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Abstract 

In this study, a tangent linear eigenanalysis is applied to the Mosaic land surface 
model (LSM) (Koster and Suarez 1992) to examine the impacts of the model internal 
dynamics and physics on the land surface state variability. The tangent linear model 
(TLM) of the Mosaic LSM is derived numerically for two sets of basic states and two tile 
types of land condition, grass and bare soil. An additional TLM, for the soil moisture 
subsystem of this LSM, is derived analytically for the same cases to obtain explicit 
expressions for the eigenvalues. An eigenvalue of the TLM determines a characteristic 
time scale, and the corresponding eigenvector, or mode, describes a particular coupling 
among the perturbed states. The results show that (1) errors in initial conditions tend to 
decay with e-folding times given by the characteristic time scales; (2) the LSM exhibits 
a wide range of internal variability, modes mainly representing surface temperature 
and surface moisture perturbations exhibit short time scales, whereas modes mainly 
representing deep soil temperature perturbations and moisture transfer throughout the 
entire soil column exhibit much longer time scales; (3) the modes of soil moisture tend to 
be weakly coupled with other perturbed variables, and the mode representing the deep 
soil temperature perturbation has a consistent e-folding time across the experirrierits; 
(4) the key parameters include soil moisture, soil layer depth, soil hydraulic parameters, 
and soil moisture transfer process. 

The results qualitatively agree with previous findings. However, tangent linear eige- 
nanalysis provides a new approach to the quantitative substantiation of those findings. 
Also, it reveals the evolution and the coupling of the perturbed land states that are use- 
ful for the development of land surface data assimilation schemes. We must be careful 
when generalizing the quantitative results since they are obtained with respect to two 
specific basic states and two simple land conditions. Also, the methodology employed 
here does not apply directly to an actual time-varying basic state. 
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1 Introduction 

A land surface model (LSM) or soil-vegetation-atmosphere-transfer (SVAT) scheme exhibits 
variability on a wide range of time scales from hours to months, and even years through 
atmospheric interactions (i.e.) Delworth and Manabe 1988, 1993; Entekhabi 1995; Robock 
et al. 1998). These time scales are strongly determined by external forcing, especially 
precipitation and downward short-wave and long-wave radiation at the surface. They are 
also modulated by the internal dynamics and physics of land surface systems, in  particular 
by soil moisture dynamics. There are numerous studies on the variability of land surface 
models. Approaches to  date include: 1) performing numerical simulations, 2 )  performing 
numerical sensitivity tests, and 3) building relatively simple land surface models that  can 
be solved analytically. 

In the first approach, either a general circulation model (GCM) which includes an LSM or 
a stand-alone LSM is integrated over long time periods (;.e., Dickinson et al. 1984; Sato et 
al. 1989; Koster and Suarez, 1994). These studies have demonstrated the main variability 
of the land surface system, as modeled, and the pronounced effect of the land surface on 
atmospheric variability. In the second approach, using either an LSM coupled to a GCM 
or a stand-alone LSM, sensitivity experiments are usually performed with a change in one 
particular parameter or parameterization scheme (e.g., Henderson-Sellers et al. 1995; Xue 
et  al. 1996a, 1996b). The results are then compared with a control integration to reveal the 
impact of the change. This type of sensitivity experiment identifies important parameters 
or parameterizations in  land surface models. The third approach, solving equations of a 
simple LSM analytically, estimates characteristic time scales of land surface variables in  
simplified cases (e.g., Delworth and Manabe 1988; Brubaker and Entekhabi 1995; Yang et 
al. 1995). This approach simplifies complex land surface processes. For example, one can 
represent the evaporation and runoff process as a bucket model or treat  the soil moisture 
system as a first-order Markov process. 

These three approaches mainly reveal the impact of external forcing (Entekhabi 1995; Del- 
worth and Manabe 1988, 1993) on the land surface variability, because the forcing terms 
exert the dominant control on the variability of land surface models. In the data  assimi- 
lation coiltext, we need to understand the impact of internal dynamics and physics on the 
variability of a land surface model. For this purpose we employ tangent linear analysis to 
an LSM in  this study. 

There are two reasons for studying the internal dynamics and physics of land surface models 
with the tangent linear approximation. First, the linear behavior of the internal dynamics 
and physics alone controls the land surface state perturbations, which are defined as the 
departures from a solution of a nonlinear model called the trajectory. These perturbations 
might be considered to be errors from true state values. The study of this linear behavior 
allows us to identify the main relationships among these errors in an LSM, called the 
balance. An example of such a balance is the effect of errors in surface soil moisture on the 
surface temperature and moisture. This kind of error correlation may be used as background 
error covariances of an assimilation scheme. Second, with an understanding of the internal 
features, we can efficiently identify key parameters and parameterizations of the model 
with minimum influence of the external forcing. By efficiently we mean that one run can 
reveal multiple key parameters or pararneterizations. By minimum influence of the external 
forcing we mean that the evolution of the perturbed state variables is no longer explicitly 
controlled by the external forcing, though the mean trajectory is controlled by the external 
forcing and the perturbation behavior may vary with different mean states. 

In this paper, we apply tangent linear model (TLM) analysis to study the linear behavior of 
the internal physics and dynamics of the Mosaic LSM (Koster and Suarez 1992). In a recent 
review paper, Errico (1997) describes the development and applications of TLM and their 
corresponding adjoint models in  meteorology. Although the use of TLM and adjoint models 
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h a s  recently increased rapidly, its applications to land surface modeling and assimilation 
require specific consideration due to the complex physical features and non-linearity of 
LSMs. 

In Section 2, we briefly describe the Mosaic LSM. In Section 3, we derive the TLM based 
on the prognostic equations of the Mosaic LSM, and we describe the experimental design 
and precautions talien in deriving the TLM numerically. In Section 4, we present the 
results of the TLM eigenanalysis, including characteristic time scales and modes of the land 
surface state perturbations. In Section 5, we obtain a linearized soil moisture subsystem 
and examine the role of soil moisture dynamics. We find explicit relationships between the 
time scales and the Mosaic LSM parameters. Finally, in Section 6, we summarize the main 
results and discuss their application to land surface data  assimilation. 

