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Abstract 

Despite the explosive growth of activity in the field of Earth System data assimilation 
over the past decade or so, there remains a substantial gap between theory and practice. 
The present article attempts to bridge this gap by exposing some of the central concepts 
of estimation theory and connecting them with current and future data assimilation 
approaches. Estimation theory provides a broad and natural mathematical foundation 
for data assimilation science. 

Stochastic-dynamic modeling and stochastic observation modeling are described 
first. Optimality criteria for linear and nonlinear state estimation problems are then 
explored, leading to conditional-mean estimation procedures such as the Kalman filter 
and some of its generalizations, and to conditional-mode estimation procedures such 
as variational methods. A detailed derivation of the Kalman filter is given to illustrate 
the role of key probabilistic concepts and assumptions. Extensions of the Kalman filter 
to nonlinear observation operators and to non-Gaussian errors are then described. In 
a simple illustrative example, rigorous treatment of representativeness error and model 
error is highlighted in finite-dimensional estimation procedures for continuum dynamics 
and observations of the continuum state. 
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1 Introduction 

The field of data  assimilation for Earth System Science has witnessed an explosion of ac- 
tivity in recent years. Just a decade ago, data assimilation was regarded primarily as a 
means of providing initial conditions for numerical weather prediction (NWP) models. In- 
creasingly it is being recognized that  through the constant confrontation of theory (in the 
form of more general Earth System models) with reality (as provided by Earth System 
data) represented by the data  assimilation process, major advances can be expected in our 
scientific understanding of the dynamics, variability, and interactions of all components of 
the Earth System over a broad range of time and space scales (Bengtsson and Shukla 1988; 
NAS 1991). The desire to  carry out data  assimilation is being driven largely by the rapidly 
increasing amount of observational data  becoming available, much of it from space-borne 
platforms, as well as by pressing scientific and societal needs to  understand the behavior 
of the Earth System as a whole. At the same time, the ability to  pursue data  assimila- 
tion in a physically and mathematically sound fashion is being enabled by the increasing 
sophistication of Earth System models and by rapid advances in  computing technology. 

Despite this unprecedented level of activity, Earth System data  assimilation remains a 
young discipline, with far more open questions than solved ones. For instance, it is only 
intuitive that by constantly confronting Earth System models with da ta  throughout the as- 
similation process, one should be able to  estimate model biases and to  tune free parameters, 
thereby offering a rigorous, data-driven means of improving our Earth System modeling 
capabilities. Concerted efforts along these lines have not yet begun. Even for the static 
data  assimilation methods already employed operationally in NWP (e.g., Parrish and Der- 
ber 1992) there remain many open questions in covariance modeling, for example, revolving 
around issues such as dynamical balance, state dependence, characterization of observation 
errors, and identifiability of covariance parameters. Recent progress toward more dynamic 
data  assimilation approaches (e.g., Anderson et al. 1994) raises a host of additional diffi- 
cult issues, ranging from the soundness of proposed methodologies and their assumptions, to 
cost/benefit tradeoffs, to  characterization of dynamical model errors, to  long-term stability 
of the data  assimilation process itself, and to observability of the geophysical phenomena 
under investigation. 

The mathematical framework of estimation theory provides many of the tools needed to  
understand and approach a broad range of data  assimilation problems. Estimation theory 
traces its origins to  the efforts of astronomers some 200 years ago to  understand and predict 
the motion of our solar system’s planets, moons and asteroids. The field began to mature 
only in the 1960’s and 1970’s, along wi th  the theory of stochastic differential equations and 
the development of digital computers. An excellent historical survey, along with a collection 
of seminal articles on various aspects and applications of estimation theory, can be found 
in the volume of Sorenson (1985). Applications to numerous engineering disciplines are by 
now standard, and textbooks in the engineering and mathematics literatures are plentiful. 
Among these, roughly in order of increasing level of difficulty, are Gelb (1974), Anderson 
and Moore (1979), Maybeck (1979), Catlin (1989), Jazwinski (1970), Casti (1985), and 
Omatu and Seinfeld (1989). In the more specialized Earth Sciences arena, recent texts on 
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data  assimilation include Menke (1984) , Tarantola (1587), Daley (1551), Bennett (1952) , 
and Wunsch (1596). 

In the present article, we will see that estimation theory constitutes a natural mathemat- 
ical foundation for the emerging science of data assimilation. First and foremost, estimation 
theory offers a precise and effective way of thinking about data  assimilation science. Es- 
timation theory provides a comprehensive language, a broad conceptual framework, and a 
number of algorithms and approaches for addressing the open questions and scientific goals 
of the data  assimilation enterprise. 

While engineering applications of estimation theory are often small-scale and some- 
times linear, Earth System data  assimilation problems usually involve complex, nonlinear, 
large-scale models. For this reason alone, there is a substantial gap between estimation 
theory and Earth System data  assimilation practice. The purpose of this article is to  help 
bridge this gap by exposing some of the basic concepts of estimation theory to  the broad 
Earth System data  assimi1,ation community. The focus will be on the guiding principles of 
estimation theory, rather than on actual computational algorithms suggested by the theory. 
Indeed, the sheer complexity of Earth System data  assimilation problems necessitates sen- 
sible approximation: along with estimation theory, a great deal of physical reasoning and 
a number of techniques from modern computational mathematics and statistics must also 
play a large role in actually solving the fundamental problems of data  assimilation in the 
Earth Sciences. 

Estimation theory is by now a vast field, and a survey given in a single article would nec- 
essarily be perfunctory. The central ideas of estimation theory are few in number, however, 
so we have decided to  treat just these, and to  do so fairly thoroughly and rigorously, in a 
self-contained fashion. Further, to  keep the  mathematics accessible, most of the treatment 
will be carried out in a discrete setting. This article is therefore not a literature review; 
in fact, much of the material here can be located in the standard textbooks cited above. 
Our hope is to  provide a reasonable starting point for newcomers to  the fields of estimation 
theory and data  assimilation. Readers who are already familiar with estimation theory 
may want to skip to  3 6, where we discuss some continuum aspects of estimation theory, or 
perhaps to $ 5.3, where nonlinearity due to non-Gaussian errors is described. 

This article is organized as follows. In $ 2  we introduce a generic discrete stochastic- 
dynamic model of the Earth System component(s) under consideration, along with a generic 
discrete stochastic model of the observations of the system. These two models, or variants 
thereof, and the probabilistic assumptions made in them, lie at the core of all estimation- 
theoretic approaches to data  assimilation problems. Here the discrete dynamics are assumed 
given, and the difference between the discrete dynamics and the governing continuum dy- 
namics is accounted for by model error, represented by stochastic forcing. Since the system 
state is assumed discrete, whereas it is the continuum state that  is observed, the observation 
model includes a representativeness error term as well as a measurement error term. While 
in  $ 2  we are able to define model error and representativeness error rather precisely, it is 
not unt i l  6 that we show with any rigor how these error terms can actually be treated in 
da ta  assimilation problems. 
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In 3 and Appendix A we address the question of what constitutes an optimal estimate 
of the system state. I t  is shown that the conditional mean estimate is always unique, and h a s  
the intuitively appealing property of being also the minimum variance estimate for nonlinear 
problems as well as linear ones, independently of the nature of the probability densities of 
the various error sources. The conditional mode (maximum a posteriori) estimate, on the 
other hand, is generally not unique, but the set of conditional modes may yield a great 
deal more physical information about the system state than the conditional mean estimate 
alone. In 3 the three basic categories of state estimation problems are also introduced: 
the filtering, prediction and smoothing problems. It is shown that the four-dimensional 
variational methods now under active study at several institutions represent approximate 
conditional mode estimation algorithms for the fixed-interval smoothing problem. 

Section 4 gives a detailed derivation of the Kalman filter, which provides the conditional 
mean estimate for linear filtering problems with Gaussian-distributed errors. The purpose of 
th i s  derivation is to illustrate the role of the various assumptions on which the Kalman filter 
is based. For most Earth System data  assimilation problems, the standard Kalman filter 
can only be considered as a prototype algorithm in view of the many assumptions involved 
and in view of its computational requirements; it is certainly not an  end unto itself. To 
progress toward less restrictive estimation procedures, it is important to  understand the 
Kalman filter first. Following the derivation of the Kalman filter, we discuss a number of 
its important properties and some of its simple generalizations. 

Two nonlinear generalizations of the Kalman filter are described in 3 5 .  In the first, it 
is assumed that the observations are related nonlinearly to  the state variables. After de- 
scribing the practical difficulties associated with obtaining the conditional mean estimate in 
this case, we develop a standard approximate method of treating observation nonlinearity, 
knownas the locally iterated extended Kalman filter (EKF). In the locally iterated EKF, 
the conditional mean is approximated by a conditional mode a t  observation times. It is 
shown that the resulting algorithm for processing the observations is algebraically equiv- 
alent to  nonlinear three-dimensional variational analysis algorithms, which are therefore 
approximate conditional mode estimation algorithms. While three- and four-dimensional 
variational algorithms are often derived without reference to probabilistic concepts, we see 
that, like the (extended) Kalman filter, they rely on assumptions of Gaussian-distributed 
errors with mean zero. 

In the second generalization, we describe by example an exact, but nonlinear and non- 
iterative, conditional mean estimation procedure in case the measurement errors are not 
Gaussian-distributed: lognormally-distributed errors are considered instead. Such errors 
may arise from measurements and dynamical models of nonnegative quantities, such as 
the mixing ratio of atmospheric trace constituents. Relationships between the multivariate 
Gaussian (normal) and lognormal probability densities appear in Appendix B. 

In $ 6  we give a simple example illustrating a number of continuum aspects of esti- 
mation theory. The governing continuum dynamics consists of the unforced scalar linear 
advection equation with an unknown Gaussian and statistically homogeneous initial state. 
Observations taken a t  various instants of time are arbitrary bounded linear functionals of 
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the continuum state, with Gaussian state-independent measurement error. It is shown 
first that while an  exact conditional-mean filter algorithm can be written down for this 
problem, it cannot be implemented exactly on a computer. Following this demonstration, 
rather than assuming that a discretization of the continuum dynamics is already given, as 
in 5 2, we first define a finite-dimensional conditional-mean filtering problem to  be solved 
for the continuum system, and only then employ this definition to  develop an appropriate 
discretization and an overall filter algorithm. By proceeding in this manner, it turns out 
for this simple example that model error does not arise, and that representativeness error 
can be treated exactly. The complete filter algorithm is also exact and can be implemented 
exactly on a computer. Supporting results, and for completeness a treatment of nonlinear 
dynamics, are contained in Appendix C. 

By drawing upon the salient features of this simple example, we discuss finally some 
of the problems and prospects in accounting for model error and representativeness error 
in more realistic Earth System da ta  assimilation problems. In particular it is seen that 
climatology, defined appropriately, may play a n  important role in accounting for represen- 
tativeness error. 

