result of an analysis performed with background information on 
18 levels with the top at 0.4 hPa (GEOS Forecast). The lDVAR works on the same 
levels as those of the background and hence the retrievals are also on 18 levels. 

The fine resolution of the GPS measurements as inferred by the direct retrieval a p  
pears to produce some high frequency structure in the stratosphere. The lDVAR 
tries to simulate this structure, as the observation errors are relatively small as com- 
pared with the projected background errors. However, due to the coarse resolution of 
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Figure 16: Temperature profile, lDVAR analysis performed on 18 levels. 
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Occultation: Lai - 10.2 1 deg, Lon - 167.6deg. 1995 06 2 1, 00:03UTC, Transmitter 28 
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Figure 17: Temperature profile, lDVAR analysis performed on 46 0 levels. 

the state vector (based on the 18 levels of the background), the analysis cannot fully 
resolve the same observed structures as those seen in the direct retrieval. 

The background used to perform the linear error analysis and MonteCarlo simulation 
was on 18 levels. These studies did not take into consideration any inconsistency be- 
tween the resolution of the observing system and the background. This inconsistency 
may be considered as representativeness error. 

7.1.2 Analysis on 46 levels 

In this analysis, the background information is specified on 46 0 levels, with a top 
at 0.1 hPa (GEOS Assimilation). We convert the 0 levels to  pressure. Figure 17 
shows the result of the analysis of the same refractivity profile on 46 levels. We can 
see some "waves" in the analysis at this resolution. We also see a large increment 
at the top of the profile. As explained in section 5.4, we will subsequently increase 
the errors of GPS observations in the analysis above 30 km. Note that the structure 
at the tropopause is now much better resolved than before at low resolution. This 
demonstrates the need to analyze the GPS at a higher resolution than the GEOS-Strat 
analysis if the full impact is to be realized. 
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7.2 Sensitivity to the Gravitational Force 

We found significant sensitivity of the analysis to the gravitational constant g used in 
the analysis. We used two formulations for g. (1) g=9.80665 
[List, 19841. The second gave better results by comparison with radiosondes (see next 
section for the final results). 

Depending on the approximation used for the definition of g, biases of order 1K can 
appear. This sensitivity to the gravitational constant arises because the background 
and the GPS observations have different vertical coordinates (pressure versus alti- 
tude), and the translation from one to the other depends on gravity. 

(2) g=g(altitude, latitude) 

7.3 Sensitivity to the Reference Pressure 

A boundary condition is needed to integrate the hydrostatic relationship. Here we 
define as ‘reference’ pressure the pressure at sea level. This reference pressure affects 
the computation of the altitudes. 

The analysis increment is defined as the difference between the lDVAR retrieval and 
the background, which is the GEOS Assimilation here. Figure 18 shows two different 
increments for the example of occultation 1995-06-28 at 09:31Z. The first one is cal- 
culated with a fixed reference pressure, i.e. the same as in the background estimate. 
In the second implementation, the reference pressure becomes part of the state vector 
and hence can be updated. The computed altitude of the level lOhPa is moved from 
31,160 to 31,290 meters (after minimization) when the sea level pressure (SLP) can- 
not be moved by the analysis (i.e. the difference is created by the adjustment made 
on the temperatures). When the SLP is included in the state vector, the temperature 
increments are smaller, but the computed altitude is about the same as before at 
31,280 meters. 

Overall, radiosonde comparison statistics are improved when the reference pressure 
is adjustable. Adjusting the reference pressure allows the whole refractivity profile to 
be moved upwards or downwards. When it is not possible for the system to do that, 
it must increase or decrease the temperature in several layers to thicken or thin the 
layers, resulting in temperature errors of a larger vertical scale. 

Adding this degree of freedom enables the lDVAR to account for any inconsistencies 
that may exist between the background and the observations concerning the definition 
of the sea level. It may also limit the errors due to  the interpolation of the sea level 
pressure from the background fields. 

The sensitivity of SLP analyses to the lowest altitude of GPS measurements has 
also been evaluated by Healy and Eyre [2000] and Palmer et al. [2000]. Both found 
that error estimates of SLP derived from GPS radio occultation measurements were 
smaller in the case of occultations reaching lower altitudes. 
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Figure 18: Temperature analysis increment. Above : sea level pressure of the back- 
ground assumed as correct. Below : sea level pressure included in the state vector. 
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8 Comparisons with Radiosondes 

In this section we compare results of GPS lDVAR analyses with nearby radiosondes 
(RS), and discuss the statistics obtained. 

8.1 Radiosonde Matches 

The matching criteria are +/- 3 hours in time and less than 280 km in distance. 
The temperature (humidity) direct retrievals obtained using an estimate of humidity 
(temperature) [Kursinski et al., 19971 are also shown, as well as the background used 
to perform the lDVAR analysis. 

Among the 797 GPS occultations, about 150 match the collocation criteria. Most of 
the matches occur in the Northern hemisphere, so we will focus on this region. Only 
one lDVAR minimization process did not converge. As a background check, collo- 
cations with discrepancies more than 5 K between background and RS are removed 
from the statistics. It is necessary to apply some quality control to the RS and the 
direct retrievals. Therefore, we also remove discrepancies more than 5 K between the 
RS and the direct retrieval. No quality control is performed on the lDVAR analyses 
themselves. Likewise, all specific humidity relative differences, background minus RS 
or RS minus direct retrieval, greater than 100% are removed. 