2 Description of Mosaic land surface model 

The Mosaic LSM (Koster and Suarez 1992) is named for its use of a “mosaic” strategy 
to  account for subgrid heterogeneity in surface characteristics. In the Mosaic LSM, every 
grid cell is subdivided into homogeneous subregions, or “mosaic tiles”. Each tile contains 
a single vegetation or bare soil type. Energy and water balance calculations are performed 
over each tile. The tiles in a grid cell respond to the grid-cell mean conditions in the 
overlying atmosphere. This grid cell, in t u r n ,  responds to the area-weighted fluxes of heat 
and moisture from the tiles (Koster and Suarez 1996). 

The Mosaic LSM is based on the Simple Biosphere (SiB) model of Sellers et  al. (1986), and 
includes complex biophysical processes. Similarly to  SIB, it calculates the energy and water 
transfers using an electrical resistance network analog. For exarnple, to calculate the latent 
heat flux (current) along a given pathway, the difference between surface and atmospheric 
vapor pressures (potentials) is divided by an effective resistance, which is a function of the 
atmospheric conditions and of plant and soil properties. Similarly, the sensible heat flux is 
determined by the difference between the temperatures (potentials) of the surface and the 
atmosphere. Koster and Suarez (1994) have conducted a 20-year long simulation with a 
GCM coupled with Mosaic LSM, and concluded that  the simulation of hydrology cycle is 
improved using Mosaic LSM. The Mosaic LSM has also been successfully implemented in 
the Goddard Earth Observing System General Circulation Model of the Data  Assimilation 
OfFice, Goddard Space Flight Center of NASA (Molod, 1999). 

The eight prognostic variables in each tile of the Mosaic LSM are: 

T,: temperature of the surface/canopy system 

Td: temperature in deep soil 

W,: moisture in the canopy interception reservoir 

W, (i=1,2,3): moisture in the top, middle, and bottom soil layers, respectively 

S: water equivalent in the snowpack, if any  

e,: vapor pressure i n  the near-surface layer (within the canopy for the vegetation tiles). 

The  prognostic equations are as follows: 

Gd 

2 



DAO Ofice Note 2002-01 

The prognostic equation for surface layer or canopy air vapor pressure (e,) is 

dE dEdT, dE de, 
d t  dT, d t  dea d t  + --, - - - __- 

where 

The terms in  the equations are: 

CH:  heat capacity of surface or canopy system 

Rsw-net: net short-wave radiation a t  surface 

€ifw: downward long-wave radiation at surface 

RTw: upward long-wave radiation a t  surface 

H :  sensible heat flux 

XE: latent heat flux 

Gd: heat flux to deep soil 

CH-deep: heat capacity of deep soil 

P: rainfall rate 

Smelt: snow-melt rate 

Eint: evaporation of intercepted water 

PT: throughfall rate of precipitation 

R,: surface runoff rate 

Ebs: evaporation rate from bare surface 

Ettransp,i (i=1,2): water removal rate via transpiration from the ith soil layer 
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Qi,j:  moisture flux from ith soil layer to  j t h  soil layer 

P,: snowfall rate 

E,,o,: snow sublimation rate 

e,: saturation vapor pressure, a function of T, 

r e J f :  effective surface resistance t o  vapor transport, a function of T,  and e, 

p:  air  density 

e:  ratio of the molecular weight of water vapor to that of dry air 

p,: surface pressure. 

The details of the derivation are given in Koster and Suarez (1992, 1994, 1996). 

3 TLM derivation and experimental design 

3.1 Tangent linear model derivation 

Let X denote the vector of prognostic (state) variables. 
ordinary differential equations, the general form of equations (1)-(8) is 

Written as a system of eight 

- = F ( X )  +- external forcing, (9) 
d X  
dt 

where the vector F ( X )  can be represented by F ( X )  = ( F I ,  F2, ...,Fs)T denoting the internal 
dynamics and physical processes such as soil moisture dynamics, and the superscript T 
denotes the transpose. External forcing terms are the near-surface atmospheric conditions, 
including precipitation and downward solar and longwave radiation fluxes a t  the surface. 
These terms do not depend explicitly on the land surface state X .  

A perturbation method is used to linearize the nonlinear system (9). A solution X of 
equation (9) is decomposed into a %sic state” X = X ( t )  satisfying (9),  plus a perturbation 
X‘: 

The  Taylor expansion of F around the basic state X is 

x = x + x’. (10) 

Substituting equations (10) and (11) into the system (9) and neglecting the higher-order 
terms, we obtain the tangent linear model: 

d X ‘  
dt 
- = AX‘,  

4 
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where A,, E (XI ), and A = A ( X ( t ) )  is the tangent linear matrix or Jacobian, 

representing the sensitivity of the functions to infinitesimal change in X .  The basic s ta te  x denotes a solution of the nonlinear system (9), called the model trajectory in a data  
assimilation context, and can be chosen as a statistical average of states. The linear system 
(12) approximates the evolution of an initial error X ’ ( 0 )  = X ‘ ( t  = 0) in that trajectory. 
Since the linear system (12) eliminates the external forcing term, the behavior of X ’ ( t )  
is determined primarily by the internal physics and dynamics of the Mosaic LSM in the 
vicinity of the basic state. Dependence of X ’ ( t )  on the external forcing is implicit, through 
the dependence of A ( X ( t ) )  on the basic state. 

We study the behavior of (12) for A evaluated either at a specific time or for a specific time- 
mean state. This simplifies the problem considerably, for in each case A is then independent 
of time. The solution of (12) is then just 

(3% x,=x, 

X ’ ( t )  = eAtX‘(0).  (13) 

A = U A U - I ,  (14) 

The eigendecomposition of A is given by 

where A is the diagonal matrix of eigenvalues of A ,  and the columns of U are the correspond- 
ing eigenvectors. An eigenvector (mode) corresponding to  a given eigenvalue expresses a 
specific coupling among the variables X ’ ( t ) .  Note that A is not symmetric and its eigen- 
vectors are not mutually orthogonal. 