2 Discrete st ochast ic-dynamic 
and stochastic observation models 

2.1 Discrete stochastic-dynamic model 

The Earth System component (or components) of interest will generally be described by 
a system of nonlinear partial differential equations (PDEs). Denote by W k  the vector of 
prognostic (state) variables of the PDE system at time l k .  The elements of the vector W k  are 
functions, and w k  is assumed to belong to some function space f?. Assuming the governing 
PDEs to  be well-posed in the sense of Hadamard (e.g., Courant and Hilbert 1962, Chapter 
111, § 6 ) ,  there is a unique solution operator, or propagator g that yields the solution w k  

given the solution w k - 1  a t  an earlier time t k - 1 :  

for k =  1, 2, 3, . . . . While this system could be stochastically forced, for example through un- 
certain boundary conditions, here we neglect stochastic forcing to simplify the presentation. 
The  system could also be internally forced by stochastic free parameters t o  be estimated 
during the course of data  assimilation, for example in physical parameterizations. While a 
large body of literature is concerned with parameter estimation (e.g., Maybeck 1979, C h a p  
ter 10; Sorenson 1980; Caglayan and Lancraft 1983; Daley 1995; Ghil 1997), to confine 
the discussion we do not consider this important realm here. Parameters and forcing are 
considered fixed, so that the propagator g is deterministic. Explicit time dependence of 
g is also suppressed for notational convenience, as'is dependence upon the time interval 
t k - t k - 1 .  Although the system of PDEs itself from which we have started may be only 
approximate (e.g., Phillips 1966), we take (2.1) to  be a correct and complete representation 
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of reality. This assumption, along with the assumption that g is deterministic, is revisited 
in $6.4 .  

We know neither the continuum state wk, in particular the initial condition WO, nor 
even the operator g. However, residing on  our computer will be an approximate, discretized 
version of (2.1): 

wf = f ( W i - 1 )  I (2.2) 

for k =  1,  2, 3, . . , , the superscript d denoting " discrete". Here wi  is an n-vector approxi- 
mating, with some error, the continuum state wk whose evolution is given by (2.1), and f 
is the discrete propagator. 

Next we need to define the true state to be estimated on the basis of observations 
available a t  times t l ,  t z ,  t 3 ,  . . . , along with an evolution equation for it. Although the 
continuum state given by (2.1) would appear to  be the most natural candidate, we will 
define the true state to  be a representation of the continuum state on a discrete space, so 
that it can be compared directly with the approximate discrete state given by (2.2); this 
approach will be elaborated upon and exploited more fully in $ 6 .  To this end, define a 
linear operator XI from B to  an n-dimensional function space B" in a manner appropriate 
for the discretization (2.2). For example, if the elements of the n-vector wf are supposed to  
represent averages over grid volumes, then B" would consist of piecewise constant functions 
and the n-vector n W k  would consist of the averages of Wk over grid volumes. In fact, we 
define the (discrete) true state wk as 

w: E n w k ,  (2.3) 

for k = O ,  1,  2,  . . . ; this is the representation on Bn of the continuum state Wk (cf. Cohn and 
Dee 1988, 5 2) .  We remark that  XI should be a projection operator, that is, 112=11, but we 
do not require ll to  be a projection operator until § 6. 

The true state wk is still unknown, since Wk is unknown. However, operating with ll 
on both sides of (2.1) gives a discrete evolution equation for wk, 

w: = +& , (2.4) 

where 

The operator f in (2.4) is the discrete propagator, t o  which we have access. The forcing 
term dk-l is the model error from time t k - 1  to  time t k .  Observe that  the model error 
defined in (2.5) is generally (continuum) state-dependent, even if the operators f and g 
are linear. This state dependence, as well as the dependence upon the unknown continuum 
propagator g ,  renders the model error both unknown and unknowable from a deterministic 
viewpoint. However, it should be in some sense small, provided that f approximates g 
well. For these reasons it is appropriate, and in any case one has little choice other than, 
to  represent this model error a s  a stochastic perturbation to  (2.4). Here we shall simply 
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assume the existence of such a representation with known bias and covariance (cf. Derber 
1989; Leith 1990; Daley 1992c; Bennett et al. 1993; Dee 1995; Dee and d a  Silva 1997). This 
will allow us to  expose the probabilistic underpinnings of estimation theory in $5 3 to 5 in 
a relatively simple manner. Further discussion of stochastic representation of model error 
is deferred to 5 6. 

Thus we write 

S: = GI;(W;) e : ,  (2.6) 

where G k  is an n x m matrix depending on wt, reflecting the state dependence of model 
error, and e: is an  m-vector stochastic process with mean 

(2.7) 
At @ k  E (EL) 

and covariance matrix 

Q k  ( ( E :  - 2;) ( E :  - 2 f )  , (2.8) 

( ) denoting the expectation operator (see Appendix A).  Here Gk, 2: and Q k  are all 
assumed known. Substituting (2.6) into (2.4) gives 

w: = f(wL-1) t Gk-l(W:J EL-1 1 (2.9) 

our stochastic-dynamic model for the evolution of the discrete true state w:. Since E L  is a 
stochastic process, so is w:. The initial condition wh for (2.9) may also be stochastic. 

2.2 Discrete stochastic observation model 

I t  remains to formulate a stochastic model of the observed data,  on the basis of which the 
true state w: is to be estimated. Suppose that at times tk, I C =  1, 2, 3, . . . , a number pk of 
observations are available and placed into a pk-vector w i .  Since these are observations of 
the continuum state wk, contaminated by some error, we write 

wi = hi(wk) -k E r  , (2.10) 

where hi is the continuum forward observation operator from f? to I R p k  and EP is the 
measurement error. The latter is considered stochastic, and independent of Wk,  with known 
mean Zp, 

(2.11) *m - 
E k  = 7 

which is the measurement error bias, and known covariance matrix Rk, 

(2.12) -m T Rk E ( ( E r  - 2r)(€r - E k  ) ) . 
While additive measurement error is assumed in (2.10), multiplicative error is considered in 
5 5.3. 
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The observation operator is linear for state variables that are observed directly, for 
example by radiosondes. For most remotely-sensed data,  the raw observations (such as 
radiances or radar backscatter) are nonlinear functions of the continuum state, and the cor- 
responding elements of h i  (wk) would involve radiative transfer calculations, for example, 
which are integrals of nonlinear functions of wk. In either case, the observation operator 
will usually depend on a number of parameters. As w a s  the case for the propagator, such 
parameters can be estimated along with the state, although we do not consider this possi- 
bility here. Instead we consider parameters to be fixed and therefore h i  to be deterministic, 
the so-called perfect forward model assumption. 

Now the stochastic-dynamic model (2.9) was formulated in terms of the discrete true 
state w:=nwk, so we will need to  introduce a discrete forward observation operator hk 
that  acts on w: rather t h a n  wk, and rewrite the observation model (2.10) as 

where 

(2.13) 

(2.14) 

is the total observation error, and 

is the error of representativeness (cf. Lorenc 1986), which is (continuum) state-dependent, 
even for linear forward observation operators. Note that the representativeness error (2.15) 
h a s  the same form as the model error (2.5), so the problem of stochastic modeling of the 
representativeness error is in  a sense equiva!ent to that of modeling the model error in the 
present discrete formulation. 

To understand better the nature of representativeness error, let us write (2.15) as the 
sum of two terms, .; = €; + €; , 
where 

(2.16) 

(2.17) 
(2.18) 

and we assume that  B" is a subspace of B, so that the expression hi(nwk) is well-defined.* 
Now E ;  can be made as small as one pleases by employing high-order accurate integration 
and interpolation formulas in hk to  approximate hi ,  a t  least in principle, since both opera- 
tors in (2.18) act on the same discrete true state W:=nwk. On the other hand, E ;  depends 
on the small-scale variability of wk. For instance, to a linear approximation (2.17) may be 
written as 

E ;  = HL(I - ] I I ) w ~ ,  

*A similar decomposition of the model error ( 2 . 5 )  has been discussed by MCnard (1994, Appendix A ) .  

(2.19) 
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where 

(2.20) 

H i  in (2.19) operates on the unresolved portion (1-rI)wk of the continuum state Wk. For 
highly variable fields such as winds, moisture and trace constituents, it is apparent that  this 
portion of the representativeness error could easily dominate the measurement error itself. 

A complete discrete theory should therefore include an adequate (stochastic) model 
of the representativeness error. Such a model is developed in $ 6  for a specific example. 
Rather than  attempting any degree of generality here, in  $$  3 to  5 we shall simply ignore 
representativeness error: ou r  observation model is (2.13) with eP,=O in (2.14) and the first 
two moments of e;t=e;l” given in (2.11) and (2.12). While this is not a t  all realistic (and not 
recommended for real problems!), it shall serve our purpose of introducing the fundamentals 
of estimation theory in a fairly simple context. 

3 Conditional mean and conditional mode estimation 

3.1 Introduction 

Since the state wL that  we would like to  estimate is given by the stochastic-dynamic model 
(2.9), it h a s  a probability distribution function. We will assume all distribution functions 
encountered here to be differentiable, so in fact wL has  a probability density function p(wL). 
This is a function of n variables. 

Suppose for the moment that no observations are available. If in (2.9) were Gaus- 
sian (see $ 4  for the definition of the multivariate Gaussian density) and white in time, 
then the evolution of p(wL), had we discretized only space and not time in the formu- 
lation of (2.9), would be governed by the Fokker-Planck (forward Kolmogorov) equation 
(cf. Epstein 1969).t This is a PDE in n independent (“spatial”) variables plus time, with 
initial condition p(wk). In the absence of model error, this equation simplifies to  the Liou- 
ville equation, which h a s  been studied by Ehrendorfer (1994a, b). For the size n typical of 
Earth Science applications, for example n S lo6 - lo7 in numerical weather prediction, these 
equations cannot be solved directly in general. If they could, however, from the resulting 
knowledge of p(wk) one could then in principle calculate directly such important statistics 
as the ensemble mean (w;) and the ensemble covariance matrix, by explicit integration 
in n dimensions. Since this appears no t  to be possible, Monte Carlo and related methods 
have recently been explored for ensemble mean prediction (e.g., Toth and Kalnay 1993, and 
references therein). In practice, furthermore, generally one does not know the initial density 
p(wk), nor the function Gk(w;) in (2.9), nor the density of the error process e;. 

