














Also from equation (59e) it is seen that

Qi'by = X\
N

= Y ALW/R7 (wf - hwi) . (86)
i=k

Both equations (85) and (86) involve the true state w}, whose evolution is described as

Wi = Apk_1Wi_,+by
= Apwi+ Agiby + Agsbo+ ...+ Agpoibiog + by, (87)
hence we have '
wi —hpwi = dp — hi(Apdx+ A by + Aggba+ ...+ Appoibeo1 + by) (88)

Using equation (88), we can rewrite equations (85) and (86) in a compact formula
D 'z2=GTR'(d - Gz) . (89)
Therefore, the solution of the 4D-PSAS is given as
z=DGT(R+GDG")"'d, (90)

where (R + GDGT)~!d is solved as the solution of a minimization problem. It is shown, in
the next section, that the evaluation of the multiplication of GDGT with a vector requires a
forward model integration and a backward model integration.

3.4 Representer method

Here we give a brief description of representer method (Bennett, 1992; Bennett et al., 1996),
which is another approach to solve the same problem. With the same cost function as 4D-VAR
and 4D-PSAS, the representer method solves the Euler-Lagrange equations (59a) - (59e) by
searching the (N + 1)-dimensional space of representer coefficients.

The estimates of wi is given by:

N
Wi = Wi+ O Tkmtm (91)

m=0
where wi]o is the solution of the following forward model integration
wilo = Ak,k—lwi_qg ) (92a)
woo = W', (92b)
and ry,, is the representer function, satisfying
Tkm = Apk-1Tk-1,m + Qkli,m {93a)

rom = Bogp . : (93b)
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The representer adjoint variable ay ., satisfies
Ckym — A{+l,k0‘k+1,m = h{bm , (94a)
aNm = hqj\}(;]vm . (94b)

Substitution of equation (91) into the Euler-Lagrange equations (59a) - (59e) yields a linear
system for the vector t of representer coefficients:

R+Hr)t=d, (95)
where H is a block diagonal matrix with hy as block diagonal elements.

This approach requires 2(N + 1) + 1 integrations (1 forward integration for w,{lo, 1 forward

integration and 1 backward integration for each of the N 4 1 representers and their adjoints)
followed by solving the linear system (95).

3.5 Kalman smoother

Kalman smoother (Evensen, 1997) is similar to the analysis method used in the Kalman filter
except that the smoother estimate is calculated over the whole space and time domain [to,tn]:

we =W/ 4+ @HPHT ¢ (96)

with
HP'HT+R) t=d, (97)

where W®, W/ and the forecast error covariance P/ over the whole space and time domain are
defined as

b / /
wgw v; B P(fl,1|0 e P?,N|0
w? w P P ... P
we=| W wro| TN p/—| 00 T LNl (98)
a f f
WNiN Wiio P ojo P{v,llo s PN,N|0

w,{m is also the solution of the forward model integration (92a) — (92b). The posterior error
covariance matrix P? can be calculated as

P* = (I- CH)P/ (99)

with C defined as
c = HPHTHPHT +R)™" . (100)

Evensen’s original smoother is an ensemble smoother, i.e., the error covariances P/ and P? are
computed using a Monte Carlo method. This method can achieve more accurate evaluations of
the error covariances for strongly nonlinear dynamical systems, but it is not feasible for high
dimensional problems. If we expand the forecast error covariance P/ in terms of B and Q, it
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can be shown that the analyses produced by Kalman smoother are identical to those produced
by 4D-PSAS (see Appendix A) except that Kalman smoother yields the analyses over the whole
time domain at the same time, while 4D-PSAS yields only the analysis at time ¢ for the initial
condition, the analyses for time ¢ > tg are produced hy issning a forecast of equation (59d) from
the initial condition.

For Kalman smoother, the forecast error covariance P/ over the whole space and time domain
(equation (98)) can be computed as

pf = glefe!T}

€olo €ojo
_ 8 Aleglo + b] AleO‘O + bl
Anego+ Anibi+...+by Anego+ ANnby +...+ by
= UBUT +vQVvT, (101)
where
I 0 0 0 0
A 0 I 0 0
U= -l , V = 0 A?,l I 0
AN 0 An: Anp I
Therefore, we can see that equation (100) can be rewritten as
C = (UBGT +VvQ¢T) (GBGT +6QGT + R) !, (102)

where Q and G are defined in Appendix A. Kalman smoother (equation (96)) then is of the form

we =W/ + (UBGT +vQgT) (GBGT +GQGT+R) 1 d. (103)

In 4D-PSAS, it is shown from equation (169) in Appendix A that the solution of initial condition
for 4D-PSAS is given as

wiy = w’ + BGT(GBGT + 6Q¢T + R)™\d,, (104)

and from equations (168) and (166) in Appendix A, the solution for the model errors can be
obtained as

b=Q¢" (GBGT+G6Q¢T+R) ™' d, (105)
0
_ - b,
where b is defined as b = X . Now a forecast integration of equation (59d) can be issued
by

from the initial condition WLS[N* using equations (104) and (105), to produce the analyses wi,y

20



for k =0,1,..., N. Written in a compact formula, it is easy to show that the analyses WiN are
given as the same form as equation (103) of Kalman smoother.