Since we consider A to be independent of time, the stability of the linear system (12) 
depends on the eigenvalues A. If all eigenvalues have negative real parts, the system is 
stable for the basic state we consider, and any initial error will decay with time; if any one 
of the eigenvalues has a positive real part, the system is unstable. If all eigenvalues are 
real, the solutions are non-oscillatory, A negative eigenvalue X represents a decay rate with 
e-folding time T = y. 1 

3.2 Experimental design 

The purpose of the experiments is to use tangent linear analysis as a new method for 
understanding the internal dynamics and physics of an LSM. As we showed in the previous 
section, the construction of A depends on the mean state. Therefore, application of the 
TLM to a site with a specific mean state and land cover condition is similar to a case study. 
However, we anticipate that this kind of case study reveals some common features of the 
land-surface state given more general forcing terms and suitable land conditions. This will 
be shown in the following section. 

The site presented in the model is the HAPEX-Mobilhy Caumont site, in France (43’41’N, 
O’G’W).  We 
perform four experiments with a combination of two considerably different sets of vegetation 
parameters and basic states. We then examine the temporal variation and relationships 
among the perturbed state variables. In experiments one and two (EXP 1, EXP a ) ,  the 
vegetation type is grass, with two different basic states. In experiments three and four 
(EXP 3 ,  EXP 4) ,  the vegetation type is bare soil, and the same basic states of EXP 1 
arid EXP 2 are used. We describe one vegetation type as grass because that is the real 
land condition a t  the HAPEX site. We chose another vegetation type as bare soil for the 

The canopy for that  site is prescribed as 90% grass and 10% bare soil. 
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contrast, but it is not totally unreasonable since the site is covered by 10% bare soil. To 
simplify the derivation in section 5, only one type of vegetation is used in each experiment. 
This simplification neglects the Mosaic “tile” properties of the model. 

The basic state is selected from a 3-year long control integration forced each year with a 
one-year record of near-surface atmospheric conditions a t  the HAPEX-Mobilhy Caumont 
site. The purpose of the control run is two-fold. First, it shows the length of time required 
for the Mosaic LSM to arrive a t  equilibrium under the chosen conditions. Second, it pro- 
vides appropriate basic state values for the four experiments. The near-surface atmospheric 
forcing a t  the HAPEX site is available at  30-minute time intervals for 1986. When the 
data  were unavailable, neighboring meteorological stations were selected to provide the re- 
quired inforination (Goutorbe 1991; Goutorbe and Tarrieu 1991). This data  set has been 
used in  the Project for Intercomparison of Land-surface Parameterization schemes Phase 2 
(PILPS-2) experiments (Henderson-Sellers et al. 1993). The forcing terms include down- 
ward shortwave and longwave radiation, precipitation, air temperature, 2-meter specific 
humidity, 2-meter wind speed, and surface pressure, 

We selected two basic states, the state a t  132 June 1, 1986, and the June monthly mean 
state a t  132, from the second year of the control run, since the Mosaic LSM reaches a n  
equilibrium state in about six months. During the second year, surface fluxes and the state 
variables, is almost the same as that of the first year starting from July, and the output of 
the third year is overlapped with that of the second year. The other input parameters for 
the TLM correspond to these two situations. We selected a time close to  local noontime 
and a summer month because the land-surface thermal activity is most active then. Due 
to the lack of snow cover during this time and interception storage over grass, the original 
eight prognostic equations are reduced t o  six. The counterparts of equations (3) and (7) are 
therefore eliminated from the TLM (equation 12). However, this simplification excludes the 
variability induced by those two processes. Some previous studies (;.e., Scott et  al., 1995; 
Koster and Suarez, 1994; Schlosser et al. 1997) show the importance of these processes in  
some regions. 

The observational data  are very limited at this site. We compared the model results for 
June with the available observations. The magnitudes of the model sensible heat and latent 
heat fluxes are comparable with the observations. The model soil moisture content within 
the top 50 cm column is consistently lower than that observed by neutron sounding probes 
measuring once every week. Since we do not know the observed soil porosity values, we 
are not able to calculate the plant-available soil moisture as suggested by Robock et  al. 
(1998). However, the Mosaic LSM has been an active participant in  PILPS, which, among 
other things, tested its ability to reproduce observed surface fluxes in response to  observed 
meteorological forcing. PILPS tests at  Cabauw in the Netherlands (Chen et  al., 1997) and 
across the Red-Arkansas river basin i n  the U.S. (Wood et  al., 1998; Liang et al., 1998;) show 
tha t  the Mosaic model, though not perfect, does produce reasonably realistic evaporation 
and runoff rates. 

Figure 1 shows the monthly-mean diurnal cycle of the land surface variables for June. The 
canopy air vapor pressure (e,) is consistently higher than the 2-meter vapor pressure (ez,), 
with strong diurnal variability. The surface canopy temperature (T,) is higher than the 
2-meter temperature (Tz,) during the day, with a peak difference around local noon. At 
night, the surface temperature becomes lower than the 2-meter temperature as a result of 
longwave emission from the surface. The deep soil temperature (Td) does not exhibit a 
diurnal cycle as defined. The soil wetness, or degree of saturation, is less in the first two 
layers than in the deep layer since evaporation and evapotranspiration remove moisture 
only from the first two layers. Only the soil moisture in surface layer exhibits a significant 
diurnal cycle. 

Table 1 summarizes the four experiments, the two basic states, the leaf area index and 
the soil physical parameters. There are clear differences between the two basic states: the 
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temperature arid surface vapor pressure values a t  132 for the June mean are higher t h a n  a t  
132 June 1, and all three soil wetness values a t  132 for the June mean are consistently lower 
than those a t  13Z June 1. ‘ lhe reason to  use the same basic states for both grass and bare 
soil case is for comparisons, i.e., to see the  effect of the different land-surface conditions. 
The vegetation and soil parameters also significantly differ between grass and bare soil. The 
“scaling values” in Table 1 are described in the next subsection. 