In any case we see that, though unavailable, it is the entire probability density function 
p(wL) that constitutes the “complete solution” of the prediction problem. In the same way, 

‘An analogous equation exists for the discrete-time case; for example see Jazwinski (1970, 56.6). 
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it is the conditional probability density p(wkI W,") that  constitutes the complete solution for 
various data  assimilation problems. (See Appendix A for a brief discussion of conditional 
densities and expectations). Here by WF we denote the set of realizations of all observations 
(2.13) available up to some time te:  

W," f {WY, w;, ... ,we"} . (3.1) 

The density p(wL1 W l )  yields the solution of the filtering problem a t  times t k ,  IC= 1, 2, . . . , 
while the density p(wi( W i S L )  with L fixed yields the solution of the fixed-lag smooth- 
ing problem at times t k  (e.g., Cohn et al. 1994, Mknard and Daley 1996). The density 
p(wkI W$') for e fixed and IC=C + 1, e+ 2, . . ., gives the solution of the prediction problem 
when there are observed data  available from time t l  to time tl .  See the texts on estima- 
tion theory cited in the Introduction for further discussion of the filtering, smoothing, and 
prediction problems, and Ghil (1997) for a review of applications to Earth System data  
assimilation. 

The conditional densities p(wLI We"), like the unconditional ones p(wL), are functions of 
a large number of variables. Unlike unconditional densities, conditional densities are random 
functions, because they depend on the observations. For both reasons, in large Earth Science 
da ta  assimilation problems, it is not possible t o  calculate these densities explicitly. On the 
other hand, algorithms for calculating the evolution of certain statistics of these densities 
are available, as discussed in $3 4-6, under a number of simplifying assumptions. The first 
question, though, is which statistics do we want to evolve? 

Two possibilities suggest themselves immediately: the conditional mean (wL I We"), and 
the conditional mode, which we denote by m(w:( We"). Both have obvious intuitive appeal. 
Both are also random n-.vectors, since they depend upon realizations of the observations. 
The conditional mean is the "average" value of the conditional density (see Appendix A). 
I t  also has the important theoretically and intuitively appealing property of being the 
minimum variance estimate in  most data assimilation problems, including the filtering, 
smoothing and prediction problems described above. We now explain this property, then 
return to the subject of conditional mode estimation. 

3.2 Conditional mean estimation 

Let wi be an n-vector which is an estimate of the n-vector true state wi .  Assume that WE 
is a function of the available observed data WF, and define the estimation error 

(3-2) 
t E k  = wk-w;.  

Now let S be a n  arbitrary (but deterministic) n x n symmetric positive definite matrix, and 
define the quadratic loss function L ( E k ) ,  

(3.3) 
L ( E k )  E EkSsk T . 

Note that L is a scalar, and that it is also a random variable, since E k  is stochastic. For an 
appropriate choice of the dependent variables of the numerical model (2.2), the matrix S 
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might be defined in such a way that  L represents a discrete version of the total energy of 
the estimation error, for example. 

An appealing way to define the estimate W E ,  then, would be to  define it to  be the vector 
that minimizes the expected loss ( L ( E ~ ) ) ,  for example the expected total energy, or more 
generally the total variance of the estimation error. I t  turns out that  the minimizer is none 
other than the conditional mean: the minimum of ( L ( e k ) )  with respect to w;l. is attained, 
uniquely in fact, by taking w;l. to be the conditional mean, 

w;l. = (w:I w;) . (3.4) 

T h u s  the conditional mean estimate is also called the minimum variance estimate. 

This result (cf. Jazwinski 1970, Theorem 5.3), proven in Appendix A, is extremely gen- 
eral. For instance, notice that the minimizer is independent of the particular choice of 
the positive definite matrix S :  the conditional mean simultaneously minimizes all quadratic 
functionals of the estimation error. In other words, in conditional mean estimation one never 
h a s  to make an artificial choice of a particular quadratic functional to minimize. Further- 
more, no assumptions about the nature of the probability densities of the stochastic forcing 
in (2.9) and (2.13) are required for this equivalence between conditional mean estimation 
and minimum variance estimation, and consequently no assumptions about the conditional 
density p(w:I We") are required. However, under an assumption that  p(w:I We") is sym- 
metric about its mean, and is unimodal ( h a s  only one local maximum), it turns out that 
the conditional mean minimizes the expected value of a much larger class of loss functions 
than just quadratic ones (see Jazwinski 1970, Theorem 5.2); this is the case, for instance, 
if p(w:I We") is Gaussian. Another important property of the conditional mean is that it 
provides an unbiased estimate: 

(3.5) 

see equation (A.16). For all these reasons, the goal of conditional mean estimation, that 
is, of defining the state estimate in data  assimilation problems by (3.4), is particularly 
compelling, and much literature in estimation theory is concerned with this goal. In $5 4-6 
we develop evolution equations for the conditional mean (wLI W l )  for the filtering problem. 

A potential drawback of conditional mean estimation occurs when the conditional den- 
sity is multimodal (has several local maxima), as may arise in nonlinear problems with 
multiple equilibria or multiple attractor basins; see Evensen (1994), Ghil (1997), and refer- 
ences therein. As  a simple example, if the conditional density were bimodal and symmetric, 
then the conditional mean would lie at a minimum of the conditional density function, 
which would represent an unstable equilibrium point. The number of modes may increase 
with the dimensionality n of the problem under consideration. However, it is intuitive that 
the availability of dense observed data  also counteracts this tendency: plentiful data  serve 
to define the attractor basin in which the state lies. 

In large-scale Earth System data assimilation problems, it is not known whether (or 
when) the conditional densities have multiple modes. However, Li (1991) h a s  demonstrated 
the existence of multiple modes for a simple system of three quadratically interacting Rossby 
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modes. Bennett et al. (1993) found unique modes in all but one of ten cases of tropical 
cyclones. Burger and Cane (1994) have devised an  estimation technique which attempts to  
account for multimodality. 

3.3 Conditional mode estimation 

We conclude this section with a brief discussion of conditional mode estimation, also known 
as maximum a posteriori estimation (Maybeck 1979, $ 5.5; Sorenson 1980, Chapter 5). 
Jazwinski (1970, $3 6.5, 6.10) develops equations for the evolution of the conditional mode, 
assuming its uniqueness. A simpler approach is known in control theory literature as Pon- 
tryagin minimization (Mknard and Daley 1996) and in oceanographic literature as the gen- 
eralized inverse (Bennett 1992; Bennett et al. 1993). These approaches, like the Kalman 
filter, are based on a number of simplifying probabilistic assumptions. 

Specifically, suppose that G in (2.9) is state-independent, 

that  E: in (2.9) is Gaussian with zero mean and white in time, 

that  E ;  in (2.13) is Gaussian with zero mean and white in  time, 

that  w4, is Gaussian with mean i?: and covariance Po, 

w4, N ( % ,  Po) , 
and that E : ,  E ;  and w; are mutually uncorrelated, 

(qw:,') = (.;(w;)') = ( € k ( € i ) T )  = 0 .  

(3.9) 

(3.10a, b,  c)  

Suppose also that the covariance matrices PO, Qk and Rk are all nonsingular, hence positive 
definite. Then it can be shown (cf. $ 5  below; Jazwinski 1970, pp. 151-154; Lorenc 1986) 
that the conditional density p(wh, W E ,  . . . , whl W&) is proportional t o  exp ( - J N ) ,  where 
J N  is defined as 

(3.11) 

The assumption that E : ( E ~ ) ~ )  = O  may be removed by including a cross-covariance term 

in (3.11). The assumptions that Z;=O and ZL=O may also be removed by subtracting Z i  
and 2; from 

( 
and E : ,  respectively, in (3.11). 
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Upon substituting (2.9) and (2.13) into (3.11), assuming Gk-1 is invertible, it is seen that 
J N  depends only upon the free parameters (n-vectors) wh, wi,  . . . , wk. The conditional 
mode(s), or maxima of the conditional density, can therefore be found by minimizing J N  
with respect to  wb, wi ,  . . . , wh. A set of minimizing states {wk, wi, . . . , wh} is called 
a modal trajectory. For fixed N,  this represents a solution of the fixed-interval smoothing 
problem. 

For problems of the size encountered in the Earth Sciences, minimization of (3.11) is 
a computationally imposing t a s k ,  since t h e  minimization is with respect t o  n N  scalar pa- 
rameters. The representer method (Bennett et al. 1993) reduces the size of this t a s k  by 
reducing the effective number of degrees of freedom to  the number of observations available 
over the time interval [to, tN]. A different simplification of the computational effort can be 
made by introducing one additional assumption, namely, to suppose that  E L = O  for all I C .  
Under this perfect dynamical model assumption, the final summation in (3.11) disappears. 
Upon substituting (2.13) into (3.11) and imposing (2.9) with all e;=O as a constraint, 
J N  now depends on, and can be minimized with respect to, only one free n-vector: wh, 
for instance, or wh. This is the assumption made in current four-dimensional variational 
techniques (4D-VAR; e.g., Andersson et d. 1994), and has been studied by M6nard and 
Daley (1996). Thus ,  under a number of assumptions, these techniques attempt to  calculate 
the modal trajectory. Nonuniqueness of the minimizing w; would reflect either inappro- 
priate assumptions or genuine multimodality of the corresponding conditional probability 
density. Simulated annealing algorithms (e.g., Tarantola 1987) can be used to  locate the 
global minimum in this case. Courtier et al. (1994) have introduced a number of additional 
approximations that  turn the 4D-VAR problem into a quadratic minimization problem, in 
which case the minimizer is always unique. 

One can also view the minimization of J N  as a purely deterministic problem of mini- 
mizing errors, in  which case Po and Rk do not have a probabilistic interpretation and the 
minimization of J N  (under the perfect dynamical model assumption) can be regarded as 
least-squares curve-fitting of a deterministic model trajectory to  the observed data.  How- 
ever, the framework of estimation theory makes clear the probabilistic interpretation of the 
goal of variational methods, that  of conditional mode estimation, which in general is distinct 
from conditional mean estimation. Jazwinski (1970, p. 172) gives an interesting example of 
this difference. 

The difference between conditional mode estimation and conditional mean estimation is 
due primarily to  nonlinearity: it is well-known that the two are identical for linear problems 
with known, Gaussian statistics (see 5 5 below). For nonlinear problems, in principle one 
would like to know both the mean and the mode, in fact all of the modes along with their 
probabilities in  case of more t h a n  one mode. Accomplishing this for large-scale Earth 
Science applications, with a minimum number of simplifying assumptions, would appear to 
be a very challenging task. 
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4 The discrete Kalman filter 

4.1 Introduction 

We give here a complete derivation of the  discrete Kalman filter, which is the minimum 
variance (that is, conditional mean) solution of the filtering problem under the probabilistic 
assumptions (3.6)-(3.10), i n  case the propagator and observation operator are linear. This 
derivation is direct in the sense that it is shown explicitly how to  evolve the conditional 
density p(wiI W;) .  Numerous other, generally simpler derivations appear in the literature; 
see Talagrand (1997) for instance, and Examples (7.1)-(7.4) in Jazwinski (1970) for four 
distinct alternative derivations. While the  present derivation is not the simplest one, it 
demonstrates clearly the roles of the various assumptions and thereby both indicates the 
obstacles and provides necessary tools to  begin relaxing some of them, as we show in the 
following two sections. 