Remarks:

e From this section, we see that all 4D-VAR, 4D-PSAS, FLKS, Kalman smoother, and the
representer algorithms can be derived from the same cost function, especially, 4D-PSAS,
the representer, Kalman smoother and FLKS are the solutions of the same discrete Euler-
Lagrange equations, which also provides the gradient of the cost function via adjoint model
for the 4D-VAR algorithm. If the solution of the problem is unique, and the algorithms
converge, then we may expect that the analyses produced by these algorithms are the
same. These algorithms are essentially equivalent for linear dynamics in the context of
fixed-interval smoothing.

e On the other hand, these algorithms also have their own distinct features. For fixed-
interval smoothers, i.e., 4D-VAR, 4D-PSAS, representer algorithm and Kalman smoother,
the N + 1 time levels of observations are used simultaneously (equation (90)), and the a
priori estimation are specified to be the pure model trajectory starting from w®, while for
the FLKS the observations are used sequentially, i.e., one time level of observations at a
time, and the a priori estimation is the current best estimation which incorporates all of
the observational information up to and including time tx_;. These differences determine
their different characteristics of implementation in practice.

e If the observations are assumed to occur at every time step, then the minimum of 4D-
VAR might be found in the analysis space of dimension n x (N + 1), the minima of
4D-PSAS, the representer and Kalman smoother are solved in the observational space of
dimension ZkN=0 pi, and FLKS is solved in the observational space of dimension px. Thus,
it is reasonable to expect that FLKS algorithm would be more feasible than the other
algorithms. Also, it is seen that 4D-PSAS and the representer algorithm are very similar,
so we will focus on 4D-PSAS algorithm thereafter.

Suppose the assimilation time length is [tg,?,], also we assume that the N + 1 observation
times coincide with the analysis time, m > N. It is shown from the results we obtained in this
section that, the analyses wle (for k = 0,1,..., N) produced by these algorithms, which use
all and only the N 4+ 1 time levels of observations, are identical. However, we should be aware
that in this case, only one implementation of 4D-VAR or 4D-PSAS is performed over the entire
assimilation period, and the FLKS algorithm is actually not fixed lag, i.e., one lag calculation
is performed for the first time level of observations, two lag calculations are performed for the
second time level of observations, and so on, until N lag calculations are performed for the last
time level of observations. In the other words, the retrospective analysis at time ¢ produced in
this way incorporates N future time levels of observations, at time t; N — 1 future time levels
of observations, ..., at time ty_; 1 future time level of observations, and at time ¢y actually
the filter solution.
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If a large amount of observations are available, then it is not feasible to implement one 4D-VAR
or 4D-PSAS over the entire observational period. Generally, the total time levels of observations
are divided into several subsets, cach subset contains N -+ 1 time levels of observations, then
one implementation of 41-VAR or 4D-PSAS will be performed for each subset, that is, the first
implementation is over the period # to ¢y, the second implementation is over the period ty to
tan, and so on. However, the analyses generated in this way are not as good as those generated
by FLKS algorithm with fixed lag N except the analyses at times 1, tn, tan, etc.. The only
practical way to produce the same quality analysis for each point from these algorithms, in which
the same time levels N+1 of observations are used, is to perform moving 4D-VAR and 4D-PSAS
at every point with fixed-interval N given w® = Wlflk——l and B = Pilk_l and to perform I'LKS
with fixed lag N.

3.6 Fixed-point smoother perspective

Furthermore, we would like to take a look of FLKS from the fixed-point smoother perspective
~ the reanalysis at time £x—; with fixed ! is produced by incorporating future observations at

times ¢x—j;y1, tk—i+2, .-+ tk- The conditional probability density function of FLKS for fixed lag
l, p(wi_,/WZ$), can be written as
PWLLAWE) =~ pwh Wi WEt, WEiga - WD
— a1 WE )R (W)
e i Wi, WP WE ) . (109

1. Linear perfect model

For the linear perfect model case, if the observations are independent, then the conditional
probability density function can be further simplified as

p(Wo— - ) fe) (2]
p(wi_|WR) = ‘?(“%é)—lp(wk—llwi—l)p(wz—lﬂIWZ—I) - p(WElwi_)p(Wi_[WE_i_1)
k
(107)
thus the cost function Jrp; is of the form
1 _
Jrp1 = §(W§c—l - wli—l]k—l—l)T(Pi—llk—l—l) (Wit — wI{—llk—l-—l)

1k

+3 (wf = hiAipwi ) TR (WE — hiAi e wh ) (108)

i=k—1

Remark:

Compared with equation (49), equation (108) is identical with the 4D-PSAS cost function Jn
given k=1=N,wl_,_, ,=w'andP] , =B
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If the observations are assimilated sequentially, the conditional probability density function of
FLKS for lag I, p(w}_;|W32), is given as

0 p(WO— ) [0} e}
p(wi_ |W3) = MTICIOC)IP(WHWLI)P(WLﬂwk—l) (109)

with the cost function Jrpz of the form

1 a a - T
Jrp2 = 5(“’2-1 - wk—l]k—l)T(Pk—”k—‘l) H(Whot — wz-—l|k—1)
1
+§(Wz — hkAkJC_[WL_I)TR;l (WZ - hkAk,k—lw;c—l) . (110)

A direct proof is provided in Appendix B to show that the 4D-PSAS solution is the same as
the FLKS solution derived from cost function Jrpy at tg, and 4D-PSAS can be written as a
sequential algorithm as well.

2. Linear imperfect model

For the linear imperfect model, under the assumption of Gaussian distribution, the information

. » t . 3 .
about mean and covariance is needed for p(Wg_;, Wi_;,4,..., Wg|Wi_;) in equation (106). Since
we have