Table 1: Experiment description. SWi is soil wetness (the degree of saturation, Wi/Wi,sat)r 
and is the saturation moisture content i n  the ith soil layer. Zi is the depth of a soil 
layer in  meter. SZi,j is the distance between the centers of ith and j t h  soil layers. LA1 is 
the leaf area index. 

ITEM 
Description 
of basic state 
and forcing 
terms 

Vegetation type 
Basic states: 
T, -(IC) 
Td (I<) 
e, (hPa) 
s Wl 
s wz 
s W? 
Parameters: 
LA1 
W 1 , s a t  (mm) 
W 2 , s a t  (mm) 
W3,sat  (mm) 
Top layer Z1 
Middle layer 22 
Bottom layer Z3 
621,z (m)  
6z2,3 ( 111 ) 
Scaling Value: 
for T, (K) 
for Td (E<) 
for e, (1iPa) 
for IV1 (mm)  
for W2 (mm) 
for W3 (mm) 

EXP 1 
basic state 
and forcing 
terms from 
132 June 1 
1986 
grass 

18.27 
16.53 
18.95 
0.5439 
0.5782 
0.6910 

3.671 
8.4 
197.4 
420.0 
0.02 
0.47 
1.00 
0.245 
0.735 

5.6 
1.53 
5.0 
0.59 
11.10 
17.34 

EXP 2 
basic state 
and forcing 
terms from 
132 for the 
June mean 
grass 

26.08 
17.72 
22.64 
0.4143 
0.4948 
0.6244 

3.671 
8.4 
197.4 
420.0 
0.02 
0.47 
1.00 
0.245 
0.735 

5.6 
1.53 
5.0 
0.59 
11.10 
17.34 

EXP 3 
basic state 
and forcing 
terms from 
132 June 1 
1986 
bare soil 

18.27 
16.53 
18.95 
0.5439 
0.5782 
0.6910 

0.001 
4.0 
4.0 
130.56 
0.0092 
0.0092 
0.30 
0.0092 
0.1546 

9.0 
2.13 
3.7 
0.52 
0.375 
5.23 

EXP 4 
basic state 
and forcing 
terms from 
132 for the 
June mean 
bare soil 

26.08 
17.72 
22.64 
0.4143 
0.4948 
0.6244 

0.001 
4.0 
4.0 
130.56 
0.0092 
0.0092 
0.30 
0.0092 
0.1546 

9.0 
2.13 
3.7 
0.52 
0.375 
5.23 
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3.3 Tangent linear matrix calculation 

The tangent linear matrices A ( X )  for the four experiments were calculated using a centered 
difference scheme rather than an analytical derivative, as follows. For each experiment, six 
pairs of perturbed states ( X  + Sz j )  and (x - S x j ) ,  j = 1,2 ,  ..., 6, are formed. Here X is 
the basic state and Szj is a perturbation, described below, around the j t h  component of the 
basic state. Six pairs of one-step integrations with the Mosaic LSM are then performed, 
to compute F , ( X + 5 x 3 ) - F ’ ( x - s x J )  25x ,  as an approximation to A ; j ( X )  for i , j  = 1,2 ,  ..., 6. Then 
the perturbation magnitude is reduced by a factor of two and the process is repeated. At 
the nth step, d x j  = & for j = 1 , 2 ,  ..., 6, where 6zj’ is the perturbation a t  the initial 
step. The process is halted when the successive matrices show sufficient convergence of 
their eigenvalues, as described in  the following section. Thus we arrive a t  A ( X )  for each of 
the four experiments. 

The magnitudes of the initial perturbations should be meaningful, for example, larger than 
the size of measurement uncertainties in the land surface state. Also the perturbed states 
should stay within the local linear regime of the basic state. As shown for the control run, 
the basic state a t  noon satisfies the relationships SPV3 > S W .  > SW1, T, > T2m, and e, > 
e2m. The perturbed states should retain these relationships to stay within the linear regime. 
There are also numerous “conditionals” in the formulation of the Mosaic LSM. For example, 
soil moisture diffusion between two adjacent layers depends on the moisture gradient. If the 
perturbed state reverses this gradient, the soil moisture flux will abruptly change sign and 
magnitude. We carefully chose the perturbation magnitudes so that the perturbed states 
lie within the same regime as the basic state. The initial perturbation magnitude was 1 O K  
for T, and Td, 1 hPa for e,, 3% for the first and second layer soil wetness, and 5% for deep 
soil wetness. 

An eigenanalysis is applied t o  each of the four matrices A ( X ) .  The eigenvectors are nondi- 
mensionalized to enable comparison of their elements, and are also normalized to unity by 
dividing by the largest magnitude of the respective eigenvector elements. For EXP 1 and 
EXP 2, we select the scaling magnitudes as the standard deviations of each state variable 
a t  132 over the month of June from the control run. For EXP 3 and EXP 4, we performed 
a second control r u n  with bare soil to obtain scaling magnitudes, since the standard devi- 
ations differ from the control r u n  with grass (see scaling values in  Table l).  The standard 
deviations at 132 of June from this second control run are selected as the scaling magnitudes 
for EXP 3 and EXP 4. 

5 x  ’ 

4 Eigenanalysis of the tangent linear matrix 

4.1 Eigenanalysis for the two experiments with vegetation cover 

Table 2 lists the e-folding times (negative reciprocals of the eigenvalues) for EXP 1 for 3 
successively smaller perturbations, denoted by P;, i = 1 ,2 ,3 .  All eigenvalues are negative 
and real, indicating a locally stable and non-oscillatory system. The e-folding times range 
from 5 minutes mode 1) to more than three months (mode 6).  The e-folding times of the 
first five modes 1 rom the second perturbation are almost identical t o  those from the third 
perturbation, indicating convergence. The last mode shows some oscillation due to the 
numerical difficulty of solving for the minimum eigenvalue of a matrix with a wide range 
of eigenvalues; the ratio of the largest to the smallest eigenvalue exceeds four orders of 
magnitude. 
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Table 2: The e-folding times for EXP 1. The tangent linear matrix A ( X )  was derived using 
successively smaller perturbations, indicated by PI, Pz, and P3. 

I PERT. I MODE 1 I MODE 2 I MODE 3 I MODE 4 I MODE 5 I MODE 6 I 
1’1 

1’2 

P? 