Now let fk and hk be h e a r  in their arguments (we introduce explicit time dependence 
in the propagator f here), so that Fk=dfk(w)/aw and Hk--dhk(w)/aw are constant ma- 
trices, of dimension n x n and pk x n, respectively. The stochastic-dynamic and stochastic 
observation models (2.9) and (2.13) then become 

Suppose we are given the conditional density p(w:-,l The object, then, is 
to calculate p(wLI W i ) :  the Kalman filter is recursive. Denote the mean and covariance 
matrix, respectively, of the density P(W;-~ I by 

WE-1 = (w;-l[ WE-,) 7 (4.3) 

(4.4) 

 WE-^ is the analysis at time t k - 1 ,  an n-vector, the expected value of the true state wk-, 
conditioned on all observations available up to  and including that  time, while Pipl is the 
analysis error covariance matrix, a n  n x n matrix, a t  time t k - 1 .  At time to  there are no 
observations, so from (3.9) it follows that  p(w6) is a Gaussian density with mean w ~ ~ i $ ,  
and covariance matrix PE =Po. We will see that  if p(w;_, I is Gaussian then so is 
p(wiI WE), so by induction it will follow that all the densities p(wiI W r ) ,  p(w$I W;) ,  . . . , 
are in fact Gaussian. There are two main steps to  this demonstration, and to  the Kalman 
filter algorithm itself. 
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4.2 The forecast step 

First denote the mean and covariance matrix, respectively, of the density p(wk1 WL-l) by 

w: = (WkI Wi-1) , (4.5) 

w: is the forecast 
conditioned on all 

at  the new time t k ,  a n  n-vector, the expected value of the true state w i  
observations up to the previous time t k - 1 ,  while Pi is the forecast error 

covariance rnatriz, an n X n matrix, at  t ime tk. Substituting (4.1) into (4.5) gives 

w: = Fk-l(Wk-1I wg-1) + Gk-l(E:-lI w,.-,) 7 (4.7) 

since Fk-1 and Gk-1 are constant ( that  is, deterministic) matrices; cf. (3.6). The first 
expectation here is wEVl according to definition (4.3). The second one is the unconditional 
expectation according to the whiteness assumptions (3.7b) and (3.8b), along with 
(3.10), and therefore vanishes under assumption ( 3 . 7 ~ ) .  Thus we have 

W: = Flc-iwE-1, (4.8) 

which is indeed a forecast to time t k  from the analysis a t  time I k - 1  via  the h e a r  propagator 
F k - 1 .  

Substituting (4.1) and (4.8) into (4.6) gives 

PL = ([Fk-1 ( W L - ~  -w; -~ )  + Glc-l&l] [Flc-i (wk-1 -%-I) + Glc-14-11 T IwL-1) . 

(4.9) 

The cross-terms here vanish by (3.7b), (3%) and (3.10), leaving 

(4.10) 

where again we have used (3.6) and (3.7a), along with the definition (4.4) of PE-l. Equation 
(4.10), which gives the evolution of P; starting from is often the most computationally 
demanding portion of the Kalman filter, since it involves large matrix multiplications. For 
reviews of efforts to  ameliorate this computational burden, see Todling and Cohn (1994) 
and Ghil (1997). Of related interest are the recent articles by Cohn and Todling (1996), 
Dee (1995) and Verlaan and Heemink (1995). 

= Fk-iPE-1Fk-l T + Gk-iQlc-iGf-1 , 

Equations (4.8) and (4.10) constitute the forecast step of the discrete Kalman filter. Note 
that no Gaussian assumptions were used in their derivation. However, if p(w;-,l W e , )  
is Gaussian, then so must be p(wkI since (4.1) is a linear combination of Gaussian 
random vectors. In fact, we have just derived the mean w: and covariance matrix PL of 
this conditional density. 
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4.3 The analysis step 

Here is where the Gaussian assumptions are needed quite explicitly. First, however, we 
develop the update equation for p(w:I W,O) given p(w:I Wi-l) in the absence of any as- 
sumptions about the nature of these densities, for use both here and in § 5. By repeatedly 
applying the definition (A.9) of conditional probability densities, we have 

P(w:I W i )  = P(w:I w:, Wi-1) 

(4.11) 

This is a quite general result, and holds for the nonlinear equations (2.9), (2.13) with no 
assumptions on the indicated densities (other than their existence), as well as for the linear 
equations (4.1) and (4.2). I t  is a version of Bayes’ rule. 

An important simplification follows, however, from the whiteness assumption on { E : } .  

Referring now to  the nonlinear observation model (2.13), observe that 

P(Wi1 w:, wi-1) = P(WiI w:) I (4.12) 

since given w:, w; depends only on e;, which in turn is independent of W P 1  = {wy, wi ,  
. . . , w;-~} under assumption (3.8b).t Thus (4.11) becomes 

(4.13) 

It remains to  evaluate each of the three densities on the right side of (4.13). We already 
f f it is Gaussian with mean w,, given by (4.8), and covariance matrix P,, have p(wLI 

given by (4.10). From (4.2) we have 

(WE1 w:) = ( H k W L  + E;lw:) = Hkwk t , (4.14) 

since E: is state-independent and has mean zero according to  ( 3 . 8 ~ ) .  Therefore 

(4.15) 

*Here we have used the fact that vncorrelatedGaussian random vectors are independent, but rather than 
assuming that the vectors E; are Gaussian and mutually uncorrelated we could have assumed instead that 
E ;  is independentof E: for e <  k without any Gaussian assumption, leading still to the conclusion that, given 
w:, E ;  is independent of W,O-l. 
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according to  ( 3 . 8 ~ )  and (4.2). Since E;  was assumed Gaussian, p(wiI w:) is then Gaussian 
with mean HkwL and covariance matrix Rk. 

Also from (4.2) we get 

(WE] WL-1) = (HkW: + eiIWi-1) = Hkwk f 7 (4.16) 

from definition (4.5) and assumptions (3.8b),  (3.10c), along with the assumption ( 3 . 8 ~ )  that  
(e;t)=O. We then have 

(4.17) 

Again the cross-terms vanish as in (4.9), leaving 

T 
((WE - (WiI Wi-,,>(wi - (WiI W C J )  I W L )  = HkP:H: + Rk , 

(4.18) 

from ( 3 . 8 ~ )  and (4.16). The density p(w;IW,O-,) is Gaussian because E ;  was assumed to 
be Gaussian-distributed and p(w; I Wi-l) is Gaussian. 

Substituting these results into (4.13) and using the definition of the multivariate Gaus- 
sian density, we have finally 

P(w:Iw = PLZ2 p3 7 (4.19) 

where 

p1 = (27r)-flRl-i exp[ -z  1 ( w ' - H w ~ ) ~ R - '  (w'-Hwt)] , (4.20) 

p2 = ( 2 n ) - t / ~ f l - i  e x p [ - 2 ( w t - w f ) T ( ~ ~ ) - 1 ( w t - w ~ ) ]  1 , (4.21) 

p3 = (27r)-fIHPfHT + RI-; exp[-$(w'-Hw/)T(HPfHT + R)-'(w"-Hwf)] , 
(4.22) 

where the symbol I I denotes the matrix determinant and for notational convenience we 
have omitted the time index k which should appear on all vectors and matrices in (4.20) to  
(4.22). Thus, 

p(wLI w;) = c exp( - i J )  , (4.23) 

where 
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With considerable hindsight, define Pa by 

( p a ) - '  = (pj)-' + H T R - ~ H ;  (4.26) 

Pa will be shown to  be the analysis error covariance matrix (4.4) at time t k .  From the 
Sherman-Morrison-Woodbury formula (e.g., Golub and Van Loan 1983), (4.26) may be 
rewritten as 

P" = ( I - K H ) ~ ~ ,  (4.27) 

where 

K = P ~ H ~ ( H P ~ H T + R ) - '  (4.28) 

is the Kalman gain matrix. Substituting (4.27) into the expression PaHTR-' and using 
(4.28) yields 

P"HTR-' = K .  (4.29) 

From (4.29) it follows that  

( w ~ - ~ w t ) T ~ - '  ( w ~ - ~ w t )  

= [ (w"-Hwf) - H(wt- wf)]' R-' [ (w" -Hwf) -H(wt- wf) ]  

= ( w o - ~ ~ f )  T -  R ( w o - ~ w f )  + ( w t - w f ) T ~ T ~ - ' ~ ( w t - w f )  

- ( ~ ~ - w f ) ~ ( P ~ ) - '  [K(w"-Hwf)] 

- [K(w"-Hwf)lT (P")-'(wt-wf) . (4.30) 

Substituting this result into (4.25) and using (4.26) yields the expression 

J = (Wt-Wf)T(Pa)-'(W"-Wf) 

+ (w"-Hwf) R-'- HPfHT + .)-'I (w"-Hwf) 

- (wt - ~ f ) ~ ( p " ) - '  [K(w"-Hwf)] - [ K ( W " - H W ~ ) ] ~ ( P ~ ) - ' ( W ~ -  wf )  . 
'1 ( 

(4.31) 

But from (4.28) and (4.29) it follows tha t  

R-'- (HPfHT + R)-' = (HPfHT + R)-' [ (HPfHT + R) - R] R-' 

= K T H T R - ~  = K T ( P ~ ) - ~ K ,  (4.32) 

so that  we have finally 

J = [(w*-wf) - K ( ~ v ' - H w f ) ] ~  (Pa)-' [(wt-wf) - K(w"-Hwf)] . (4.33) 

Now, to  simplify the expression for the constant c in (4.24), let 

M H P f H T + R ,  (4.34) 
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and define the partitioned matrix 

(4.35) 
Pf 0 I, HT [:if :][ 0 R ] [  0 I , ] '  

where I, and I, are the n x n and p x p identity matrices. It follows that 

IAl = IPfllRl; (4.36) 

cf. Householder (1964, p. 17). The matrix A may also be factored as 

(4.37) 
0 M  M - ' H P f  

I, P ~ H ~ M - '  I[  p a  o ][ I, 
. = [ o  1, 

according to (4.27)' (4.28) and (4.34), from which it follows that 

PI = lP"llMl* (4.38) 

(4.39) 

and (4.24) becomes 

c = (2T)-?IP+. (4.40) 

Equations (4.33) and (4.40) show that the density p(w:I W;) in (4.23) is Gaussian with 
mean 

(w:I w;) = w: + Kk(WpHkw:) 7 (4.41) 

and covariance matrix 

(4.42) 

where the time index h a s  been re-introduced. Referring back to  (4.3), (4.4), (4.27) and 
(4.28)' we finally have the analysis update equations for the Kalman filter: 

w; = w,/ + K~(W;-H~W!) , 

P; = ( I - K ~ H ~ ) P $ .  