8.2 Temperature 

Figure 19 shows a single temperature profile which exhibits the advantages of com- 
bining information from a background and observations. (1) Both the direct retrieval 
and lDVAR analysis are able to improve the tropopause upon the GEOS Assimila- 
tion. The background has a warm bias at the tropopause of about 5K. (2) In the 
lower layers, the analysis follows the background, whereas the direct retrieval notably 
diverges from the RS. 

8.2.1 Background: GEOS Assimilation 

Figure 20 shows the bias and standard deviation difference from nearby radiosondes 
for temperature in the Northern hemisphere (above 30"N when using the GEOS 
Assimilation as a background. As a reminder, these GEO s profiles already contain 
some information from the RS (see section 5.3). The chart also indicates (to the right) 
the number of data used to calculate each point. That number decreases towards the 
surface because most occultations did not reach the surface as shown in Table 1. The 
balloon bursts above the tropopause explain the decreasing number of comparisons 
in the stratosphere. 

All biases (GEOS background, GPS lDVAR analysis, direct retrieval minus RS) are 
of the order of 1K or less below the 30 hPa level. The direct retrieval presents a 
larger (negative) bias than the GPS lDVAR analysis above the 400 hPa level. Above 
100 hPa, the negative bias of the direct retrieval is consistent with the results of 
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Occultation: Lot 58.94deg, Lon -65.88deg. 1995 07 03. 12:21 UTC, Transmitter 16 
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Figure 19: Temperature profile showing the advantages of using a variational approach 
with GPS data. See text for explanation of regions (1) and (2). The background is 
the GEOS Assimilation. 
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Figure 20: Northern hemisphere, comparisons with radiosondes temperatures (+/- 3 
hours, less than 280 km) for the GPS lDVAR, the GEOS Assimilation background 
and the direct retrieval. Curves show bias and standard deviation. 
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Leroy [1997] for the same period (Summer 1995). He observed a negative bias in the 
geopotential height derived from GPS as compared to ECMWF forecasts, which are 
tightly constrained by radiosondes in the Northern hemisphere. Between 300 hPa 
and 100 hPa a significant temperature bias present at the tropopause in the GEOS 
background is reduced by the lDVAR analysis. 

The direct retrievals produce the largest standard deviations below the 400 hPa level 
(2.5K at 850 hPa). The lDVAR analysis improves temperature standard deviation as 
compared with the GEOS Assimilation above the 500 hPa level (less than 2K), except 
around 70 hPa. The significant improvement of the direct retrieval and the lDVAR 
analysis between 300 hPa and 150 hPa over the GEOS background (by comparison 
with the nearby RS) may be linked with a better description of the tropopause. 
Overall, the GPS lDVAR minus RS temperature standard deviation is reduced as 
compared with the background minus RS at most altitudes. 

8.2.2 Background: FVDAS NESDIS TOVS 

Figure 21 shows the impact of the GPS refractivity on the analysis when using FV- 
DAS NESDIS TOVS forecasts as a background. We first notice that the numbers of 
comparisons with the RS have increased, indicating that there are fewer differences 
background minus RS more than 5 K. 

The shape of the FVDAS temperature bias and standard deviation curves is similar 
to the GEOS Assimilation. Consequently, we note that the lDVAR derived from 
the FVDAS NESDIS TOVS background presents the same characteristics as before, 
at least in regions where humidity plays a negligible role in terms of refractivity. A 
noticeable difference with Figure 20 is at the 400 hPa level: the background bias has 
gotten more negative, driving the lDVAR in the wrong direction both in terms of 
bias and standard deviation. 

8.2.3 Background: FVDAS DAOTOVS 

As a reminder, the only difference between the FVDAS DAOTOVS and the FVDAS 
NESDIS TOVS is a change in the origin of the TOVS data assimilated into the DAS. 
Figure 22 shows the temperature differences FVDAS DAOTOVS background minus 
RS, as well as lDVAR derived from this new background minus RS. The number of 
comparisons has increased again when compared with the FVDAS NESDIS TOVS, 
especially at 300 hPa (97 points instead of go), indicating at that level a better 
performance for the forecast when compared with the RS. 

The FVDAS DAOTOVS temperature bias above the 400 hPa level is less than 0.5 K, 
which is a significant improvement compared with FVDAS NESDIS TOVS. However, 
the negative bias previously present around the 500 hPa level has gotten more nega- 
tive. The temperature bias plot in figure 22 shows that a change in the TOVS data 
assimilated in a model drastically changes the model-analysis temperature climatol- 
ow- 
The FVDAS DAOTOVS minus RS temperature standard deviations are less than 2 K 
throughout the entire vertical range (850-20 hPa). There is significant improvement 
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Pressure @Pa) 1000 850 700 500 400 300 250 
Log(q) std. dev. 0.40 0.40 0.40 0.20 0.25 0.30 0.45 

Table 2: Assumed log of specific humidity errors for the background. 