5.06 min 19.71 rnin 1.04 hr 3.15 day 11.52 day 111.93 day 
5.06 rnin 19.68 rnin 7.60 hr 3.30 day 11.52 day 118.72 day 
5.07 min 19.67 rnin 7.62 hr 3.30 day 11.52 dav 104.85 dav 

Figure 2 shows the six normalized eigenvectors (modes) for EXP 1, corresponding to P3 
i n  Table 2. Each panel corresponds to  one mode and the bars denote the magnitude of 
the elements. Each element is associated with one of the six prognostic variables or state 
perturbations. Our discussion will be qualitative, focusing on the dominant variables for 
each mode. While a moderate change of the scaling values would affect the quantitative 
appearance of Fig. 2, it would not affect the qualitative features. 

The first mode sliows that a perturbation in  the surface vapor pressure e,  alone will decay 
quickly, with a 5-minute e-folding time. The second mode indicates a positive coupling of 
T, with e,. For this mode, a high surface temperature provides more energy for surface 
evaporation, and increases the moisture-holding capacity of the surface air. The near-surface 
air rnoisture gradient then increases, which stimulates more evaporation from the ground. 
This mode has a 20-minute e-folding time. The third mode shows a relatively weak negative 
coupling between the soil moisture in the top two layers. The fourth and sixth modes depict 
the coupling between the soil moisture in the three layers. The soil moisture transfer in 
the three layers exhibits two distinctive time scales. The fourth mode, representing soil 
moisture transfer from the third layer t o  the upper two layers (or the reverse), h a s  about a 
3-day e-folding time. The sixth mode, representing moisture transfer throughout the entire 
soil column, has a time scale of about 3 months. The fifth mode primarily isolates Td with  
a 12-day e-folding time. 

Table 3 lists the e-folding times for each mode of EXP 2. Again all eigenvalues are negative 
and real. The six eigenvectors corresponding to  Ps (Fig. 3) are similar to those of EXP 1. 
The e-folding times for most modes of EXP 2 are comparable to those of EXP 1. However, 
the third and sixth modes, which represent soil moisture transfer from the top soil layer 
and throughout the whole soil column, respectively, have much shorter time scales. The 
reduction in time scales of these two modes corresponds to  the lower basic state soil wetness 
and the basic state of higher surface temperature and vapor pressure (Table 1) of EXP 2 
cornpared with EXP 1. 

Table 3: As in Table 2 but for EXP 2. 
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4.2 Eigenanalysis for the  two experiments without vegetation cover 

Table 4: As in Table 2 but for EXP 3 .  

Table 4 and Fig. 4 show the eigenvalues and eigenvectors for EXP 3 ,  which h a s  the same 
basic state as EXP 1 but the surface is bare soil. The e-folding times of EXP 3 ,  except 
for mode 5 ,  are significantly shorter than those of both EXP 1 and EXP 2. The first three 
modes have time scales on the order of minutes. There are no intermediate modes with 
e-folding times between one hour and 10 days. The longest time scale is reduced to about 
a month. 

Unlike EXP 1 and EXP 2, the first eigenvector of EXP 3 (Figure 4) represents soil moisture 
transfer between the first two adjacent soil layers. The e-folding time of this mode is about 
4 minutes, which is much shorter than that of the corresponding (third) mode in  EXP 1 
and EXP 2. This reduction in time scale results from two factors. First, bare soil has no 
transpiration, so soil moisture evaporates directly from the surface. Second, the depth of 
the first two soil layers is shallow (see Table l),  so moisture transfer is fast. The second 
mode isolates e, with a 5-minute time scale, which is similar to the first mode of the two 
previous experiments. The third mode shows the positive coupling between T, and e,  with a 
28-minute e-folding time, which is relatively long compared with the corresponding (second) 
mode in EXP 1 and EXP 2. Once again, the fourth and sixth modes depict two different 
soil moisture transfer processes, but now with shorter time scales. The fourth mode, with 
a one-hour time scale, shows a negative relationship between the soil moisture in  the upper 
two layers and that of the third layer. The sixth mode, with about a one-month time 
scale, depicts transfer of moisture throughout the entire soil column. The fifth mode that 
primarily isolated Td in  EXP 1 and EXP 2 now also includes components of moisture. Its 
e-folding time is comparable to that in EXP 1 and EXP 2. 

Table 5 lists the e-folding times for EXP 4. They are comparable with those of EXP 3, except 
that  of mode 5 (around 3.5 days), which now represents soil moisture transfer throughout 
the entire soil column (compare with mode 6 of EXP 3 ,  around 30 days). Figure 5 displays 
the eigenvectors for EXP 4. Similarly to EXP 3 ,  the first eigenvector depicts a negative 
coupling between the soil moisture in t h e  first two soil layers. However, e, appears as a 
dominant variable in  this mode. The second mode again isolates e,. The third mode shows 
once more the coupling between T,  and e,. Modes 4 and 5 represent significant moisture 
transfer among the model layers. Again, there is a mode isolating Td, similar to mode 5 of 
EXP 3 .  

4.3 Sunimary of the four experiments 

The  results from all four experiments show common features even though different basic 
states and land covers were used. Tables 6 and 7 summarize the modes and associated 
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Table 5: As in Table 2 but for EXP 4. 

physical processes. The e-folding times range widely in each experiment, indicating quite 
different characteristic time scales for different land surface processes. There are several 
distinct modes, including those isolating ea,  Td, soil moisture transfer and coupling between 
T, and e,. 

The two different basic states generally do not produce large differences in the eigenvalues 
(EXP 1 verbus EXP 2, EXP 3 versus EXP 4).  However, the mode that  represents soil mois- 
ture transfer throughout the entire soil column shows a much shorter time scale when the 
basic state of 132 for the June mean is used. This suggests that  higher surface ternperature 
and vapor pressure and lower soil wetness causes a soil moisture perturbation throughout 
the soil column to decay more quickly. 