K~ = P , H ~  f T  (H~P,H, f T  + R ~ ) - '  , 
(4.43) 

(4.44) 

(4.45) 

The complete Kalman filter algorithm thus consists of these three equations, along with the 
forecast equations (4.8) and (4.10). This section concludes with a brief discussion of some 
of the properties and generalizations of the Kalman filter. 
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4.4 Properties 

Observe first that  the covariance evolution equations (4.10), (4.45), (4.44) do not depend 
on the observations, so that  the conditional covariances PL, PE are actually unconditional 
covariances. This property is a result of the linearity of (4.1) and (4.2), as well as the 
assumption that all of the error statistics are Gaussian. For small enough problems the 
covariance evolution, and in particular the sequence of Kalman gain matrices (4.44) needed 
in (4.43), may therefore be precomputed under this rather restrictive scenario, before the 
observations are actually taken. This property, along with the particular form of (4.8) and 
(4.43), leads also to a number of algebraically equivalent forms of the Kalman filter algorithm 
stated here, which can reduce computational costs and/or enhance computational stability. 
See Maybeck (1979, Chapter 7) for a fairly complete discussion of alternative Kalman filter 
algorithms. 

The Kalman filter indeed acts as a (low-pass) filter, removing unwanted noise from the 
observations Wg. See Daley and Mknard (1993) for a discussion of the filtering properties 
of the Kalman filter. 

There exists a large body of literature on stability properties of the Kalman filter and 
its sensitivity to  parameters, beginning with Kalman’s (1960) seminal article, and covered 
well in most texts on estimation theory. The stability results depend heavily, in turn, on the 
observability and controllability properties of the system (4.1), (4.2) under consideration, 
also discussed in most texts; see also Cohn and Dee (1988), Ghil (1997). 

An error sensitivity property of considerable practical importance is the following. In 
practice we seldom know either the observation error covariance matrix Rk or the model 
error covariance matrix Qk. Suppose, however, that we have access to  conservative estimates 
of each, ii, and &, that  - is, &>Rk - and & > Q k  for each tk.’ Then if we calculate 
a Kalman filter using Rk and Q k ,  the resulting approximate forecast and analysis error 
covariances, denoted by PL and Pg, have the property that 3 PL and Pg > Pg, for each 
tk, where PL and Pi now denote the actualcovariances resulting from our (suboptimal) filter 
calculations involving R, and Qk (Jazwinski 1970, Theorem 7.6), assuming a conservative 
estimate Pi>Pi  also. Thus we know that we have computed conservative estimates of 

- 

P, f and Pi ,  and in particular we have conservative estimates of the forecast and analysis 
error variances (diagonal elements of Pk f and Pi) as well. More generally, the performance 

evaluation equations can be implemented to study and interpret the results of numerous 
suboptimal filter schemes, in particular those that approximate the dynamics of PL in 
(4.10), (4.45); cf. Todling and Cohn (1994), Cohn and Todling (1996). 

The effect of estimating P, f conservatively, that  is, of overestimating the forecast error 
covariance matrix, is to assign more weight to  the observed data  than one would otherwise, 
resulting in “noisier” analyses. This avoids the problem of filter divergence (cf. Jazwinski 
1970, 35 8.8-8.12), however, which occurs when the filter “thinks” it is doing better than 

“y A > B  for symmetric matrices A and B of like dimension, we mean that the difference A-B is 
positive semidefinite. 
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it actually is, that  is, when Pi is underestimated and observations thereby receive too 
little weight: in the extreme case, if observations are neglected then data  assimilation 
accomplishes nothing, and the estimated state drifts away according t o  the (incorrect) 
model dynamics. Thus a standard rule-of-thumb is to estimate unknown error covariances 
conservatively. 

A fundamental property of the Kalman filter is expressed by the Innovations Theorem 
(Kailath 1968, Theorem a) ,  which says that the sequence of innovations Wi-Hkw; is 
Gaussian arid white in time, i.e., 

(4.46) 

th i s  can be verified directly from the Kalman filter equations and assumptions. In fact 
a nonlinear version of this result is also true (Frost and Kailath 1971, Theorem 2): for 
nonlinear observation models in continuous time with white, Gaussian, state-independent 
observation error, and essentially [see their equations (3) and (4)] no assumptions on the 
nature of the probability density of the true state, hence on that of the density of the model 
error, the (nonlinear) innovation process is still white and Gaussian for the optimal (con- 
ditional mean, i.e., minimum variance) nonlinear filter. While optimal filters for nonlinear 
problems cannot generally be expressed in closed form because the first and second moments 
of p(wiI W;) become coupled with higher-order moments (see Appendix C),t this is still 
a very powerful result: by routinely monitoring the observed-minus-forecast residuals for 
whiteness, we can rationally assess the proximity of a given suboptimal filtering algorithm 
to optimality, and also assess putative improvements to the algorithm. Daley (1992b) h a s  
shown how such monitoring can even be useful in diagnosing weaknesses in an operational 
atmospheric data  assimilation system. 

In fact, in  numerical weather prediction and other large-scale da ta  assimilation prob- 
lems, one does not generally know the form of the probability densities appearing in (4.13) 
from which the analysis equations (4.43)-(4.45) were derived. For the various assumptions 
in this section we have seen them to  be Gaussian, but in practice one has a t  best only lim- 
ited knowledge of the ingredients w;, PL, Hk and Rk of the analysis equations, let alone 
any assurance that the densities are Gaussian. Yet these equations in fact are simply the 
matrix formulation of the usual “optimal interpolation” analysis equations (e.g., Bergman 
1979; Lorenc 1981) without data  selection (da Silva et al. 1995). One expects, then, that 
these equations can be derived from much simpler assumptions than those we have stated, 
and indeed they can, as follows. 

Given only the observation model (4.2), along with (el)=O and (e;(.;)’) = Rk, and 
no assumptions on the densities of wk and E ;  themselves, then of all estimators of the lin- 

ear form (4.43), the choice of Kk that  minimizes the scalar wg- w;) S (wg - wk) for all 
positive definite n x n matrices S is none other than the Kalman gain (4.44); cf. Jazwinski 
(1970, Example i.4).11 This is the best linear unbiased estimate (BLUE) property of the 

tSee Casti (1985, pp. 173-175) for an example of a nonlinear filtering problem that does have a closed- 

“See also $3.2 of the present article. Observe also that for S = I ,  this scalar is identical to trace Pg, where 

) 
T 

(( 

form solution. 
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Kalman filter (more accurately, the best affine minimum variance estimate property; see 
Catlin 1989, $ 5.3). The drawback, however, is that  if the densities in (4.13) are not Gaus- 
sian, then the analysis equations (4.43)-(4.45) do not give the conditional mean analysis, 
which is the minimum variance analysis. Non-Gaussian densities lead to nonlinear analysis 
equations for the conditional mean, even for linear observation operators. We return to this 
subject in $5 .  

4.5 Generalizations 

To bring the ideas of Kalman filtering into the realm of actual Earth Science data  as- 
similation problems, perhaps the most obviously necessary generalization is to  nonlinear 
observation operators and nonlinear dynamics, which are discussed in $ 5 and Appendix C, 
respectively. Also, in $ 2 we have raised t h e  necessity of careful treatment of continuum as- 
pects of the theory, which are discussed in § 6 and Appendix C. Generalization t o  smoothing 
problems of various types have been mentioned already in 3 3; see Maybeck (1979, Chapter 
8) and Anderson and Moore (1979, Chapter 7) for fairly extensive discussions. 

Here for completeness we mention just a few simple generalizations of the discrete linear 
theory presented already. First, in the presence of known model error bias G&=GI , (E~) ,  
cf. (2.6) and (2.7), and/or known measurement error bias (2.11), it is straightforward to  
generalize the standard Kalman filter equations. The forecast equation (4.8) becomes 

(4.47) 4 w: = F k - i W i - 1  f G k - i E k - 1  , 

and follows readily from (4.7). The analysis equation (4.43) becomes 

(4.48) 

which arises, for example, by considering w;l. -Z; as an unbiased “pseudo-observation” 
vector. The covariance equations (4.10), (4.45), as well as the equation for the Kalman gain 
(4.44) are seen to remain unchanged by following their derivation closely. 

Model and observation biases, however, like their error covariances, are seldom actually 
known. Rather, they either need to  be estimated along with the state itself, or else their 
presence should a t  least be accounted for in the filtering procedure. The former approach can 
be accommodated by state augmentation, that is, by simply including the bias parameters 
as additional state variables to be estimated. This introduces additional computational 
expense, and one must assume either that the biases are constant in time, or else have 
access to a dynamical model for the biases (Jazwinski 1970, $8.4). In case the biases are 
indeed constant in time, the latter approach, of accounting for biases but not estimating 
them directly, is accomplished wi th  less expense than the former, through a generalization 
known as the Schmidt-Kalman filter (Jazwinski 1970, $ 8.4); see also Caglayan and Lancraft 
(1983) for a nonlinear treatment. Dee and da Silva (1997) have developed a model error bias 

PE was defined in (4.4),  Ihe niinimization of which is often used as a heuristic criterion for deriving the 
Kalman gain matrix. 
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estimation scheme suitable for large-scale models. Derber (1989) h a s  introduced a model 
error bias estimation scheme in a variational context. 

We conclude this section by mentioning that  straightforward generalizations of the 
Kalman filter exist in  case the model error and observation error are correlated with each 
other (Jazwinski 1970, Examples 7.5 and 7.6) and in case the observation error is correlated 
(rather than white) in time, provided it can be modeled as a Markov process (Jazwinski 
1970, Example 7.7). The case of time-correlated model error can also be treated, and has  
been studied by Daley (1992a). 

5 Nonlinear analysis updates 

5.1 Introduction 

Here we discuss the nonlinear analysis equations that  arise when either the observation 
operator h is nonlinear or the observation error density is not Gaussian. In the former case 
it will be seen that in practice one can usually only obtain an approximate formula for the 
minimum variance (conditional mean) analysis vector wa.  The approximation described 
here leads to  the analysis step of the locally iterated extended Kalman filter, which is seen 
to be algebraically equivalent to global variational analysis algorithms (e.g., Parrish and 
Derber 1992; Heckley et al. 1992). In the latter case, an exact formula is obtained when 
the observation error density is related to the Gaussian density in a known way. 

5.2 Nonlinear observation operators 

In order to describe the nature of the approximation usually made in this case, first we 
rewrite the general result (4.11). By the definition (A.9) of conditional probability densities, 
we may write 

and also 
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where the second equality follows from definition (A.5) and the third from (A.9). Equation 
(5.3) allows (4.11) to  be written as 

here the denominator is just the integral of the numerator with respect to  w:. From (5.4) 
it follows that Jp(w;I W[)dw:= 1 as expected. 

Now consider the nonlinear observation model 

W" = h(wt) + E " ,  

with 

E' N N ( 0 ,  R) , 

and the time subscript k is omitted for notational convenience. From (4. 
arguments identical to those leading to (4.20), we have 

~(W;IW: ,WL-~)  = (2~r)-~~R~-~exp{-!j[w"-h(~~)]~R-'[~"-h(~~) 

(5.5) 

(5-6) 

2) and from 

} * (5.7) 

We will assume that  the prior density p(wLI in (5.4) is Gaussian, and therefore given 
by (4.21), although it should be kept in mind that this is already an approximation since 
the state w: conditioned on observations obtained nonlinearly from past states will not 
generally be Gaussian. 