0 o O xrt
E{WE 1, WE—rh1s - WEIWE )

g{wz—ﬂwi?l}
S{Wz—m |Wk—z}

E{wilwi_;}
E{hp_iwi_, +bY_lwi_}
g{hk_1+1Ak_l+1,k—lW£_l + hyipr b + b4 ‘wic—l}
E{hk Ak k-tWh_y + e Apk-tiibeoter + o+ heAg o1 biot + hiby + b[wi_}
hy_wi_,
h]c_[+]Ak—-l+1,k—lw7c—l

k hy A k1w,
_ G'wl, (111)

and the covariance
£{(W° — E{WoIwh_}) (W7 = E{W°Iwi_ ) Iwi .}

0
k-1

) he_rpibe—i1 + by

hiAgk—i+1br—ig1 + ...+ hAgp_1bry + hibg + bj
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bi_;
hr_i41br—i41 + bR_ 4 .
. |wo
\ heAgi—ir1brop1 + ...+ hpAg b1 + hibg + b7
=R +6'Q¢", (112)
where R’ is the block diagonal matrix with R; as the diagonal block elements and W is the
observation vector with w? as elements for i=k -1, k—141,...,k, and
hy_; 0 0 ... ©
& - by 11 Ak—t14-1 Q= 0 Qiiy1 ... O
hp Ak k- 0 0o ... Q
and
0 0 o ... 0
g’ _ 0 hk_[+1 0 . e 0
0 hiApk—i141 brArk-142 ... hy

then the probability density function p(W?°|wi_;) is proportional to
0 1 . N . A
P(W°|wj_,) o exp {—§(W° - G'wi )T (R'+6'Q¢")" (W’ ~ G'Wi-l)} . (113)
Therefore, the conditional probability density function p(w’_,|WZ$) is given as
p(wh_;|W3) = const - exp (=Trps) , (114)

where the cost function Jrps is of the form

1 T f _
Jrps = 5(“’2-1—‘”1{-%_1_1) (Prtfe—t-1) I(ch—l—wi-zw-z-l)

1 = _ _
+53 (W = Gwi )T (R +G'Qe™)™ (W - G'wl)) . (115)
Givenk=1=N, wb = Wi—llk—l-l and B = P£—I|k—l—l’ it is shown that the cost function Jrp3
for p(wt_;|WZ$) is the same as the cost function Jrps for p(w§|W$;) derived in Appendix A.

Also, it is shown in Appendix A that 4D-PSAS cost function Jn (43) has the same solution for
the state increment as the cost function Jrps (173) does. .

4 The computational aspects of 4D-PSAS and FLKS algorithms

We discussed the solutions of 4D-VAR, 4D-PSAS and FLKS and their relations in the above
sections. In this section we will mainly focus on the computational aspects of the numerical
algorithms. Since Courtier (1997) discussed the duality between 4D-VAR and 4D-PSAS and
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showed that they are equivalent in terms of results produced and cost, we will only compare 4D-
PSAS with FLKS in this section. For both 4D-PSAS and FLKS the minimization calculations
are performed in the observational space as in GEOS DAS.

Suppose m time levels of retrospective analysis are needed to produce by assimilating N + 1
time levels of observations at and beyond the analysis time level, that is, the assimilation time
length is m, and m > N +1. Then, totally m+ N time levels of observations will be assimilated
in order to obtain the retrospective analyses at m analysis time levels. Here we aqsume that
the observation time coincides with the analysis time. We also assume that wj = wk|k , and

B, = Pk|k—1 (k=1,2,...,m) at time t; for each implementation of 4D-PSAS or 4D-VAR.

As we pointed out in the previous section, one implementation of 4D PSAS or 4D-VAR is
required for the retrospective analysis at each time level given w} = wklk , and By = Pi]k .
(k = 1,2,...,m) in order to produce the same quality analysis as that produced by FLKS
algorithm with fixed lag { = N. In the following we will give a detailed description of their
implementations for the linear perfect and imperfect model cases, respectively.

4.1 Linear perfect model

1. 4D-PSAS
From equation (54), we see that the solution of 4D-PSAS can be rewritten as

éx =BGTq, (116)
where the N, - vector q ( N, = SN 0Pk ) is the vector of analysis increment in observation

space, satisfying o

In 4D-PSAS, the N, x N,, linear system (117) is solved by minimizing the functional F
1 _ =
F(q) = aqT(GBGT—kR)q—qu. (118)

Defining the N, - vector s = GBGTq, which can be calculated as

So hOBT

Sh h]A]BT

. = . ) (1]9)
SN hyANBT

where
Tzhgqo+A1Tth1+ +ANhNQN .

Algorithm 1. 4D-PSAS:




e (1) Specify the initial guess of vector qn,x1-

e (2) An iterative minimization method (e.g. conjugate gradient method) is employed to
solve the N, X N, linear system (117) for quantity q, in which the vector s and the values
of the functional F(q) and its gradient need to be evaluated at each iteration as following:

— (a) Integrate the adjoint model backward in time with null initial condition for the
adjoint variable p with the forcing term hZTqi at time ;. Then, multiply the result
of the adjoint integration by B, we denote it by Zg.

— (b) Integrate the tangent linear model with Zq as the initial condition. At each time
t;, compute
S, = h,’ﬁ,’ .

— {c) Calculate the values of the functional F(q) and the gradient of the functional.

e (3) Integrate the adjoint model backward in time for the adjoint variable p with the
forcing term hf q; at time t;. Then the retrospective analysis increment at time ¢, is the
multiplication of the result of the adjoint integration with B.

We can see that one implementation of 4D-PSAS for each time level of retrospective analysis
needs one application of modified PSAS (with the integrations of tangent linear model and
adjoint model embodied) to a large problem (equation (118) ) with the control variable’s size
of N, x 1. The computational procedure for one implementation of 4D-PSAS is described as in
Algorithm 1.

Totally, m applications of modified PSAS to a larger problem with control variable (q)n,x1 are
needed for the retrospective analyses over the entire assimilation time length. Each implementa-
tion of 4D-PSAS requires the memory storage for (d)n,x1, (Q)N,x1, (W®)nx1, and the memory
storage or calculations of (B)nx, and (Rg)p, xp, Where k=0,1,..., V.