The  eigenvectors of EXP 1 and EXP 2 are also similar, as are those of EXI' 3 and EXP 4. 
However, the eigenvectors change significantly across the two groups. Note that  the modes 
of soil moisture teiid to be weakly coupled wi th  other land surface state variables. This 
property will be further addressed in the next section. 

I t  is hard to isolate the impact of vegetation in these experiments since the soil layer 
structure is significantly different between grass and bare soil. But the role of soil structure 
is clear. In the bare soil case (EXP 3, EXP 4),  the three modes representing soil moisture 
transfer have much shorter e-folding times compared with those with the grass cover (EXP 
1, EXP 2). Since the first two soil layers are shallow for the bare soil case, there is a negative 
coupliiig between these two soil moisture perturbations, as can be seen in the first panels 
of Figures 4 and 5. 

The mode isolating the Td perturbation h a s  a consistent e-folding time across the four 
experiments. This is explained by examining the linearized Td prognostic equation ( 2 ) .  
The solution of the linearized equation shows that the e-folding time of a Td perturbation 
is determined mainly by the soil heat capacity and the depth of the soil layer where the 
temperature varies slowly and does not have significant diurnal variability. In the Mosaic 
LSM, these parameters are the same for grass and bare soil. 
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Mode Description 
Dominant e, perturbation. 
CouDline: between T, and e, Derturbations. 

Table 6: Description of the eigenmodes derived from EXP 1 and EXP 2. The e-folding 
times for EXP 2 are given in parentheses. 

Mode # 
Mode 1 
Mode 2 

~ ~~ 

Dominant Wl perturbation. Mode 3 
Coupling of soil moisture in the three soil layers. Mode 4 
Moisture perturbation in the deep layer has 
the opposite sign of that in  the upper two layers. 
Dominant Td perturbation. Mode 5 
Coupling of soil moisture. Signs of the soil moisture Mode 6 
perturbations are the same in the three layers. 

Mode Description Mode # 
Coupling of soil moisture between the upper 
two soil layers. In EXP 4, this coupling is 
associated with an e, perturbation. 
Dominant e, perturbation. Mode 2 
Coupling between T, and e, perturbations. Mode 3 
Coupling of soil moisture in the three soil Mode 4 
layers. Moisture perturbation in  the deep 
layer has the opposite sign of that  in  the upper 
two layers. 
Dotniriant Td perturbation. 
Coupling of soil moisture. Signs of the soil moisture 
Perturbations are the same in the three lavers. 

Mode 1 

Mode 5 (6) 
Mode 6 (5) 

e-folding Time 
5.07 (5.00)min 
19.67 (16.88) min 

e-folding Time 

3.55 (4.35) min 

4.96 (5.24)min 
28.03 (25.20) min 
1.08 (1.46) hr 

11.87 (13.06) day 
30.04 (3.56) day 

I 

7.62 (4.61) hr 
3.30 (3.59) day 

11.52 (11.46) dav 
104.85 (58.49) day 
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5 Eigenanalysis of the soil moisture dynamics subsystem 

As we have seen, the rnodes representing the coupled evolution of soil moisture perturbations 
in  all three layers have relatively long time scales, especially when there is a vegetation 
covering. This is important because it indicates that initial soil moisture errors will persist 
for a long time during nonlinear model integrations. Since these modes are only weakly 
coupled with other land-surface state variables in most cases, as suggested by the eigenvector 
patterns shown in  Figs. 2-5, We therefore further examine the soil moisture dynamics using 
a 3 x 3 soil moisture dynamics subsystem. 

The soil moisture dynamics subsystem consists of equations (4),  (5), and (7. For conve- 
nience, we simplify these three equations by assurriirig the following: (1) the ependcnce of 
the surface runoff rate R, on soil moisture is negligible, and (2) the soil wetness is moder- 
ate, therefore the relative humidity factor for the resistance to bare soil evaporation can be 
approximated as one. 

Following the same procedure as in Section 3a, let W, = w, + W:, we obtain the tangent 
linear model for the soil-moisture dynamics subsystem: 

- = BW' = ( b i , j )  w' dW' 
dt 

Here W' is a vector consisting of the three soil moisture state perturbations, and B is the 
3x3 Jacobian matrix of this soil moisture subsystem. By definition, B is a submatrix of 
the 6x6 Jacobian matrix A ,  with the two simplifications mentioned above. We obtain B 
analytically (the details of the derivation are not given in this paper). Again we evaluate 
this matrix with tlie basic states and land covering conditions described in Section 3b. The 
eigenvalues are solved numerically. The scaling magnitudes for the eigenvectors are also the 
same as those described in  Section 3c. 

We further examine the cubic equation for tlie eigenvalues. By applying several approxi- 
mations we are able to derive simple, accurate, and explicit expressions that  relate the key 
parameters of the system to the eigenvalues and the e-folding times. 

5.1 Eigenvalues and eigenvectors 

The tangent linear matrix for the soil moisture subsystem is nearly identical to  the corre- 
sponding submatrix of the full system for each of the four experiments. The magnitudes 
of the elements generally differ from those of the full system by less than 1%. Again, all 
eigenvalues are negative and real. Table 8 lists the e-folding times of the subsystem for the 
four experiments. The modes of EXP 1 and EXP 2 again exhibit longer time scales than 
those of EXP 3 and EXP 4. The time scales are comparable with the corresponding ones 
derived from the 6-equation system (see Tables 6-7), except mode 1 for EXP 2 and mode 
3 for EXP 4. These two rriodes in the six-equation system exhibit strong coupling between 
soil moisture and other state variables (see Figs. 3 and 5). 

Figure 6 illustrates the three normalized eigenvectors for the soil moisture subsystem with 
the conditions of EXP 1. They agree quite closely with the corresponding modes of the 
full system (Fig. 2, modes 3, 4, and 6). Similarly, the normalized eigenvectors of the 
subsystem with the conditions of EXP 2, EXP 3, and EXP 4 exhibit close agreement with 
the corresponding modes of the full  system shown in Figs. 3-5, even though some of these 
modes are strongly coupled with other state variables i n  the full  system. This indicates that 
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‘Pable 8: The e-folding times derived from the TLM of the soil moisture dynamics subsystem 
for the four experiments. 