From (5.7) and (4.21) it follows that the numerator N in (5.4) can be written as 

N = c exp(-J) , (5.8) 

where 

(5.9) 
c = (2n)-2 E ( ~ T ) - ~ ~ R ~ - ~ ~ P ~ ~ - ~ ,  

and 

1 1 
2 2 

J = J(w') E - ( w ' - ~ f ) ~ ( P f ) - ~ ( w ' - w f )  + -[w' - h(w'))l*R-'[w" - h ( w t ) ] .  

(5.10) 

Thus we may write (5.4) as 

(5.11) 

The difficulty in evaluating p(w:I WL), and therefore its mean and covariance, lies first 
in evaluating the integral in (5.11). While we have already seen that this is straightforward 
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in the linear case, it is not trivial in case t h e  observation operator h is nonlinear. It may be 
possible to evaluate this integral analytically for some simple nonlinearities. For realistic 
Earth Science applications, though, only methods such as Monte Carlo integration would 
appear to be feasible, although still expensive, since this is a n  n-dimensional integral. 
Additional integrations would be required to calculate the first two moments of p(w:I W i ) .  
However, one approximation h a s  already been made, namely that  p(w:I W,"-,) is Gaussian, 
so further approximations not "worse" than this one should be useful. 

One approach would be to approximate just the mean and covariance of the density 
p(wzI W&,) that  the integral in  (5.4) represents. For example, from (5.5) we have to  first 
order that 

(5.12) 

In carrying out such an approach, one would still have to arrive at a density for p(wgl W,"-,), 
which would not be Gaussian, such that the quotient in (5.4) would integrate t o  unity. A 
different approach, the most common one, is described next. 

Since the denominator of (5.11) is simply a normalizing constant, independent of w:, and 
the numerator is readily available in (5.10), it is straightforward to calculate the maximum 
of (5.11) with respect to  w:, that  is, the mode of the conditional density p(w;I W i ) .  This 
is the analysis step of the locally iterated extended Kalman filter (Jazwinski 1970, 5 9.7): 
to approximate the mean of p(wLI W i )  by its mode, 

Wa k N - m(W:I W,") ; (5.13) 

see the discussion in the last paragraph of $3.1  for notation. This analysis is biased, unless 
by chance it happens that m(w$ W,O) =(wLI W,") =wi ;  see (3.4), (3.5), and definition (4.3). 
The mode may not be unique. 

From (5.11) it follows that maxima of p(w:I W,") coincide with minima of J(w:) defined 
in (5.10). The gradient vector dJ(w)/aw is obtained by differentiating (5.10): 

= (Pj)-'(w - wf) + HT(w)R-' [h(w) - wo] , (5.14) 

where 

H(w) = (5.15) 

is the tangent linear forward observation operator. The variational methods now gaining 
widespread use (e.g., Parrish and Derber 1992; Heckley et al. 1992) generally solve for a 
minimum (denoted by wa hereafter) of J(w), namely a vector wa such that  dJ(w)/dw=O 
at w=wa,  by employing (5.14) in a gradient descent method (e.g., Navon and Legler 1987). 
The method most commonly seen in the estimation theory literature is the following quasi- 
Newton method, which relies explicitly on the form of J(w) given by (5.10). This method 
circumvents the need for choosing a step size, which is sometimes a source of difficulty in 
descent methods. 
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By differentiating (5.14) one finds that the (i ,  j)th element of the Hessian matrix 
d2J(w)/dw2 is given by 

[ m] dw2 ij 13 a 
= [ (Pf)-'+ HT(w) R-'H(w)] , , + { HjT(w) R-' [h(w) - w"] } ,  , (5.16) 

where the matrices Hj(w), j =  1, 2, . . . , n are defined by 

Hj(w) z ; (5.17) 

these latter matrices vanish in case h(w) is linear or affine, since then H defined in (5.15) 
is independent of w. Newton's method for minimizing J(w) is the iteration 

(5.18) 

with w0=wf for instance. This iteration converges quadratically to  a (local) minimum if 
the Hessian matrix is positive definite. There may be multiple minima of course, which 
would be the case if p(wtI W i )  is multimodal. 

The quasi-Newton method is obtained by neglecting the second term in (5.16), which we 
have seen to  arise only from nonlinearity, while retaining the first term, which is present even 
for linear observation operators. This leads to a significant computational simplification as 
well as an easily verified convergence criterion. T h u s  we write 

d 2J 2 (Pf)-' + HT(w) R-' H(w) , (5.19) 

and substitute this expression into the iteration (5.18). This approximate Hessian is positive 
definite if, for example, (Pf)-' is positive definite, so convergence is easy to  guarantee, 
although it may be less than quadratic since the Hessian h a s  been approximated. 

Now for notational convenience, define 

Then from (4.26)-(4.28) and (5.19) we have 

[ ( I -  KeHe)Pf]-' . dW2 

(5.20) 

(5.21) 

(5.22) 

Substituting this result into (5.18) and using (5.14) gives the iteration 

we+' = we - (I - KeHe){we - ~f + PfHTR-'[h(we) - w"]} , (5.23) 

or, in  view of (4.27) and (4.29), 

we+' = we + (I - KeHe)(wf - we) + Ke[w" - h(we)] . (5.24) 
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Since this requires two linear system solves per iteration, that is, two operations with the 
gain matrix Kc defined in (,5.21), we regroup terms in (5.24) to obtain finally the quasi- 
Newton iteration 

we+i = wf + Ke[wo - h(we) + &(we - wf) ]  , (5.25) 

requiring only one linear system solve per iteration. That is, according t o  (5.21) one first 
solves 

(HePfHT + R)xp = W" - h(wp) + He(we - wf)  , (5.26) 

and then sets 

we+' = W' + PfHTxe; (5.27) 

a t  convergence (we+' E we E w,), one sets 

wa = w,. (5.28) 

Observe that for linear observation operators, (5.25) reduces to  the (non-iterative) Kalman 
filter analysis update equation (4.43) upon re-introducing the time index IC. Equations 
(5.26), (5.27) represent a simple nonlinear extension of the Physical-space Statistical Anal- 
ysis System under development at the NASA/Goddard Data  Assimilation Office (da Silva 
et al. 1995). 

We note that  (5.25) may also be viewed as a simple Picard iteration for minimizing J, 
i.e., for solving the nonlinear equation 

d J  - 
fi - O .  

According to (5.14), this equation can be written as 

(5.29) 

[ (Pf)-'+ HT(w) R-' H(w)]w = (Pf)-'wf + HT(w) R-' [H(w)w - h(w) + w"] , 
(5.30) 

leading to the iteration 

[ (Pf) - '+  HTR-'He]w[+i = ( P f ) - ' ~ f  + HTR-' [Hewe - h(we) + w"] . (5.31) 

Defining 

P;' G (~f)-' + H , T R - ' H ~ ,  (5.32) 

th i s  iteration may be written as 

weti = Pp(Pf)-'wf + PeHTR-'[Hewe - h(we) + w"] . 

P I  = (I - K!H!)P~, 

(5.33) 

From (4.26), (4.27) and (5.21), equation (5.32) may be written as 

(5.34) 
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and with (4.29) allows (5.33) to  be written as 

from which the iteration (5.25) follows. 

I t  remains to find an  approximate expression for the analysis error covariance matrix 
P". By analogy with the linear case, it is tempting to consider Pe defined in (5.34) as an 
approximate error covariance matrix for the Eth iterate we,** and therefore to  consider 

P, ( I -  K,H,)P~ (5.36) 

as a n  approximate analysis error covariance matrix a t  convergence. Note from (5.32) and 
(5.34) that  this P, is identical to the inverse of the approximate Hessian matrix of (5.19) 
at convergence. We will see that P, defined in (5.36) does indeed give P" to within a 
tangent linear approximation; see also Rabier and Courtier (1992, Appendix B). 

To see this,  linearize the observation model (5.5) about the Eth iterate we: 

w' h(we) t He (wt - we) + E" , (5.37) 

where He was defined in (5.20) and (5.15). Regrouping terms, rewrite (5.37) as 

W" 2 Hewt + [h(we) - Hewe + E " ]  . (5.38) 

Comparing (5.25) with (4.48), it is seen that wet1 in (5.25) is precisely the analysis vector 
one would obtain from the (linear) Kalman filter upon considering the term h(we)-Hewe 
in (5.38) as an observation error bias, assumed uncorrelated with wt. The matrix Pe defined 
in (5.34), by comparison with (4.45), is therefore indeed the error covariance matrix 

(5.39) T 
p;,! ii ((w; - Wk,!) (wk - wk,!) 1 w;) 

for the linearized observation model (5.38), and P, defined in (5.36) is the corresponding 
error covariance matrix for the "converged" linearized observation model 

w" 2 H,wt + [h(w,) - H,w, + E " ]  

= H(w")wt + [h(w") - H(w")w" + E"]  . (5.40) 

To summarize, the locally iterated extended Kalman filter proceeds at observation times 
t k  as follows. First, assume the prior density p(wk1 W;-l) is Gaussian. Then calculate the 
mode of the density p(wLI W;) by carrying (5.25) or an equivalent iteration to  convergence, 
denoting the result by Wk,,. Approximate the conditional mean wg by setting wg =wk,,. 
Finally, approximate the observation model by 

w; = Hk(w;)w: + [hk(w;) - Hk(W;)W; + E o ]  1 (5.41) 

"This Pc need not be calculated since it does not appear in (5.25), nor in (5.26)-(5.27). 
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assume that  hk(wi) -Hk(w,")wz is not correlated with w:, and thereby calculate Pi defined 
in (4.4) by the standard update equation (4.45), in which Hk=Hk(wi) is now defined in 
(5.15) and Kk=Kk(wi) is now defined by 

(5.42) 

Note that, unlike the linear case, in the nonlinear case Pi depends upon the observations 
themselves, through dependence upon W E .  The forecast step (4.8), (4.10) proceeds as usual. 

The approximate analysis update described here h a s  not yet been tested fully for large- 
scale Earth Science data  assimilation problems, and the extent to  which the approximations 
involved are reasonable is not yet known. From a theoretical point of view, approximation 
of the conditional mean by a conditional mode seems less than  ideal. Furthermore, non- 
linear observation operators arise mainly from remote-sensing devices, whose observations 
(e.g., radiances) often contain much redundant information (Joiner and d a  Silva 1997). Thus 
from a practical viewpoint also, the computational expense of three-dimensional analysis 
iterations may sometimes not be warranted by the data  themselves. For both of these rea- 
sons, research directed toward the assimilation of retrieved remotely-sensed data  products 
which are related linearly to state variables h a s  begun recently (Joiner and d a  Silva 1997), 
following the retrieval error analysis of Rodgers (1990). 