200 150 and beyond 
0.60 0.70 

when compared with FVDAS NESDIS TOVS: the tropopause region is better de- 
scribed, and the bump in standard deviation previously observed around the 200 hPa 
level is smaller. The lDVAR derived from DAOTOVS minus RS standard deviations 
are close t o  the ones of the 1DVAR derived from NESDIS TOVS above the 300 hPa 
level. In this region we can see that the relative impact in temperature of the GPS 
refractivity has been reduced with respect to the background we started with. Below 
the 300 hPa level, the temperature standard deviation improvement in the 1DVAR 
over the FVDAS background is extended, thus making now this improvement consis- 
tent throughout the whole vertical range of the profile (850 hPa-20 hPa). Near the 
surface, the GEOS Assimilation presents smaller standard deviation than FVDAS 
(note the small sample). 

This clearly illustrates that the impact of GPS refractivity data upon a background 
issued from a DAS depends on the other data assimilated in the DAS; i.e. assimilating 
data types which help the forecasts fit to the RS reduces the relative positive impact 
of GPS refractivity upon the background. 

8.3 Humidity 

Table 2 shows the background humidity error estimates used here. They were modified 
after o timization by experiments as compared to the estimates from Joiner and 
Rokke p2000] used previously in section 6. In order to give more weight to the GPS 
data in the lDVAR to move the humidities we increased the log of specific humidity 
error estimates from 0.1 (0.12, 0.15) up to 0.4 (0.4, 0.4, respectively) at the level 
1000 hPa (850 hPa, 700 hPa, respectively). 

Figure 23 shows humidity bias with respect to nearby RS for the global domain. 
We only discuss here the results obtained with the FVDAS DAOTOVS background 
because this was the only experiment in which TOVS humidity information was 
assimilated. This latter presents a bias less than 5% over the entire vertical range 
of the profile. The direct retrieval has a comparable bias -sometimes even smaller- 
in the 850-750 hPa and 600-450 hPa regions. The lDVAR bias is usually the largest 
(negative), except at the 925 hPa and 400 hPa levels. 

Figure 23 also shows that the FVDAS DAOTOVS is usually the closest to the RS 
point measurements in terms of standard deviation, with an increase from 20% at 
925 hPa to about 45% at 450 hPa. The direct retrieval presents the largest standard 
deviation, except at the boundary levels shown on the plot (925 hPa and 400 hPa). 
The 1DVAR standard deviation globally stays in between the FVDAS and the direct 
retrieval. We can notice a slight improvement upon the background at the 650 hPa 
and 500-450 hPa levels. 

Many radiosondes we used either did not report the humidity, or the reported humid- 
ity was different from the background and/or the direct retrieval by more than 100%. 
This results in a small number of comparisons. There are known problems with RS 
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Figure 23: Comparisons with radiosondes humidity, average for the whole domain, 
without distinction North/Tropics/South. Curves show bias and standard deviation. 
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Geographic area 
Sea level Dressure (in hPa) 

North Fmpics 
Mean I Std. dev. Mean I Std. dev. 

Table 3: Sea level pressure statistics for profiles with nearby RS, for the three differ- 
ent backgrounds: GEOS Assimilation and FVDAS NESDIS TOVS (and DAOTOVS) 
forecasts. The number of cases for each region (North/Tropics) is shown in parenthe- 
ses. 

Increment -1.9 
Background minus RS 0.2 

lDVAR analysis minus RS -1.7 

humidity measurements [Soden and Lanzante, 19961. It is also known that humidity 
varies over smaller scales than temperature does. In addition, the GPS observations 
average the refractivity over a long horizontal path whereas RS are somewhat more 
like point measurements. Clearly, the representativeness problem which arises from 
the humidity comparison performed here is not properly resolved. We will discuss 
the humidity results later in section 9.4. 

4.0 -4.5 3.7 
2.7 -0.4 1.2 
4.5 -4.9 3.4 

8.4 Sea Level Pressure 

Increment -0.9 
Background minus RS 0.1 

1DVAR analysis minus RS -0.8 

The sea level pressure (SLP) is an independent parameter updated by the lDVAR 
analysis (see section 7.3). Table 3 shows the mean and standard deviation SLP 
increment (i.e. 1DVAR analysis minus background). 

4.0 -3.3 3.6 
2.7 -0.7 1.4 
5.0 -4.0 4.1 

In the North, the analysis shows a trend to decrease the SLP (negative mean incre- 
ment) in the three backgrounds. Comparisons with the SLP reported by nearby RS 
are also shown. The 1DVAR analysis SLP has always both higher bias and standard 
deviation than the backgrounds, when compared with RS. The bias of the background 
remains about the same for the three systems (GEOS and FVDAS), whereas the bias 
of the lDVAR is significantly reduced when the FVDAS system is used. This sug- 
gests that the modifications in SLP created by the lDVAR do not come only from a 
misplaced initial background SLP but also from some other phenomena which lead 
the lDVAR to believe the SLP is responsible. We will discuss this later in the section 
that deals with the SLP increments. 

Increment -1.1 
Background minus RS -0.1 

lDVAR analusis minus RS -1.2 

In the Tropics, the increments are even greater: -4.5 hPa in the mean with the GEOS 
Assimilation background, but they are reduced down to -3.3 hPa for the FVDAS 
DAOTOVS. This latter itself presents both lower bias and standard deviation than 

4.2 -3.3 3.4 
2.7 -0.2 0.9 
5.1 -3.5 3.3 
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the GEOS Assimilation when compared with RS, testifying once again of the im- 
provement of the system. The same trend is observed for the lDVAR derived from 
those backgrounds. Like for the North, the agreement with the SLP reported by RS 
is always degraded in the analysis as compared with the background. 