2. FLKS

The FLKS algorithm for linear perfect model case is derived in section 2.2:

a _ a -1 f Ty—1
Wik = Wioig—1 + Ag o1 Prpo b Te Vs

a —_ a -1 f T -1
Wioak = Wigp—1 t Aps_oPip—ihi Ty vk,

a _ a -1 f T -1
Wik = Wiotk—1 T Ax e Prp—ibe T Vi -

It is seen from equation (39a) that the term P£|k_1hz T;' vy is equal to the analysis increment

Wik~ wlf]k—l of the filter portion, which is already available. It is one application of PSAS (Da
Silva et al., 1996), whose algorithm consists of solving one pi X p linear system for the pj -
vector qj

Ty aqr=vi ,
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and subsequently evaluating the matrix-vector multiplication P,jc‘lk_lh,qgw qk, then obtaining the
analysis wi, from the equation

Wik = wi]k—l + P£|k_1hf qk -
In PSAS the vector qy is solved by a conjugate gradient method which minimizes the functional
F(ax): .
F(ax) = 50k (heP{,_ b + RiJax - af vk - (121)

It is obvious that, for linear perfect model, only one application of PSAS in a space of dimension
pi x 1 is needed for the filter analysis at each observational time level, no more PSAS is nccessary
for the retrospective analyses.

Therefore, the algorithm of FLKS in the lincar perfect model case comprises one application of
the quasi-inverse model to the analysis increment (Pu et al., 1997), or solving a linear system
for a pg-vector fy_;

App-ifii = P£|k_1hz ' vk,

then calculating the retrospective analysis by

a @ -1 S T y-1
Wiilk = Wicije—1 + A iiPipoi by T v

Since m + N time levels of observations are needed to be assimilated in order to obtain the
retrospective analyses at m analysis time levels, total m 4+ N integrations of quasi-inverse
model will have to be carried out. The memory storage required is for the analysis increments,
(wz—ilk—l)"ﬂ’ and the memory storage or calculations are also required for (Pilk—l)”x” and

(Ri)pyxpi- No additional application of PSAS is needed in the smoother portion. Therefore, it
is reasonable to expect that the implementation of FLKS algorithm is much cheaper than that
of 4D-PSAS algorithm.

4.2 Linear imperfect model

1. 4D-PSAS
The solution of the 4D-PSAS formula for the linear imperfect case is given as
z=DGTq, (122)

where Np-vector q satisfies
(GDG" +R)q=d . (123)
Equation (123) is solved by minimizing the functional F
1 .
F=34'(GDG" +R)q - q’d . (124)
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Introducing s = GDGTq, since

hg 0 0 ... 0 B o0 o ... 0
h;A, h, 0 ... 0 0 Q 0 ... 0
G = h2A2 thg,l h2 e (1] , D= 1] 1] Qz [P 1] ,
hyAn hNAN,l hNANQ ... hy 0 0 0 ... Qn

hence, the vector s is calculated as

So hOBT

s1 hiA{BT+ h Q1 E;

S2 — hyAsBT + ho A3 1QEq + hoQ2E, . (125)
SN hyANBT + hbyAN 1 Q1E1 + hyAN2Q2E; +...+ hyQNEN

Here T, Eq, Eo, ..., and Ey are defined as

T=hiqo+ATh{qi+...+ AfhRan ,
N
E; =Y Al bhlq;,
=1

N
E; =) Al h]q:,
1=2

En = hyqn .

As pointed ont in Courtier (1997), the dimension of the control variable is the same as in the
linear perfect model case, but one has to store the adjoint variable p; at time ¢; which is used
to evaluate the forcing Q;p; of the subsequent tangent linear integration.

Algorithm 3. 4D-PSAS:

o (1) Specify the initial guess of vector qn,x1.

e (2) An iterative minimization method (e.g. conjugate gradient method) is employed to
solve the N, x N, linear system (123) for quantity q, in which the vector s and the values
of the functional F(q) and its gradient need to be evaluated at each iteration as following:

— (a) Integrate the adjoint model backward in time for the adjoint variable p with
h7q; as forcing term at time ¢;, and store the adjoint variable p;. Then, multiply the
result of the adjoint integration by B, we denote it by Zg.

— (b) Integrate the tangent linear model with Zy as the initial condition and Q;p; as
forcing. At time ¢;, compute



— (c) Calculate the values of the functional F(q) and the gradient of the functional.

e (3) Integrate the adjoint model backward in time for the adjoint variable p with h7q; as
forcing term at time t;, and store the adjoint variable p;. Then, the retrospective analysis
increment at time tg is obtained by multiplying the result of the adjoint integration by B,
and the model error b; at time ¢; is equal to Q; p;.

It is shown that one application of a modified PSAS (with the integrations of the tangent linear
model and adjoint model embodied) to a large problem equation (124) has to be performed to
obtain the retrospective analysis at one time level. The size of the control variable q in this
problem is of N, x 1. Totally, m applications of modified PSAS are needed to produce the
retrospective analyses for the entire assimilation time length.

It is noticed that the dimensions of the control variable of problem (124) and (118) are the same,
and the total applications of modified PSAS is also the same as that in the 4D-PSAS linear
perfect model case. However, compared to the linear perfect model case, much more memory
storage is required in the 4D-PSAS linear imperfect model case for all of the intermediate adjoint
variables p; and for all of the model error covariances (or one needs to prescribe them) at each
model integration time step. In this study the observations are assumed to occur at every
analysis time, we should be aware that generally the total number of model integration time
step is larger than the total time levels of the observations we use. Therefore, the requirement
of the memory storage for the model errors might be tremendously large.