5.3 Lognormal observation errors 

We have seen that in the estimation-theoretic approach to data  assimilation problems, a 
stochastic-dynamic model, a stochastic observation model, and explicit assumptions on the 
nature of the probability densities involved in these models form the essential ingredients of 
the problem statement. Actual algorithms, often necessarily approximate, only ensue once 
the stochastic problem is formulated completely. 

So far we have only considered Gaussian errors, and cited the BLUE property of the 
Kalman filter in case the only knowledge at one's disposal is the first two moments of the 
errors. Additional information is sometimes available, however, and if so it can and should 
be used. For example, R. Mbnard (personal communication) has recently obtained evidence 
that measurement (retrieval) errors for the  mixing ratio of several atmospheric trace con- 
stituents observed from limb sounders on board the Upper Atmosphere Research Satellite 
(UARS) tend to be lognormally distributed, rather than normally (Gaussian) distributed.++ 
In addition there is evidence that forecast mixing ratio errors from a transport model de- 
signed to  assimilate trace constituent data (Mknard et al. 1995; Lyster et al. 1997) also 
tend to  be lognormally distributed. In fact the lognormal distribution arises quite naturally 
for the concentration of trace constituents themselves, according to  the theory of successive 
random dilutions (Ott  1995, Chapters 8, 9). Here we show very briefly how the standard 
Kalman filter analysis equations can be modified to accommodate lognormally-distributed 
errors. Similar arguments can be used to  develop analysis equations for other densities that  

See Appendix B for relationships between the first two moments of the normal and lognormal densities. 
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are related to the Gaussian density. For more general densities, one may revert back to  the 
general result (4.11). 

First we remark that strictly nonnegative quantities, such as salinity, temperature, 
wind speed, and mixing ratio of water vapor or other atmospheric constituents, as well 
as remotely-sensed radiance measurements, and therefore errors in these quantities, cannot 
be strictly Gaussian-distributed (although they may be approximately so) , since the Gaus- 
sian density assigns positive probability to negative values of these quantities. As a result, 
observation models such as (4.2) or (5.5) may not be appropriate under the usual assump- 
tion of Gaussian measurement error E O .  For example, if wt is a vector of mixing ratios then 
each element of wt must be nonnegative, while if E' is assumed Gaussian then according 
to the model (4.2) there is a nonzero probability of recording a negative observation, even 
though the actual observations are all nonnegative. 

A simple example illustrates how this mismatch between model and reality can result 
T 

in negative (and therefore incorrect) analyses. Consider a forecast vector w f =  [wf:, w i ]  
of dimension n = 2 ,  with w1 f 2 0  and w2 f 20, having error covariance matrix 

(5.43) 

with a > 0, b > 0, and IpI < 1.  Suppose there is a direct observation wy of w i  according to 
(4.2),  so that H = [ l  01, and let R=r>O. From (4.43) and (4.44) one obtains 

w; = w; + S ( w y  d- - w:) , 

so it can happen that w; < 0 if 

p(wy - wi> < 0 .  

(5.44) 

(5.45) 

(5.46) 

If wi=O, then the simple condition (5.46) alone results in a negative analysis wz<O. If 
w i  > 0, then w$ < 0 is obtained if either 

or 

(5.47) 

(5.48) 
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, sufficiently small ratios a / b  
f 

/ W 1  -w:l 

For nonnegative fields such as mixing ratios, then, in place of the observation model 
(4.2), let us  model the observations wo according t o  

logw" = H logwt + logs" ,  (5.49) 

where the logarithm is applied componentwise to the vector elements, we assume the ele- 
ments of wt and E' are nonnegative, and we omit the time index I C .  This observation model 
assumes the observations are also nonnegative since 

w" = exp(H log wt + logs") . (5.50) 

In fact, defining the logarithmically interpolated state zt by 

l o g d  = H log wt , (5.51) 

(5.49) is equivalent to 

(5.52) w? = € ? Z .  t 
3 3 3 '  J . = 1 , 2 , . - . > p ,  

so that 67 is just the relative error of the jth observation. 

Assuming that E" and zt are independent and that  the observations are not biased, from 
(5.52) it follows that 

(€9) = 1 ,  j = 1 , 2  , . . . ,  p .  (5.53) 

Now assume that the density p ( ~ " )  is lognormal, so that p(1ogs") is normal, and denote the 
covariance matrix of E" by R: 

R;j = ( ( 6 :  - l ) ( c g  - 1))  . 

From (B.8) and (B.9) we then have 

loge" N N(b", BO), 

where 

and 

B;"j = log (1 t R;j) = log ( € : C Y )  , 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

Equations (5.55)-(5.57) complete the definition of the observation model (5.49). 
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Now take v t E l o g w t  as the state vector and assume the prior density p(w:I WL-l) to  
be lognormal, so that the density p(v:l Wi-l) is normal with mean and covariance matrix 
denoted by v: and B: respectively. From (5.49) and (5.55) it is seen that we are now in 
the standard Kalman filter analysis situation, with “observations” log wo and “observation” 
error bias bo. From (4.48), (4.44) and (4.45), the optimal (minimum variance, conditional 
mean) analysis update equations follow: 

V” = vf + K(1ogw” - Hvf - b o ) ,  

K = ~f H T ( H B ~ H T  + BO)-’ , 
B” = ( I -  KH)Bf. 

The optimal analysis W” of wt itself can be recovered using (B.1): 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

it is clear that  each w s  3 0. The corresponding analysis error covariance is given, if desired, 
by (B.2): 

(5.62) 

As was the case for nonlinear observation operators, Pa depends on the observations them- 
selves, through dependence on wa. The forecast equations may proceed either from the 
pair (wa, Pa) or, perhaps preferably, directly from (va, B”), if the dynamics are based on 
the evolution equations for vt rather than wt.  

6 A simple illustrative example 

6.1 Introduction 

In  the previous section it w a s  seen that the probabilistic assumptions made in formulating 
the observation model are critical in determining the appropriate analysis update equations, 
and hence the analysis itself. In § 2 it was argued that  the representativeness error term in 
the observation model may sometimes play a n  especially important role. 

In this section we give a very simple example of an estimation problem arising from 
continuum dynamics, in which representativeness error can be treated exactly and the exact 
optimal (conditional mean) state estimate on a well-defined finite-dimensional function 
space Bn can actually be calculated. While this example is purposely contrived to  make 
exact treatment possible, the intention is to  describe a conceptual framework that  may help 
guide the development of approximate estimation algorithms for more realistic problems. 
For instance, in th i s  framework we will see that “climatology”, defined appropriately, plays 
a central role in the treatment of representativeness error. 

The point-of-view will be to define first the space Bn on which the estimation problem 
is to be solved, and only after doing so to develop an  appropriate discretization of the 
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dynamics. Until now we have first assumed the existence of a discrete model, and then 
defined the discrete estimation problem; this led to model error and representativeness 
error. In the simple example given here we will see that  by defining f?" first and only 
then discretizing, there will be no model error a t  all, and the representativeness error can 
be accounted for exactly. We begin by stating the continuum problem, including all of 
our assumptions. Afterwards, we will extract and solve an appropriate finite-dimensional 
problem. 

6.2 The continuum problem 

Suppose the state w=w(x,  t )  is governed by the one-dimensional scalar advection equation 

dw dw - 
Z+"dz - O ,  

with constant advection speed u (known and determiiistic) , periodic boundary conditions 
on [O, 274 

W(2A,t) = w(0,t) , t 2 t o ,  (6.2) 

and real, unknown initial condition w ( z , ~ o ) = w o ( z )  which is considered to be random. For 
notational simplicity we take wo(2) to be a random field defined over all of IR, not just for 
z E [0, 2 ~ 1 .  Then by the solution of (6.1), (6.2), we mean the random field 

(6.3) 

provided that 

wo(z + 27~) = wo(z)  for all z E IR. (6.4) 

Since wo(2)  is a random field, condition (6.4) needs to  be interpreted in a probabilistic 
sense, which we will do in  Assumption 6.2 below. We assume first that wo(2) has finite 
second moments, so that  the mean function 

the covariance function 

and the uncentered covariance function 

Yo(z1, .2> ( W O ( 2 1 ) W O ( ~ 2 ) )  , (6.7) 

all exist. We will make the following four additional assumptions on the random initial 
field W O ( X ) ,  which in light of the simple form of the solution (6.3) will ultimately serve to  
define the function space f? in which the random field w(z, t )  is sought. The first of these 
is somewhat technical, and therefore will be discussed in detail. 
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Assumpt ion  6.1 There exist positive constants a and /3 independent of x such that 

for all h < ,B and all x E IR. 

This assumption can be verified directly for a given Yo(x1,x2) since the left side of 
(6.8) evaluates to YO(X + h, x + h )  -2Yo(x t h, x)+Yo(x, x). T h u s  the assumption implies 
existence of the second derivative d2Yo(xl,x2)/dx1dx2 at all diagonal points x1=22, and 
therefore existence of this second derivative on all of R x IR (cf. Jazwinski 1970, p. 63, Corol- 
lary l ) ,  which is tacit, for instance, in the usual derivation of wind-wind covariance func- 
tions from height-height covariance functions for geostrophically-related height and wind 
errors on the sphere (cf. Daley 1991, 5 5.3). Existence of this (deterministic) derivative 
in t u r n  implies existence of the (random) derivative dwo(x)/dx in the mean-square sense 
(cf. Jazwinski 1970, Theorem 3.5), which is the sense in which the derivatives in (6.1) are 
to be interpreted, and also implies that the operations of expectation and differentiation 
commute (cf. Jazwinski 1970, Theorem 3.6). The latter property is used in the derivation 
of the continuum Kalman filter equations (Appendix C). Assumption 6.1 is satisfied, in 
particular, if wo(x) is bandlimited; cf. Papoulis (1984, p. 332). 

Assumption 6.1 implies that the random field wo(x) is almost surely sample continuous 
on IR (Lokve 1963, p. 520), a fact that will be important in defining observations of the state 
w ( z , t )  later in th i s  subsection. This means that all realizations of wg(x) are continuous 
functions on IR, except for a set of realizations of probability zero independent ofx, a strong 
notion of continuity. Existence of d’Yo(x1, x2)/dxldx2 only implies almost sure continuity 
of wo(x), referred to  in  the literature also as continuity with probability 1, which means that  
realizations are continuous at any given point x with probability 1. Lohve (1963, p. 501) 
discusses the distinction between the concept of almost sure sample continuity and the 
weaker concept of almost sure continuity. 