On the one hand, the SLP increments are needed to fit the background to the observed 
refractivity. Without these increments, the adjustment occurs in temperature, and 
the comparisons with the RS are degraded (see section 7.3). But on the other hand, 
we can see from the Table 3 that these SLP increments do not agree with the SLP 
reported by RS. 

We discuss later in this paper the origin of these SLP increments and the implications 
for the use of SLP derived from GPS radio occultations into NWP. 

9 lDVAR Interpretation of the Refractivity: the 
Increments 

In order to gain some insight in the way the lDVAR creates increments in temper- 
ature, humidity and sea level pressure, we discuss now the refractivity differences 
between the observations and the background, and how they relate to the analysis 
increments. 

9.1 Innovation and Residual 

The innovation is defined here as the difference between the refractivity calculated 
from the background and the GPS refractivity. The residual is defined as the dif- 
ference between the lDVAR refractivity and the GPS. Since refractivity values span 
several orders of magnitude, we characterize the residual and innovation in terms of 
percent of observed refractivity. We discuss here the innovation for the three different 
backgrounds: GEOS Assimilation, FVDAS NESDIS TOVS and FVDAS DAOTOVS. 

9.1.1 GEOS Assimilation 

Figure 24 shows the mean and standard deviation of the innovation and residual, 
with the number of points used to build the statistics indicated on the right. All the 
occultations available after running the lDVAR, with or without a nearby RS, are 
used to compute the statistics. 

In the North (average of all profiles at latitude above 30"N), the GEOS background 
refractivity is higher in the mean than the GPS/MET refractivity, except between 
7 km and 10 km. The standard deviation of innovation decreases from about 3% 
around 2 km altitude down to less than 1% between 7 km and 30 km altitude. Below 
5 km, the innovation standard deviation grows significantly, indicating contributions 
from some combination of phenomena that are not simulated correctly by our obser- 
vation operator, errors in the measurements, errors in the background information 
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Figure 24: Refractivity calculated from the GEOS background minus observed re- 
fractivity, and refractivity calculated from the lDVAR analysis minus observed re- 
fractivity, in percents of the observed refractivity, in the northern hemisphere (solid 
line), the tropics (dashes), and in the southern hemisphere (dots and dashes). 
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and observation operator. 

In the Tropics, we can identify similar features: the mean innovation between 0 and 
30 km altitude is positive except between 12 km and 17 km. The standard deviation 
grows more rapidly than in the North when approaching the surface: 3% at 5 km 
altitude instead of 2% in the North at the same altitude, maximum of 5.3% at 2 km 
altitude (note 12 comparisons only for this altitude). 

In the South, the innovation bias is similar to  the North, i.e. positive up to 8 km 
altitude and then negative up to 12  km altitude. However, the bias becomes negative 
again above 25 km altitude. The standard deviations are higher than in North above 
8 km altitude. This suggests that the GEOS Assimilation is more accurate at these 
altitudes in the North than in the South where it is more constrained by RS. Below 
8 km, a tentative explanation for the standard deviation being lower in the South 
than that in the North -even though the forecast is supposed to be more accurate in 
the North- is perhaps related to the humidity. Since the GPS/MET measurements 
we are looking at here are for a boreal Summer, the Southern hemisphere undergoes 
hence winter conditions and the atmosphere is in the mean much drier than in the 
North, in a specific humidity sense. As seen in section 6.3, this implies that the 
refractivity is more constrained by the humidity in the North than it is in the South. 
And since the temperature forecasts are better in the North than in the South, this 
suggests humidity as a source of difference. 

Other reasons why the innovation standard deviation is higher in the North than in the 
South include (1) differences in forecast skill, (2) our observation operator which may 
be unable to simulate properly the refractivity from the humidity features contained 
in the background. Such shortcomings in the observation operator include 1D vertical 
integration, horizontal drift of the tangent point not accounted for, no line-averaging 
effect modeling (spherical symmetry assumption), and violation of geometrical optics 
assumptions (multipath). 

As expected, the lDVAR has succeeded in pushing the solution refractivity much 
closer to the GPS/MET observation than the background refractivity. However, in 
the lDVAR theory, we assume that both observations and the background are not 
biased. Clearly they are biased. An interesting point is that even with a bias, the 
lDVAR removes some of that bias : the curve for the bias of the lDVAR refractivity 
residual is close to  zero. However, if we look carefully, some bias remains in the 
residuals as expected. This is most apparent near the tropopause in the Tropics where 
the background bias was the strongest. For exam le, a separate bias correction such 
as discussed and presented by Dee and TodEing p2000] is necessary to fully account 
for these biases. 

9.1.2 FVDAS NESDIS TOVS 

From Figure 25, we can see that in the North the FVDAS NESDIS TOVS background 
refractivity bias has about the same shape as the GEOS Assimilation. The negative 
region has been shifted upwards (8-12 km instead of 7-10 km). Also, the bias curve 
looks smoother than the GEOS, i.e. less wave structures between 15 km and 25 km 
altitude. A significant difference resides in the standard deviation shown in Figure 25. 
It has been decreased by an amount of up to about 1% below 6 km altitude when 
compared with the GEOS Assimilation. The residuals of the lDVAR derived from 
the FVDAS NESDIS TOVS background are similar to  those of the 1DVAR derived 
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from the GEOS Assimilation. 