2. FLKS

The numerical formula of FLLKS in the GEQS DAS framework are presented in section 2.2,
which are of the form:

Wik = Wﬁgk_l + P£|k_1 80 » (126a)
wlac—llk = Wi qlk-1 +P£_1|k_2 81, (126b)
Wiok = Wi_gpor +PL_jus 82, (126¢)
Witk = Wholjk—1 +Plfc—z|k-1—1 8 - (126d)

where Tk, g0, g1.- - ., & are given by equations (23) and (35), respectively,

Ty = WP, ,h{+Ry, (127a)
g = hIT;'w

= h{ qo, (127b)
g = |[I- h;crqr;l]hk—lpi_”k_z] Az,k—l g0

= Al 8 -hisar, (127¢)
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- T
& = [I - hz—lrkilhk-lpi-uk—z_l] Ak 14151 Bi-1

T T
= Aiip1p-18-1-hp . (127d)
Here the pi - vectors q; for ¢ = 0, 1,...,I satisfy the following linear systems
Tiqo = v, (128a)
Tro1q1 = hk—lpi_llk_QA’{,k—l 8o » (128b)
Tyrqn = hk—lP,{_,'ik_i_iA:{-‘_l.i_l,k—l gi-1 - (128C)

In the GEOS DAS framework, the [ + 1 linear systems for the py - vectors q; for : =0,1,...,1,
including one for the filter portion (equation (128a)), are solved iteratively by minimizing the
functionals F{(q;), respectively

1
Flao) = 5ai(bPf, b + Ri)ao - of v, (129a)
1
Fla) = 5Q1T(hk—1P£_1|k_2h{_1 + Ri—1)q1
—aihe1 Pl AT 80, (120b)
' 1
Fla) = —QIT(hk-lpi_”k_,_th_I + Ry-1)q

2
“QIThk—lpi—llk—l—lA£—1+1,k—l gi-1 - (129c)

It is shown that { applications of PSAS, are employed for [ lags at each observational time level,
with each application being to a small problem with control variable’s dimension to be of pi x 1.

Algorithm 4. FLKS:

At each observational time level k, with the availability of go from the filter portion, for lag
i=1,2,...,1,

e (1) Carry out one application of PSAS with modified forcing term as in equations (128b)
- (128c), which consists of

— (a) integrating the adjoint model backward in time from t;_; to tx_;y+1 with gy
as forcing, and storing the result as p. Then, multiplying p by hk—iPI{—i]k—i—l’ we
denote the result as c;.

— (b) using an iterative minimization procedure to solve one py x p; linear system for
the pg-vector q;

i gi=c;,

and subsequently computing the matrix-vector multiplication Pi—i|k—i—1hZ—i q;.
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e (2) Evaluate the matrix-vector multiplication PI{—ilk—i-l p, then obtain the retrospective
analysis wz_i‘k from the equation

_ T
wz—ilk - WZ—ilk—l + Pi—-i]k—i—l p- Pi—i[k—i—lh ~i Qi -

e (3) Go back to step (1) for the next lag.

Remark:

e At each observational time level &, one application of PSAS is needed for each lag ¢, where
i=1,2,...,1, that is, given fixed lag [ = N, N applications of PSAS are needed for the
retrospective analysis. Each PSAS is applied to a small problem with the control variable
q; of dimension pg x 1.

e In doing the retrospective analysis over the assimilation time length m with fixed-lag N, it
is necessary to carry out 1 application of PSAS for lag 1 at the 1st observational time level,
2 applications of PSAS for lags 1 and 2 at the 2nd observational time level, and so on, until
N applications of PSAS for lags 1,2,..., N at the Nth observational time level, then N
applications of PSAS for lags 1,2,..., N at each of the rest (N + k)-th observational time
level where & = 1,2,...,m. Therefore, the total number of applications of such PSAS is
N (%—*—1 + m) for m > N. Generally, m > N in the practical purpose for the retrospective
analysis. Hence, the total number of applications of such PSAS is roughly N x m.

Compared with 4D-PSAS algorithm, FLKS algorithm requires more applications of PSAS but
to smaller problems, which generally is more feasible. Comparing equation (123) with (128b)-
-(128¢), FLKS looks like a special case of 4D-PSAS with a block diagonal matrix. Moreover,
FLKS requires much less memory storage than 4D)-PSAS algorithm. Therefore, FLKS algorithm
is more suitable for doing retrospective analysis in the GEOQS DAS framework from a scientific
and computational standpoint.

5 Extensions to nonlinear model

It is clear that if the forward operator is not a linear function of wi, then the posterior probability
density function pis not Gaussian. The more nonlinear the forward operator is, the more remote
is p from a Gaussian function. Tarantola (1987) presented a detailed discussion about how the
nonlinearity affects the posterior probability density function p away from a Gaussian function.

In this section we extend the linear FLLKS and 4D-PSAS algorithms to nonlinear cases, discussing
two cases with different degrees of nonlinearity for FLKS and 4D-PSAS, respectively.




5.1 FLKS algorithm

As shown in section 2.1, the cost function Jrrxs for FLKS algorithm is given as
1 - -
Jriks = §(Wt -wW)T (P! (Wi - W)
1 -
5 (wE — (W)™ Ry (w — ba(wh) -

: . . f .
If hy(w}) can be linearized around Wiip_1» 1€,

hi(wh) = (Wi, ;) +bhi(wi - Wljcrllc—l)

= hi(Wl_,) + Ho(W! = W), (130)
where
- oh;,
h, = (——) (131)
8wa wlf]k—l

and Ho = (hg,0,...,0). This is the weakest nonlinearity case. The a posteriori probability
density function is approximately Gaussian, with its maximum likelihood point being given as

W = W+ PHG (HoP'HE + Ri) ™" (W5 — ha(w], 1)), (132)

and the a posteriori covariance being given as

P=[(PY~ + HIR M) (133)

Similar to the derivations in the linear case, the gain matrices of the FLKS can be derived as

}Ck!k = Pilk_lﬁzr]:l ) (1343)
Kk—l]k - PZfl,klk_ll_lZF;l ) (134b)
Kip = PZfz,klk_lleI‘? : (134c)
where . )