1 EXP 4 1 4.34 min 1 1.63 hr 1 12.37 day 1 

the behavior of soil moisture perturbations in the full TLM can be approximated reasonably 
well by their behavior in the 3 x 3 TLM. 

5.2 Key parameters 

We now apply three successive simplifications to  the 3 x 3 soil moisture dynamics subsystem 
that lead to  explicit expressions for the dependence of the e-folding tirne scales on the key 
parameters. The e-folding time scales listed in Table 8 provide a baseline for comparison 
with the results of the approximations. 

Approximation 1 

We write the tangent linear matrix B as 

wliere a ,  d,  and g < 0, and b,  c, e ,  f > 0 when B is evaluated with the basic state values x 
described in  Section 3. The characteristic equation for the eigenvalues X is: 

x3 - ( U  + d + g)A2 + (ad+  ag + dg - bc - e f ) X  - (adg - a e f  - bcg) = 0. (16) 

Equation (16) is an expanded form of 

(A  - A,)(A - A,)(A - A,) = 0 

and the coefficients of the equation (16) are determined by the roots X j ( j  = 1 , 2 , 3 ) .  For 
example, a + d + g is the sum of three roots, XI + A2 + A,. 
Table 8 shows that three eigenvalues are separated from one another by an order of rnag- 
nitude or more for each experiment. We adjust the approximation based on the clear 
separation of the three time scales. We write (16) as 

A3 - C 2 A 2  + CIA - CO = 0. 

A 1  E iI =c2 = a + d + g ,  

(17) 

(18) 

The roots A j  can be approximated, from the largest to the smallest, by: 
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C1 a d f a g t d g -  b c -  ef 
c2 a + d + g  

co 
C1 

A z Z A 2 = - =  

A 3 Z A 3 -  - = 

, 

a d g  - ae f - bcg 
ad + ag  + dg  - b c -  e f '  

The corresponding approximate e-folding times 
with those in  Table 8. 

are given i n  Table 9. They agree well 
A, 

Table 9: The approximate e-folding times derived from equations (18) to  (20). 

Approximation 2 

Further simplification is applied to  equations (18) to (20) by neglecting small terms. Since 
the matrix B for EXP 1 (EXP 3) is very close to that for EXP 2 (EXP 4) ,  only EXP 1 and 
EXP 3 are discussed here. 

For EXP 1, a and b have the same magnitude but opposite signs, and the other elements are 
one order of magnitude smaller than a and b. Furthermore, a + b is a n  order of magnitude 
smaller than a or b ,  and c + d + e is three orders of magnitude smaller than c,  d ,  or e.  
Therefore in  the case of EXP 1 the approximate eigenvalues i i  defined in Equations (18)- 
(20) are further approximated by xi, defined as follows: 

- 
X I  "= A1 c a, (21) 

where we have used the approximate relation g E -0.5e. The corresponding approximate 
e-folding times -1 are 7.80 hours, 3.15 days, and 128 days, respectively, in good agreement 
with those shown in Table 8. 

For EXP 3 ,  the magnitudes of a ,  b ,  c ,  d ,  and e are similar, whereas f and g are about two 
orders of ma,gnitude smaller. Again la + 61 << la1 and I C +  d +  el << IcI. Therefore we get: 

A, 

A 1  cz A 1  = a + d ,  (24) 
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dW' 
bi.1 2 A t  

where we have used the approximate relation d 2 2 . 7 ~ .  The corresponding approximate 
e-folding times 2 are 3.40 minutes, 1.28 hours, and 26.0 days, respectively. Again these 
values are close to those shown i n  Table 8. 

A, 

bi.2 h . 3  

Approximation 3 

To get explicit relationships between the parameters or parameterizations and the e-folding 
times we further simplify the formulae above by including only the dominant terms in each 
element of matrix B. Tables 10 and 11 list the dominant terms for EXP 1 and EXP 3, 
respectively. The dominant terms for EXP 2 (EXP 4) are similar to those of EXP 1 (EXP 
3). The notation shown in these tables is listed below: 

K i ,  &: soil hydraulic conductivity, and soil moisture potential in  the ith layer 

p: soil parameter related to the soil pore size distribution index 

dZ,,,: mean depth between the ith and j t h  soil layers 

For both grass and bare soil land conditions, the terms representing the impact of soil 
moisture fluxes on the evolution of soil moisture perturbations are important. The influence 
of evaporation and evapotranspiration does not stand out as a significant factor, because 
the selected basic state soil moisture values are not dry. 

Table 11: b i , j ,  dominant terms of the tangent linear matrix of the soil moisture dynamics 
system, equation (15), wi th  a bare soil land cover condition (EXP 3).  

For EXP 1, the resulting expressions are: 
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- 2 ( V  + 3)83,00 
3 w, A3 2 

The two of the corresponding e-folding times are 8.31 hr and 3.16 days, in good agreement 
w i t h  those of ‘rable 8. 

The first expression shows that the e-folding time 2 is proportional to the rnean depth 
6Z1,2 and basic state soil moisture w1, and inversely proportional to the soil hydraulic 
conductivity K z ,  soil moisture potential $1, and soil constant b. Similarly, the e-folding 
time of the second rnode increases with ~ Z , , J ,  wz arid w3. I t  decreases with soil hydraulic 
conductivity IC3 and soil moisture potentials $2 and $3. The third e-folding time increases 
with the basic state soil moisture w3, and decreases when the moisture flux Q3,00 through 
the bottom increases. Note that the soil nioisture potentials are negative, and that the 
soil moisture fluxes Q1,Z and Q2,3  are negative with the selected soil moisture basic state, 
fi’3 > w, > w1. 

For EXP 3 ,  by substituting the dominant terms, we get: 

A 1  2 b l , l  + b 2 , 2 ,  

o.37Pw1<3P$2 
A2 E 

6 2 2 , 3 w 2  ’ 

Magnitude of e-folding time 
decreases with: 

Magnitude of e-folding time 
increases with: 

The three corresponding e-folding times are 3.40 min., 0.70 hours, and 26.5 days, respec- 
tively, with same magnitude scale as those of Table 8. 