In the Tropics, the whole curve showing innovation bias has apparently been shifted 
towards more negative values, thus making the average refractivity difference over 
the whole profile closer to zero and less positive. The standard deviations of the 
innovation and residual are about the same as with the GEOS background, i.e. slight 
negative in the residuals around 15 km altitude. 

The South presents very similar biases and standard deviations as with the GEOS 
Assimilation. 

9.1.3 FVDAS DAOTOVS 

In the North the FVDAS DAOTOVS innovation bias shown in Figure 26 does not 
present any negative region any more; the crescent-shape of the curve is conserved, 
though, but with even less waves between 15 km and 25 km altitude, i.e. smoother 
curve. The innovation standard deviation remains nearly unchanged. 

A major difference is observed in the Tropics, where the innovation bias is now con- 
fined between -0.5% and 1% above 5 km altitude, whereas before these extrema 
were -1% and 2% for the FVDAS NESDIS TOW. This significant reduction of bias, 
associated with no real change in standard deviation, is another indication of the 
improvement of the system from NESDIS TOVS to DAOTOVS. It is interesting to 
notice that a change in the origin of the TOVS data can drastically change the in- 
novation bias curve. This change is not detected in the North, but is much more 
striking in the Tropics where fewer RS are available to  constrain the climatology of 
the model-analysis. 

We observe also a major difference in the South. The innovation bias has been 
significantly reduced as compared with NESDIS TOVS, but the standard deviation 
remains identical. This suggests that the performance of the forecast in terms of 
resolving structures (that we assume in the present discussion to be measured by 
standard deviation) may have not really changed, but the climatology of the model- 
analysis, that we can look at using an independent refractivity dataset (GPS/MET), 
has drastically changed, and has been pulled in the right direction if we assume the 
GPS/MET observations are non-biased. As in the Tropics, this testifies the TOVS 
data drive strongly the model-analysis climatology in the Southern hemisphere where 
only very few RS observations are available. 

To summarize, smaller refractivity residuals are observed when the quality of the 
background is improved. This supports the idea of using GPS refractivity as an 
independent dataset for model validation studies. In the next three sections we ex- 
amine and decompose the analysis increments (1DVAR analysis minus background) 
into sea level pressure, temperature and humidity components to  understand how the 
refractivity differences are minimized in the 1DVAR. 
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Figure 25: Same as figure 24 but for the FVDAS NESDIS TOVS forecast background. 
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Figure 26: Same as figure 24 but for the FVDAS DAOTOVS forecast background. 
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9.2 Sea Level Pressure Increments 

We begin with the sea level pressure (SLP) since it is the most straightforward to 
interpret. A SLP shift is somewhat equivalent to a height shift, which itself translates 
into a fractional refractivity shift: we can approximate the refractivity as varying with 
a constant scale height H ,  i.e. 

N = Noexp-2. (14) 

Then the fractional variation in refractivity at any altitude due to a given height shift 
AZ is 

A N  A2 
N H ’  (15) -- - -- 

From (15) we can predict qualitatively how the lDVAR analysis modifies the back- 
ground sea level pressure, given an observed and a background refractivity profile. In 
the North, Figure 24 shows that the background refractivity is higher in the mean 
than the observations. This is seen by integrating, on the left hand plot (showing 
bias), the area C G E O ~  between the zero-mean vertical axis and the innovation curve 
(GEOS background minus observation). To correct for this positive background mi- 
nus observation refractivity mean difference in the North, the lDVAR analysis creates 
a negative mean SLP increment in this region, which is consistent with the result of 
Table 3. Likewise, the mean SLP increment is negative in the Tropics, but with a 
greater SLP mean increment (-4.5 hPa instead of -1.9 hPa in the North) correspond- 
ing to  a greater area between the zero-mean vertical axis and the innovation curve 
for this geographical area in Figure 24. 

From Figure 25, we compute CNESDIS by integrating the area between the residual 
bias and the zero vertical line. Since not all the occultations reach down to the surface, 
we integrate between 6 km altitude and 30 km altitude in order to not overweight 
those few occultations. A similar calculus yields CDAOTOVS from Figure 26. We find 
that & ~ 0 ~ = 0 . 3 3 % ,  ZNESDIs=o.27% and ~DAOTOVS=0.29%. Just keeping in mind 
the order of those numbers (CGEOS > CDAOTOVS > CNESDIS) ,  the SLP increments 
should then be ranked, from the largest to the smallest: GEOS, FVDAS DAOTOVS, 
FVDAS NESDIS TOVS. This is confirmed by Table 3, which shows increments in the 
North of -1.9 hPa, -l.lhPa, -0.9 hPa for GEOS, FVDAS DAOTOVS, and FVDAS 
NESDIS TOVS, respectively. 

Visually, Figure 27 shows the transition, in the North, from the “GEOS” mean curve, 
representing GEOS residual calculated with the background SLP, to  the “1DVAR 
SLP” mean curve, representing background refractivity calculated with the lDVAR 
SLP minus GPS observations. As expected, we can see that the lDVAR SLP mean 
curve has been shifted towards more negative values, thus making the integrated area 
between it and the zero-mean axis now closer to zero. Consequently, the negative 
refractivity bias observed previously between 7 and 10 km is even more negative. 
A similar effect can be observed in Figure 28 (Figure 29) for the NESDIS TOVS 
background (DAOTOVS, respectively). 