T = P, b] + Ry, (135)

then the FLKS analysis equation (132) can be rewritten as
Wik = Wl +Kigve (1362)
WZ—llk = WZ—l]k—l + }Ck—llkvk ) (136b)
WZ—zlk = WZ—llk—l + /Ck-ukvk ) (136¢)

where v}, is the innovation vector defined as

vi=wg — hp(wi,_,) . (137)
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The error covariance equation (133) can also be expanded as

e = (I- ’Ck|k}_1k)P£[k_1 : (138a)
Pee = Phogpor = ’Ck—llkﬁkpiflk-zlkq ; (138b)
P = (I- ’Ck|kl_1k)P£3c_l|k__1 . (138c)

If we also assume Ak,k_l(w,tc_l) can be linearizable around WZ—llk—U then

fa _ a T
Pri—ie—t = g{e£|k_1(ek—l|k—1)}

= f:{.Ak,,k—]ez_”k_](ei—llk—l)T}

aa
- Akvk—lpk—l,k—ﬂk—l

= (Pziz,ku:—l)T ) (139)

[ OA k1
nor= ()

k—1]k—1

where

For this weakest nonlinearity case, we see that solving such a problem is not more difficult than

solving a linear problem. The algorithm is the same as that for the strict linear case except that
A and h replace A and h, respectively.

If the lincarization of hy(w?) around w£ 41 18 no longer acceptable, but it is still lincarizable in

the region of significant posterior probability density, i.e., quasi-linear around the true maximum
likelihood point wz[k’

hp(wh) ~ hi(wiy) + hoo (W} — Wiik)

= hk(wZ]k) + Heo (Wt - wa) y (]40)
where Ho = (hoo, 0,...,0) and
- ohy
hoo - (a—‘”z) . ’ (141)
Wik

then the maximum likelihood point of this case is given as
W =W + PHL (M PHL + Ri)™! ((wﬁ = hy(wi ) + Hoo (W = W)) . (142)

Defining the gain matrices of the FLLKS as

K = Pl hLT;', (143a)
Kioe = PRl BLTY, (143b)
Kice = Pl BETE, (143¢)
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where . B
Ty =hePl, BT + R, (144)

then the FLKS analysis equation (142) can be rewritten as

Wzlk = W£|k_1 + Kk Vi (145a)
Wisilk = Wigpor + Kk-1kVk (145b)
Wik = Wi_mg + KeogVe (145¢)
where v}, is of the form
Vi = Wi — he(wiy) + Boo (Wi, — Wi, ) . (146)

It is seen that wzlk is also implicitly involved in equation (145a). Usually, a nonlinear iterative
procedure is employed for equation (145a), for instance,

Whlkr41 = w£|k-1 + Pilk—lf‘?(ﬁrpiqk-xﬁz +Ry)™!
(W8 = bW, )) + Be (Wi, — WD) S (147)

where r denotes the r-th iteration, and
- Ohy,
h, = | — .
( M) ,, (148)
w

Once the maximum likelihood point has been approached, the a posteriori covariance can be
computed as

P~ [(PY)! +HOTOR;1HOO]_1 : (149)

Same equations for error covariances can be obtained as equations (138a) - (138c) in the previous
case except that h; is replaced by h..

The calculation of Pi,ak—llk—l can also be based on the linearization of Ay x_1(wi_,) about
WZ—llk—l as equation (139) in the weakest nonlinearity case. The function can also be linearized
around the latest lag results available, it depends on whether we want it to be consistent with
the filter portion, and to be consistent among the calculations for different lags.

Generally, the second case is more expensive than the first case due to iteration procedure for
the filter portion in which the counter parts of the observational variables have to be computed
in every iteration. Of course, a linear/linearizable (around the a priori estimation) problem
can also be solved nonlinearly. This kind of trade-off between computational cost and accuracy
depends on how much we can gain. This is the case for 4D-VAR algorithm, in which the forward
operator is always assumed to be quasi-linear around the maximum likelihood point W¢ for all
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linear/linearizable and nonlinear problems, and the maximum likelihood point is always obtained
as the limit point of an iterative algorithm.

Moreover, we should be aware of that for the problem where the nonlinearity is too strong, the
linearizable approximation is no longer acceptable.

5.2 4D-PSAS algorithm

As seen in section 2.3, 4D-PSAS is derived from the cost function (41):

In = 5(wh=wh)TB™ (wh—w")
1 & L1
+g 2 (W= B (wi) TR (W = (i) + 5 Z bi Qi 'be .
Let
di = w§ — hi(Ax(wh) |
ox = wh — w'
and

5x(ty) = wh — Ap(wh) = App_1(Wh_1) — Apk—1(Ak—1(W?) + by,

then, for the weakest nonlinear case, if Ak,k_1(wi_1) can be linearized around Ak_1(wb), we
have

dx(tr) = Ak k—10x(tk—1) + by , (150)
where
OAL k-
Aot = ( S ‘) . (151)
W1 Ap_i(wh)

Also, since
hi(w}) — wg = hi(wh) — hi(Ax(w")) ~ di
if hy(w}) is linearizable around Aj(w®), then

hi(wh) — wi = hedx(te) — di (152)

by = (O . (153)
ow!
K/ Ax(wb)

Hence, equation (41) can be rewritten as

where

IN :—-6XTB_1(SX+ Z hk6x (tk) — dk)TR;](flk5x(tk) di) + = ZbTszbk (154)
k 0 k 1

It is seen that equation (154) is the same as cquation (43) except that hy replaces h; and A
replaces A. Therefore, solving such a linearizable problem is similar to solving a strictly linear
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problem. However, comparing the 4D-PSAS and FLKS algorithm, it is clearly shown that the
forward operators are linearized around the current best estimate W in FLKS algorithm, while
they are linearized around the trajectory starting from the initial guess w®. Therefore, the
requirement of linearization approximation for 4D-PSAS is much more strict than for FLKS
algorithm.