The relationships discussed for EXP 1 hold similarly for EXP 3 .  Table 12 sunimarizes 
these relationships between the e-folding times and the key pararneters as well as the basic 
state. Of the key parameters, the mean depth between adjacent soil layers, 621,~ and 6 2 2 , 3 ,  
mainly accounts for the large differences in the e-folding times between the experirnents 
with vegetation and without vegetation; the other key parameters are the same for grass 
and bare soil conditions in  the Mosaic LSM. 

soil hydraulic conductivity: 

soil hydraulic potential: 

soil constant: 

basic state soil moisture: 

mean depth between soil layers: 

K z ,  K 3  

$1, $2,  $3 

P 

wl, w’2,w3 

6Z1,2, SZZJ 

Table 12: General relationships between the e-folding times and key parameters of the soil 
moisture subsystem. 

17 



DAO OJ$ce Note 2002-01 

6 Conclusions 

This study explores a tangent linear analysis to  a land surface model using a reasonable 
basic state and a simple land surface condition at the HAPEX site in summer-time. Several 
simplifications are made in the derivation of the TLM, including the assumption of a con- 
stant tangent linear matrix and the exclusion of interception storage. The eigenanalysis of 
TLM readily yields the characteristic time scales and the structure of the perturbed states of 
the Mosa,ic LSM. It effectively synthesizes the impact of different basic state and vegetation 
conditions on the linear evolution of initial errors. It also quantifies the intrinsic variabil- 
ity of the Mosaic LSM. An understanding of these features is important for developing a 
land-surface data  assimilation scheme and for improving the physical parameterizations of 
ail LSM. 

The main results are summarized as follows: 

(1) The Mosaic LSM exhibits a wide range of internal variability. The e-folding times of 
the different modes range from a few minutes to several months. Modes representing the 
evolution of perturbations in  surface temperature and surface moisture exhibit short time 
scales. The modes representing the evolution of deep soil temperature perturbations and 
soil moisture perturbations coupled within the whole soil column exhibit longer time scales. 
‘I‘he mode representing the deep soil temperature (Td) perturbation is weakly coupled to 
the other land-surface variables and has a consistent e-folding time across the experiments. 

(2) The e-folding time scales depend clearly upon soil layer depth, soil parameters, and 
basic state conditions. In particular, the modes representing the behavior of soil moisture 
perturbations have significantly longer time scales for the deep soil layer. The influence 
of the difference in basic states studied here is small because they are rather similar to  
each other. However, warmer surface temperature and higher surface-air moisture tend to  
shorten the e-folding times. 

(3) For the simplified soil moisture dynamics subsystem, the terms representing soil mois- 
ture fluxes are the most important factors for determining the time scales. The effect of 
evaporation and evapotranspiration is much less significant, simply because we have cho- 
sen a fairly moist basic state soil moisture. The key parameters determining the e-folding 
time scales include the mean depth between soil layers, the soil hydraulic conductivity and 
potential, the soil parameter p, and the basic state soil moisture. Deeper and wetter soils 
have longer time scales, and larger soil parameter ,B and higher soil hydraulic conductivity 
and potential tend to shorten time scales. 

(4) The Mosaic LSM is stable for the basic states used. Any initial perturbation, or ini- 
tial error, will decay with time. The formulation of the Mosaic LSM appears to prevent 
instabilities. 

The results qualitatively agree with previous studies. In particular, the importance of accu- 
rate soil moisture and the longer time scale of soil moisture have been pointed by previous 
studies (i,e., Robock et  al. 1998; Schlosser et al., 1997; Vinnikov et al. 1996; Yang et  al. 
1995; Yang et al., 1994). For example, Robock et  al. (1998) gave a comprehensive evaluation 
of soil moisture simulated by the models of Atmospheric Model Intercornparison Project 
(AMIP) based on soil moisture observations. ‘They pointed out a long-term (1-4 months) 
scale in soil moisture variation and that the key parameter of soil field capacity is the max- 
imum soil moisture held in a column. Soil layer structure is related to  this parameter. Our 
study provides a new perspective to view these time scales and key parameters. 

We must be careful when generalizing the results of this study. First, the results were ob- 
tained wi th  respect to two types of land conditions, and the basic state was held constant 
in  time when deriving the TLM. For different atmospheric and vegetation conditions, eigen- 
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values and eigenvectors will be different. The methodology employed here does not apply 
directly to an actual time-varying basic st,ate. Second, the tangent linear approach itself 
applies, in principle, to  small perturbations only. The linear approximation does not always 
hold. A thorough discussion regarding this issue is given by Errico (1997). Finally, the 
precise interpretation of the eigenmodes we have obtained depends on our choice of scaling 
magnitudes. These were derived empirically based on standard deviations from the control 
runs. They are perhaps comparable to measurement uncertainties, but would be different, 
for instance, for different land surface regimes. 
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Monthly m e a n  diurnal cycle (June 1986) 
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Figure 1: Monthly mean diurnal cycles averaged from the second June of a three-year 
Mosaic LSM integration forced by a time series of observed atmospheric conditions a t  the 
HAPEX-Mobilhy Caumont site. Upper panel: water vapor pressure in  canopy air e, (solid 
line) and 2-meter water vapor pressure e2m (dashed line), in hPa. Middle panel: ground 
temperature T, (solid line), deep soil temperature Td (long-dashed line), and 2-meter air 
temperature T2m (short-dashed line), i n  Co. Bottom: soil wetness in the first layer SWI 
(short-dashed line), root layer SW, (long-dashed line), and the deep layer SW3 (solid line). 
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Figure 2 :  Six normalized eigenvectors, in order of increasing time scale, derived from the 
TLM for EXP 1. A ba.r denotes the magnitude of each variable. 
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Figure 3: Same as Fig. 2 but  for EXP 2. 
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Figure 4: Same as Fig. 2 but for EXP 3. 
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Figure 5 :  Same as Fig. 2 but for EXP 4. 
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Figure 6: Three normalized eigenvectors, in  order of increasing time scale, derived from the 
soil moisture dynamics subsystem under the conditions of EXP 1. 
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