The three Figures 27, 28 and 29 also show a reduction of standard deviation when 
going from the residual to the “1DVAR SLP” curve. This suggests that valuable 
information in terms of height shift between the background and the GPS observations 
may be contained in the GPS refractivity measurements. It is not completely clear 
though whether this height shift relates to  the first order to an incorrect sea level 
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Figure 27: Same as figure 24, North only, using various combinations to generate the 
calculated refractivity: GEOS background only (solid line), background with lDVAR 
SLP (dots and dashes), background with lDVAR SLP and lDVAR temperature (tri- 
angles) below the 150 hPa level (represented by a horizontal dotted line at 13.7 km 
altitude), and GPS lDVAR only (dashes). 
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Figure 28: Same as figure 27, but with FVDAS NESDIS TOVS background. 
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Figure 29: Same as figure 27, but with FVDAS DAOTOVS background. 

51 



pressure in the background or if it is primarily due to other sources of error that 
could be contained either in the measurements or in the observation operator. 

It is indeed possible that a discrepancy exists between the references used in the pro- 
cessing of the GPS data and the reference used in the model used as a background (i.e. 
different geoids). Also, another source of difference might be the spherical symmetry 
assumption made when deriving the impact parameter (and thus the altitude) of the 
tangent points from the bending angle measurements. Another track of research could 
be to investigate the 1D vertical integration performed in the observation operator, 
that might lead to some systematic bias considering the occultation geometry. 

In any case, these discrepancies require further attention before using surface or sea 
level pressures derived from GPS radio occultation in a weather and/or climate model. 

9.3 Temperature Increments 

With the SLP already modified, we now examine the temperature increment contri- 
bution to the transition from innovation to residual. Temperature has two effects on 
the refractivity: a local effect (see equation (4)) and a non-local hydrostatic effect 
(see section 5.6). To separate these two, we now look at the difference between the 
lDVAR SLP mean curve and the “1DVAR T & SLP” (noted lDVAR T S L P  in the 
rest of the paper) mean curve in Figure 27. The background refractivity in the latter 
uses lDVAR SLP and lDVAR temperature up to the 150 hPa level. So the lDVAR 
T-SLP curve includes SLP increments as well as temperature increments up to the 
altitude of about 13.7 km, represented by an horizontal dotted line in the Figure 27. 

Figure 30 represents the temperature increments for the GEOS Assimilation back- 
ground. They are large near the tropopause. The very tight constraints provided by 
the relatively small background errors (see Figure 4) limit these increments. 

Below 6 km altitude, only small temperature increments are created (Figure 30 below 
the 500 hPa level), with practically no local influence on the mean refractivity: very 
little difference appears between the lDVAR SLP and 1DVAR TSLP curves in this 
region. We will discuss the humidity increments in more detail in the next section. 

From about 6 to 14 km altitude, we see the local effect of the temperature increments 
created in the same region; a mean increase in calculated refractivity is related to a 
mean decrease in temperature (Figure 30, between 500 and 100 hPa) including the 
lDVAR correction of the warm bias of the background at the tropopause. 

Above about 13.7 km, we should not see any local temperature effect provided the 
temperature has not changed from the background, but we do see the hydrostatic 
effect of the negative temperature increments applied below the 150 hPa level; the 
atmosphere has been shrunk between 6 and 13 km, thus collapsing the whole atmo- 
sphere located above. As a consequence, the mean refractivity difference with the 
observations has been reduced. We note that this hydrostatic adjustment is greater 
than the modifications due to the SLP change, by comparison between the transition 
from GEOS to 1DVAR SLP and the transition from lDVAR SLP to lDVAR TSLP 
mean curves above 14 km. This suggests that the temperature bias at the tropopause 
might cause the lDVAR to erroneously change the SLP instead of producing a larger 
increment in temperature. 
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Figure 30: GPS lDVAR analysis minus GEOS Assimilation background tempera- 
ture (increments). The number of profiles for each geographic area (North, Tropics, 
South). 
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To reduce the remaining positive refractivity difference above 13-14 km altitude, the 
lDVAR creates negative temperature increments in the same region (Figure 30) as 
expected. 

A similar discussion can be made for the temperature increments with the FVDAS 
NESDIS TOVS background shown in Figure 31 (Figure 32). With the FVDAS DAO- 
TOVS background, the mean temperature increments are less than 0.5 K (1 K) in the 
North hemisphere (Tropics, respectively), whereas they approach 1 K (2 K, respec- 
tively) with the FVDAS NESDIS TOVS background. These two Figures illustrate 
clearly that the temperature changes induced by the refractivity GPS data depend 
highly on the other observations already assimilated in the background. 

It is worthwhile to note that the mean temperature increments are negative, and that 
this trend holds for the three backgrounds. This result is consistent with the findings 
of Palmer and Barnett, [2001], who developed an optimal estimation inverse method 
based on UK Met Office background and GPS/MET bending angles. 

9.4 Humidity Increments 

With the SLP and the temperature modified, we now examine how the humidity 
increments contribute to the reduction of the innovation. We are interested in the 
transition, in Figures 27,28 and 29, from the lDVAR T S L P  mean curve to the “GPS 
1DVAR” mean curve representing the residual (i.e. lDVAR minus observation). In 
terms of bias, the largest differences between these two curves are located between 
the surface and 7-8 km altitude. The lDVAR T-SLP mean curve is positive in this 
region for the three backgrounds, except for the GEOS Assimilation, at 1 km and 
at 7 km altitudes. Humidity has a local effect on refractivity shown in equation (4). 
Contrary to temperature, the hydrostatic effect, due to the replacement of dry air by 
lighter water vapor, can be neglected in the present interpretation (see section 5.6). 