If the linearization around the trajectory starting from w® is no longer acceptable, but the for-

ward operators are still quasi-linear in the region of significant posterior probability density, then
we can linearize the forward operators aronnd the maximum likelihood point w°. Introducing

di = wi — hp(Ax(w?)) ,

ox =wh—wb,

and
ox(ty) = - Ak(wb)
~ [Ap(W?) — Ap(W®) — Ak p-1(Ar—1(W?) — A1 (w?))]
+ Ak k-10X(tk—1) + bi ,
where

OAL j—
Ak k-1 = (6—v:tk—l) , (155)
k=1 / Ay_i(w?)

also since

hi(wi) —wg = hy(wf) — he(Ag(wh)) -

~ hpéx(ty) — dy , (156)
where dj and hy are defined as
dr = di— [be(Arw?) - bu(An(W) - Bi(Au(w?) - Axw)] . (15)
hy = (g—h’%) , (158)
wk Ak(wa)
then equation (41) can be rewritten as
- L1 AR

In 6xTB 15x + = Z (hidx(tx) — dp) TR (hidx(tr) — +3 Z bl Q;'b,.  (159)

kO

Applying equation (155), equation (159) can also be rewritten as the following form, which is a
functional of éx and {b;},

IN = ;5xTB'15x+ ZbTQ,;lbk+

k=1

| N k-1 ) =

5 Z (hpArdx + he > Agkoibr—g — d'5) TR (hpArdx + by Y Ap gy — d's),
=0 =0 =0
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where
ko ,
dy=di - hp > Ar [Ak—l(wa) — Apt(W) = Ap_ppmio1 (Agmio1 (W) = Apoio1 (W ))] .
=0
(160)
Using the definitions of G and d in section 2.3 with hy, A and d; being replaced by hy, A and

', respectively, and the definitions of z, D and R, the cost function Jn can then be written
as a compact form:

1
IN = izTD_lz + %(Gz -d)"R(Gz-4d). (161)

Then the maximum likelihood point can be obtained using an iterative optimization algorithm,
e.g., quasi-Newton method,

z41 = 2z,- (D7 +GIR'G,)" {D'2 + GIR™'(G,z, —d))}
= DGT(R+G,DGT)"d, . (162)

Like FLKS algorithm, other function linearizations around the current best estimates (the fore-
casts starting from the retrospective analysis at tg) are also possible, but the solution formula
will be a little different.
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Appendix A

Comparison between the analysis estimates of fixed-interval and fixed-point smoothers

In section 2.3, it is shown that the cost function Jn of incremental 4D-VAR and 4D-PSAS
derived from the conditional probability density p(w§, wi, wh, ..., wi|W%) is given as equation

(43):

N N

1 1 1 _

In = §6xTB_16x +3 > (hidx(tx) — di) TR (hebx () — di) + 3 S"biQ;'b.  (163)
k=0 k=1

or equation (44):
1 1
In = EzTD‘lz +5(Gz - d)"R1(Gz-d), (164)
and the solution of 4D-PSAS which minimizes the cost function Jn, therefore, is given as
equation (46):
z=DGT(GDGT +R)"'d . (165)

Using the definitions of D, G and the matrix calculations, it follows that

BhI B(h;A;)T B(hyAy)T B(hyAnN)T
0 Qb Qi(heA, )T Qi (hyAN,)T
pgT=| © 0 Quh7 Q:(hnvAng)T (166)
0 0 0 Qnh%
and
GDGT = GBGT +¢QgT , (167)
where
0 0 0 4] 0 0 0 0
0 h 0 0 0Q O 0
G=1| 0 hoAy, h, 0 |, Qq=|90 0 Q 0
0 hyAn; hyAn, hy 0o 0 o Qn
Therefore, the solution of 4D-PSAS can be rewritten as
z=DGT(GBG" +G6Q¢" + R)"'d, (168)

and it is easy to prove by using equation (166) that the analysis incremental éx is given as

éx =BGT(GBGT +6Q¢T +R)™'d . (169)

Now let’s take a look at the conditional probability density function p(wh|W$,) which gives the
estimate of wf conditioned on N + 1 observations:

p(wH|W3) =

p(WHwg)p(wg) - (170)

1
P(WQ)
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Similar to equation (113), under the assumption of Gaussian distribution, the probability density
function p(W$|w) is proportional to

1 ~ _ _
PWRIwE) o exp { -5 (Wi — Gwd)T (R +6Q0T) (W - Gw) ), (17
therefore, the conditional probability density function p(w§|W%,) is given as

p(WhIW$) = const - exp (=JFpa) (172)

where the cost function Jpps is
1
Trpa = gwh—wh)TB™ (wh~ w!)
1 _ _ -
+5(Wh - Gwg) " (R+6QGT)™" (W§ — Gwy) . (173)

Applying the same definitions of §x and d as in section 2.3, i.e., 6x = w) — wb, dp = wg —
h.A;w?, the cost function Jrp4 is rewritten as

Trpa = %5XTB—15X + %(G(Sx -d)T (R+6QG¢T)™! (Géx —d) . (174)

The minimum of the cost function, which is the maximum likelihood point of the conditional
probability density function p(w§|W$), is given as:

éx =BGT(GBGT + ¢Q¢T + R)"!d . (175)
Remarks:

e Comparing equations (169) and (175), we notice that the 4D-VAR or 4D-PSAS cost func-
tion Jn (43) has the same solution for the state increment as the cost function Jrp4 (173)
does. This means that given the same amount of observations, the fixed-interval smoother
p(wh, wh, wi, ..., wi|W%) yields the same estimate of w§ as the fixed-point smoother
p(W§|W$,) does.