In the warm region of the summer North lower troposphere, the refractivity below 
8-9 km is primarily dominated by the water vapor. The small temperature increments 
below 6 km do not reduce significantly the mean innovation in this region. Conse- 
quently, the lDVAR should create negative humidity increments to compensate for 
the remaining (usually) positive difference in the 1DVAR T-SLP mean curve. 

Table 4 shows these increments in percents of the average of background and lDVAR 
specific humidity. They agree completely with the postulation of the previous para- 
graph, i.e. negative humidity increments, except for the GEOS Assimilation at the 
850 hPa and 400 hPa levels where the negative innovation imposes a positive humidity 
increment. 

The humidity increment standard deviations are reduced from the GEOS Assimila- 
tion to the FVDAS, from 35%-51% down to 18%-34%. This suggests that FVDAS is 
closer to GPS than GEOS. We found that the FVDAS DAOTOVS humidity is closer 
to  the RS than both GEOS and FVDAS NESDIS TOVS. Then, the reduction of hu- 
midity increment standard deviation also validates somehow the FVDAS DAOTOVS 
humidity. 

We now discuss the mixed humidity result obtained by comparison with RS. Consid- 
ering that the RS and the GPS refractivity represent in essence different averages, 
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Figure 31: Same as figure 30 but for the FVDAS NESDIS TOVS background. 
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Figure 32: Same as figure 30 but for the FVDAS DAOTOVS background. 
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I Pwssum level I Mean I Std. dev. I Nb. of cases I 
GEOS Assimilation Background 

850 hPa -4. % 
700 hPa -12. % 
600 hPa -16. % 
500 hPa -16. % 
400 hPa -7. % 

I I I 

400 hPa I 6. % 1 40. % I 271 
FVDAS NESDIS TOVS Forecast Background - 

18. % 60 
27. % 148 
31. % 2 14 
34. % 239 
33. % 253 

850 hPa -6. % 
700 hPa -11. % 
600 hPa -12. % 
500 hPa -15. % 

I I I 

400 hPa I -8. % I 31. % I 248 I 

21. % 61 
28. % 151 
32. % 216 
32. % 239 

Table 4: Specific humidity increment in the North. 

it is somewhat more difficult to demonstrate an impact of the GPS refractivity on 
the comparison between a humidity retrieved from a line averaged measurement and 
a point measured humidity. For the temperature, we have seen that this was not a 
problem, provided we showed that the lDVAR temperatures were closer to the RS 
than the background. It is notoriously known that RS humidity is less reliable than 
temperature. Another possible explanation is the spatial variability of temperature, 
which is known to be in general less fine than that of humidity. Also, the intrinsic 
stronger variability of humidity would require a somewhat larger number of compar- 
isons than temperature in order for the comparison to be as much representative as 
the comparisons involving temperature, whereas here we are in fact confronted with 
a reversed situation, i.e. a smaller number of available comparisons for the humidity 
than for the temperature, because of the highly variable quality of the RS humidities. 
More GPS data are required in order to establish a firm conclusion on the impact of 
GPS refractivity on the analysis of humidity. However, we have demonstrated that 
substantial increments are made in the moisture fields after analysis of refractivity, 
and that small but positive improvements were obtained at some altitudes. 

To summarize how the increments are created in the present lDVAR, we can state 
that (1) the humidity increments are dominant below 8-9 km (2) the SLP affects 
all altitudes significantly (3) temperature at and below the tropopause significantly 
affects the stratospheric residual. In this simplistic scheme, (1) is a local effect, 
whereas (2) and (3) correspond to a hydrostatic effect. 
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10 Conclusions and Future Directions 

In this paper, we implemented a lDVAR analysis of refractivity. The approach proved 
to produce significant adjustments in temperature (-0.5 K), humidity(--lo%), and 
sea level pressure (-1 hPa) in the GPS lDVAR analyses. 

We evaluated the potential impact of GPS refractivity data on the analysis of tem- 
perature and humidity within the lDVAR framework via simulation studies. The 
temperature averaging kernels demonstrated that the lDVAR analysis maintains the 
relatively high vertical resolution of the GPS observations. Both linear and Monte- 
Carlo simulations were carried out. They demonstrated the linear approach is valid 
and representative in the case of the lDVAR analysis of GPS refractivity. One must 
include observational error in Monte-Carlo simulations in order to get a representative 
performance. Not adding observation error to the observations in the Monte-Carlo 
simulation results in an overestimated impact of the GPS observations. We showed 
how refractivity constrains differently temperature and humidity depending on the 
atmospheric conditions (summer or winter). Hence the result of simulation studies 
depends upon the type of atmospheric conditions. The error covariances estimates 
also influence the results. 

We first applied relatively small background errors (less than 1K in temperature from 
the surface up to the 5 hPa level) in the simulations. For the observations, we used 
an error estimate of 0.2% of the observed refractivity above about the 600 hPa level, 
which is equivalent to the estimate of Kursinski e t  al. [1995,1997], and 2% below. 
We found that GPS could reduce errors to 0.2-0.5 K from 700 hPa to 2 hPa. 