e From the 4D-VAR or 4D-PSAS cost function (43) we can get the solutions for both the
state increment and the model error at every time step, while from the cost function
(173) we can only obtain the solution for the state increment. In the other words, Jn =

IN(6x, {bi}), TrPa = Trpa(dx).

e The question remained is: do we really need those model error estimates at every model
integration time step for reanalysis purpose? With the availability of those model error
estimates, one can issue a forecast from the initial condition to obtain the analyses within
the interval. However, the subsequent analyses within the interval produced by a forecast
comprise information of varied amount of future observational time levels. In other words,
the analysis at time ¢g contains information of current and future observations at times tg,
t1, ..., and tn; the analysis at time ¢; contains information of observations at times ¢4, ...,
and ¢x; and so on, until the analysis at time ¢x contains information of observations at
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time {nx, which is just a filter solution. To the users of the reanalysis products, generally,
the model error estimates are less useful, since their most concern is the qualities of the
products and also they usually don’t have (and also it is not necessary for them to have
) access to the data assimilation system which produces the products. The reanalysis
products should be produced by incorporating the fixed future time levels of observations
rather than being produced by issuing a forecast from an initial condition. Also, the
requirement of the memory storage for the model errors is huge. In this study, we assume
the observations occur at every time step, but, the total number of model integration time
steps is generally much larger than the total number of the times when the observations
occur. In fact, the model dynamics is a continuous process. One way to reduce the storage
requirement is to relax the assumption of the model error whiteness in time and to redefine
the cost function Jn. But on the other hand, the forecast issued from the optimal initial
condition can be used as a better priori estimation for the next implementation of the
algorithm.
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Appendix B
Sequential form of 4D-PSAS

It is shown that the cost function of 4D-PSAS for the linear perfect model is given as equation
(49):

1 _
In = 5(wh-w")T B (wh - w)
1Y r
+5 2 (W — hewh) TR (W~ hywl)
k=0

which is identical with the FLKS cost function in the fixed-point smoother perspective - Jpp;

(equation (108)) given k = [ = N,w’® = wl{—llk—l—l’ and B = Pi—llk—l-l' The solution of

4D-PSAS which minimizes the cost function Ju is calculated as equation (54):
éx=B1+GTR'G)'GTRd, (176)
i.e., the solution at time tg is expressed as
wiy =w'+ (B™'+ GTRT!G)T'GTR (W ~ Gw?) (177)

with the error covariance .
Piy=(B'+G'RIG) . (178)

In the following, we will show that for a linear perfect model, 4D-PSAS can be written as a
sequential algorithm as well.

Substituting the definitions of matrices G and R into the 4D-PSAS solution - equation (177),
we have

T -1 -1

Go Ro 0 ... 0 Go

, ) G, 0 R, ... © G,
Wov = W+ | BT+ s : :

Gy 0 0 ... Ry Gn

Go T R() 0 0 -1 W8—G0Wb \
G, 0 R, ... © w — Gyw?

Gy 0 0 ... Ry w$ — Gywt |

N “1rnN 7

= wh+t (B-1+ZG{R;1Gk) [ZGZR;‘(WZ-kab) : (179)
k=0 k=0 p

Since

N -1
(B‘l + GZR,;le)
k=0
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N -1
= (B-l +> G{R;le)
k=0

N N —
- [(B‘l +3 G{R;IGk) -y GZR;’Gk} (13-1 + GOTRg‘GO) '
k=1

k=0
N -1 /N .
= |1- (B-‘ +3 GZR,;IGk) (Z G}{R;‘Gk) (B™! + GI R Go)
k=0 k=1
- N !
= (B_l + GgREIGo) - (B_] + Z GZR;’Gk)
N k=0
. (Z GfR,;IGk> (B—1 + ngglco)_’ : (180)
k=1

equation (179) becomes

-1
Wiy = wb+[(B-1+G0TR51G0)

N -1 /N _
- (B‘l +> GZR;‘Gk) (Z GZR;‘Gk> (B-1 + G{Rg‘Go) 1}

k=0 k=1
N
) [nggl(wg - Gow?) + Z GIR_ (Wl - kab)} ) (181)
k=1

Rearranging the above equation, we obtain

-1
WoiN = Wojo + ((P&o)“ + ENj GZR;‘Gk) [ZN: GIR;' (Wi — ka&o)] . (182)
k=1 k=1
where
wio = w'+[B~'+GIR;'Go]” GIR;'(w§ - Gow’) (183)
0 = (B +GIR;'Go)™ . (184)
Keeping doing this manipulation, we have
-1
W3|N = w8|1 + ((Pg)h)—] + g: GZR;]Gk> l:ki GZR;] (wi — GkWS\l) ) (185)
=2 =2
where
wi = Wi+ [(Pho) ' + GTRGy] ™ GTR; (wf — Giwgg) | (186)
3= ((Pe) ' +GTR'G) ™ . (187)

Inductively, we obtain
- _ -1 e .
Woiv = Wovo1 + ((PglN_l) 1 G”}\}RNIGN) [G%RNl (Wi — GNWO|N—])] , (188)
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where

N -1
WoN-1 = Won—2t [(Pguv—z)_l + qu\}—lRNl—-lGN‘l}
Gfm\J—lRJ_vl—l(W?v—l - GN—1W8|N—2) , (189)
3 -1
3‘,1\:-1 = ((ngN—Q)—l + G?\:'—1RN]—1GN—1) : (190)

Remark:

e For linear perfect model, if the observations are white in time, then the result of 4D-
PSAS obtained by assimilating all of the observations simultaneously is identical to that
by assimilating the observations sequentially, i.e., one time level of observations at a time.
In other words, the 4D-PSAS algorithm can also be rewritten as a sequential algorithm.

o Comparing the formula with the sequential FLKS formula, we see that they are the same
iven k =1= N, w) = wt, and PJ =B
given s Wi ljk—1—1 = W and i :
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