Then, the background errors were increased by a factor of two in general. Based 
on lDVAR results with GPS/MET, the refractivity errors were reduced in the lower 
troposphere to 1% in the Tropics, consistent with Kursinski e t  al. [1995, 19971. 
In the Northern and Southern hemispheres, refractivity errors below 5 km altitude 
were estimated to be 0.4% which is smaller than [Kursinski e t  al., 1995, 19971. With 
summer or tropical conditions, the temperature impact was reduced in the simulations 
but a much larger impact was obtained in water vapor. 

We then applied the lDVAR analysis method to GPS/MET 1995 data. We showed 
the importance of performing the analysis with a sufficient number of vertical levels in 
order to better resolve the structures contained in the GPS refractivity observations. 
We compared our analyses of temperature with nearby radiosondes (Rs). We evalu- 
ated the impact of GPS/MET 1995 refractivity data with three sets of backgrounds: 
GEOS Assimilation (1995), and next-generation FVDAS assimilating either NESDIS 
TOVS retrievals or interactive TOVS retrievals (DAOTOVS). 

As expected from the simulations, we saw a significant improvement in the analyzed 
temperature as compared with the background (i.e. reduced temperature error bias 
and standard deviation between 850 hPa and 20 hPa). A warm bias present in the 
GEOS Assimilation and FVDAS NESDIS TOVS backgrounds at the tropopause was 
reduced in the analysis, without any specific bias correction. The FVDAS DAOTOVS 
background proved much closer to the radiosondes (i.e. reduced bias and standard 
deviation) than the two other backgrounds. As a consequence the lDVAR obtained 
using the FVDAS DAOTOVS background presented a significantly reduced bias with 
respect to the RS. However, the standard deviation was not reduced. This demon- 
strates that lDVAR analyses should be performed with the best available background 
in order to obtain the best retrieval. It is worth noting that the impact induced by 
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the GPS refractivity data is relatively smaller when the background presents a better 
fit a priori with the RS. Generally, the lDVAR temperatures are colder than the 
background. 

In terms of water vapor, a small number of comparisons (-70) showed that the 
1DVAR humidity difference with the RS presents similar standard deviations as 
the background. A small improvement in favor of the lDVAR was observed at the 
650 hPa, 500 hPa and 450 hPa levels. The 1DVAR analysis systematically dried the 
FVDAS DAOTOVS background humidity which presented a very small bias (-5%) 
with respect to the RS. As a result, the 1DVAR humidity is too dry when com- 
pared with the RS. There are several possible reasons for this result. The sondes are 
known to have known biases [Soden and Lanaante, 19961. Water structures present 
small horizontal scales. GPS horizontal resolution (200 to 300 km) is much closer to  
the background 2 x 2.5 degrees horizontal resolution than the RS point measurement. 
Therefore there may be a significant representativeness error. 

The background minus observation refractivity innovations present significantly re- 
duced biases and standard deviations with the FVDAS DAOTOVS background than 
with the GEOS Assimilation. This suggests that GPS refractivity data may be used 
as an independent benchmark dataset for model validation studies. 

We have related the reduction of refractivity innovations in the analysis to the incre- 
ments created by the 1DVAR. Modifying the sea level pressure in the analysis affects 
the entire refractivity profiles. Conversely, a global refractivity bias (background mi- 
nus observation) results in a systematic sea level pressure bias in the lDVAR analysis. 
The temperature affects the refractivity profiles in two ways. First, it changes the 
density inversely, i.e. an increase in temperature causes a decrease in density and 
refractivity. Second, it has an opposite effect via a nonlocal hydrostatic effect: an 
increase in the analyzed temperature expands the atmosphere, thus increasing the 
density and refractivity at higher altitudes. The water vapor dominates the refrac- 
tivity adjustment in the lower troposphere. It has little hydrostatic effect so it is 
essentially a local effect only. 

We have investigated the relationship between the refractivity and sea level pressure. 
When we used data from GPS/MET we found that the retrieved lDVAR surface 
pressures were systematically biased too low as compared with collocated radiosondes 
reports. The reason for this discrepancy is that GPS refractivities are lower in general 
than the background. This is also true for ECMWF and UKMO refractivities: such 
a bias had been seen before in Kursinski et al. [1996] and in Leroy [1997]. The 
underlying physical cause of this bias is unclear. We can note that we have two 
different vertical coordinates: GPS is measured with respect to  altitude, whereas 
model and radiosondes traditionally use the pressure coordinate. The refractivity 
bias is latitudinally dependent. Clearly this whole issue regarding the refractivity 
bias needs more attention both for climate and weather applications. 

Even though there are assumptions made when deriving refractivity from bending 
angles (i.e. local spherical symmetry), we showed that in most cases GPS observations 
combined with a background in an accurate and computationally efficient lDVAR 
framework can yield significant improvement in terms of temperature. Mixed but 
encouraging results were obtained in terms of humidity. 

We have used in this study GPS/MET 1995 data, for which the occultations do not 
extend very low in altitude. We look forward to performing further investigations with 
new GPS data probing deeper in the troposphere and to  carry out data assimilation 
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experiments when more data are available. Quality control will have to  be developed. 
As an extension to this study, the lDVAR technique presented here can be improved 
to account for horizontal drifts and line-of-sight averaging in the observation operator. 
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