In place of Assumption 6.1 one might consider a still weaker assumption such as mean- 
square continuity of wo(x), 

h-0 lim ( [ W O ( X +  h )  - WO(.,]’) = 0 for all x E R, (6.9) 

which is equivalent to  continuity of Yo.(zl, 2 2 )  at each diagonal point 21 =x2 (cf. Jazwinski 
1970, Theorem 3.2; Papoulis 1984, p. 225). Realizations of mean-square continuous ran- 
dom fields, however, can be extremely irregular and often display fractal characteristics 
(cf. Tarantola 1987, Example 7.4), although they are always regular enough to be inte- 
grable over finite intervals (Lokve 1963, p.520). While such fields describe a variety of 
natural phenomena, we employ Assumption 6.1 instead, which, as we will see later, renders 
point observations of w(x, t )  meaningful. 

Assumpt ion  6.2 There exist positive constants y and S independent of x such that 

( [WO(X + 27r + h)  - wo(x)]’) < y h 2  (6.10) 

for all  h < S and all x E IR. 
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This assumption implies almost sure sample 2r-periodicity of the random field WO(Z) :  

this is the sense in which (6.4) is meant in our example. In other words, all realizations of 
wo(2) satisfy (6.4), except for a set of realizations of probability zero independent of 2. A 
weaker (and more frequently encountered) sense, implied by Assumption 6.2, is mean-square 
2r-periodicit y: 

([wo(x + 2r) - wO(x)l2) = o for all z E R ; (6.11) 

cf. Papoulis (1984, p. 230). 

Assumption 6.3 The random field WO(X) is Gaussian, that is, for each positive integer 
m and each set of points 21 ,  2 2 ,  . . . , 2, in IR, the random variables W O ( Z ~ ) ,  w0(22), . . ., 
wo(x,) are jointly Gaussian. 

It follows from (6.3) that in fact the solution w(z , t )  is Gaussian for all time t>to. 

Assumption 6.4 The random field WO(X)  is homogeneous (wide-sense stationary when 
viewed as a stochastic process rather than as a random field). That is, the mean function 
Go(z) in (6.5) is actually a constant c, 

G,(2) (wo(2)) = c ,  (6.12) 

and the covariance function W o ( x 1 , ~ )  in (6.6) is a function C of 2 1 - 1 2  alone, 

Wo(21, 2 2 )  = C ( Z l  - 2 2 )  * (6.13) 

The constant c and the function C(x1 - 1 2 )  are assumed known. 

From definition (6.6) it follows that  C(zl-2,)=C(22-21)=C(121--2)); C ( x )  is an 
even function. In other words, wo(z) is also isotropic, which is the case for all homogeneous 
random fields in  one dimension. 

Now, from (6.3) and (6.12) it follows that the unconditional mean 

G ( 2 , t )  G ( W ( 2 , t ) )  

is a constant for all time t 3 t o :  

G ( 2 , t )  = (wo(z - u ( t  - t o ) ) )  = c .  

From (6.3), (6.6) and (6.13) it follows that the unconditional covariance function 

W ( Z l , 2 2 , t )  = 

(6.14) 

(6.15) 

(6.16) 
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is also constant in time and depends only on 2 1  -x2: 

= c( [z1 - u ( t  - t o ) ]  - [z2 - u(t - t o ) ] )  

= C(z1 - . 2 ) .  (6.17) 

Therefore w(x, t )  is a homogeneous Gaussian random field for all time t > t o ,  with un- 
conditional mean c and unconditional covariance function C(z1 - 5 2 )  which are both inde- 
pendent of time. Since these statistics are independent of time, we will refer to c as the 
climatological mean and to C(zl  - z2) as the climatological covariance function. Thus the 
notion of climatology in this example differs from the conventional one: our usage refers 
directly to ensemble statistics rather than time-average statistics, and does not require 
ergodicity. 

Replacing z in (6.8) by z - u(t  - t o ) ,  it follows from (6.3) that  

for all h < p ,  all IL: E R, and all t > t o .  Similarly, from (6.3) and (6.10) it follows that 

([w(z + 27r + h,  t )  - w(z, t ) y )  < yh2 , 

(6.18) 

(6.19) 

for all h < 6 ,  all x E R, and all t > to .  Thus the function space B is defined to  consist of all 
homogeneous Gaussian random fields w(z ,  t) having mean c ,  covariance function C(z1 - z2), 
and satisfying (6.18) and (6.19). These random fields are almost surely sample continuous, 
2x-periodic functions on IR. In particular, B includes the realizations of such fields. 

Now suppose that noisy linear observations of w(z, t )  are available at discrete instants 
of time tk for k = l ,  2 ,  3, . . . : 

Here W E  is a pk-vector as usual, Hk denotes a known, deterministic pk-vector-valued 
bounded linear operator on B acting on the fundamental interval [0, 2x1, and we will assume 
that  the measurement error €;I1 is a Gaussian pk-vector uncorrelated with wo(z), 

(6.21) 

for all k and for all z E R. From (6.3) and (6.21) it follows that .ET is not correlated with 
the state w(z,  tk), nor with the signal Hk w(. , t h ) .  The signal is a Gaussian-distributed pk- 
vector since it is a linear operation on the state, which is Gaussian (cf. L o h e  1963, p. 485). 
We also assume that the measurement error bias, 
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and the measurement error covariance matrix, 

(6.23) 

are both known. Finally, we assume that the measurement error is white in time. 

Let us  write the eth element of the vector observation equation (6.20) as 

(%)e = ( s k ) e  + ( E P ) e  7 (6.24) 

where s k r  Hk w(. , tk) is the signal. What we actually observe is a realization of the random 
field w(x, t k ) .  It followed from Assumption 6.1 that almost all realizations are continuous 
functions, in  a very strict sense. We define Hk only for the continuous realizations. We 
have also stipulated that Hk should be a bounded linear operator on B (acting on the 
fundamental interval [0, ax]), a physically natural requirement which means for continuous 
functions w(z, tk) on [o, 2x1 that  

(6.25) 

for some constants Mk,e independent of w(z,tk). It follows that a large classtt of signals 
can be represented as 

(6.26) 

where the functions f k e ( z )  are any integrable functions on [0, 27~1, since then we can take 

(6.27) 
J o  

In particular, point observations are permissible: in this case 

xe for e=1, 2, . . . , pk denoting observation points a t  time tk, which is obtained by setting 
fke(x)=S(x - .e) in (6.26), 6 denoting the Dirac &function, for which hfk,p=1 in (6.25);* 
see also Papoulis (1984, pp. 235-245, 271-283). More generally, the weighting functions 
fke(x) can be considered as aperture functions (cf. Daley 1993) or averaging kernels (Backus 
and Gilbert 1970), and in this example are assumed known, inasmuch as Hk is assumed 
known.  

"The entire class is described by the Riesz representation theorem for continuous functions (e.g., Royden 
1968, p. 310). 

'Had we assumed only mean-square continuity (6.9) of WO(Z) rather than Assumption 6.1, then the 
most we could conclude about integrability of w(z, t k )  is almost sure sample square-integmbility (Loirve 
1963, p. 520) ,  i.e., that almost all realizations lie in the space Lz[O, 2i7] of square-integrable functions on 
[0, 2 ~ 1 .  The Riesz representation theorem for L, spaces (e.g. ,  Royden 1968, p. 121) would then imply that 
the functions fke(z) must also lie in Lz[O, 2 ~ 1 ,  thus precludingpoint observations since the Dirac &function 
is not square-integrable. In other words, point observations would tell us nothing about the realization of 
w(x, t k )  in this case. 
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Under the stated assumptions, the conditional mean forecasts and analyses a t  times 
t k ,  and their corresponding conditional covariance functions, are given (exactly) by the 
continuum version of the Kalman filter (see Appendix C). These are defined by 

(6.29) 

(6.30) 

At time t o  we have 

(6.33) 
(6.34) 

At times t k  > t o r  w{(x) and Pk f (XI, 2 2 )  are given by the solutions G ( x ,  t k )  and P ( z l , z 2 ,  t k ) ,  

respectively, of the differential equations 

with initial conditions 

(6.37) 
(6.38) 

thus we have simply 

(6.39) 

(6.40) P,'(Zl, 2 2 )  = P L  (21 - U ( t k  - b), 2 2  - 4 t h  - l k -1 ) )  * 

For the analysis update we have 

WE(.) = W:(X) + K ~ ( z )  (wi - H k W L  - gr) . (6.41) 

Here the innovation vector wi - Hkwk f - 2y is a (column) pk-vector as usual, and the gain 

Kk(2) is the (row) pk-vector function of z defined by 

where HZkPL(. , .) denotes the (column) pk-vector function of 21 obtained by acting with 
HI, on the 2 2  variable of P,f(z1, 22) and Hlk denotes the action of Hk on the 2 1  variable; 
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the innovation covariance (in braces) to be inverted is a p k  x p k  matrix as usual, and the 

z-dependence of Kk(z) arises solely from the factor [HzkF'L(z, .)] . Finally, the analysis 
error covariance function Pi is given by 

T 

P;("l,Xz) = P,"(z1,12) - Kk(Zl)HlkP&, z2) * (6.43) 

The update equations (6.41), (6.42), (6.43) appear in Appendix C in a slightly different 
notation as equations (C.26), (C.27), (C.35) for the more general case of a vector state in  
several space variables. 

Equations (6.39)-(6.43), with initial conditions (6.33), (6.34), constitute the complete 
solution of the continuum filtering problem we have posed. Even for this very simple 
problem, however, for general Hk they cannot be solved exactly on a computer, because 
the analysis update equations (6.41)-(6.43) require access to  Pkf as a function. Rather 
than propose an approximate means of solving these filter equations, we now extract from 
the continuum filtering problem one which can in fact be solved exactly on a computer. 
We remark here that the solution of the continuum filtering problem did not require the 
homogeneity Assumption 6.4; the initial conditions (6.33) and (6.34) need only be the 
(unconditional) mean (wo(z)) and covariance Wo(z1, x2) of w(z, to), whatever they may 
be. The new filtering problem will make explicit use of the homogeneity assumption on the 
initial field. 

6.3 A finite-dimensional problem 

By Assumption 6.1, the random field wg(z) is mean-square differentiable, therefore mean- 
square continuous, and therefore mean-square integrable; cf. Jazwinski (1970, § 3.4). I t  
follows that we can define the random Fourier coeficients 

a .  = - 1 1 2x [wo(z) - ( ~ o ( z ) ) ] e - ~ j ~ d z .  

27r 0 
3 -  (6.44) 

These are Gaussian random variables in light of Assumption 6.3 (cf. Lokve 1963, p. 485); a0 

is real and a-j = u j  since WO(Z)  is real. Since the operations of expectation and mean-square 
integration commute (cf. Jazwinski 1970, Theorem 3.8), it follows from (6.44) that  

( a j )  = 0 for all j . (6.45) 

Further, the homogeneity Assumption 6.4 implies that  

while 

(a;iij> = 0 f o r i  # j ,  (6.46) 

(laA2> = - 2: lzTC(x)e-ijzdx for all j . (6.47) 
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In other words, the variances (lajl’) are just the Fourier coefficients of the function C ( x )  
defined by (6.6) and (6.13): 

(6.48) 

where the convergence is pointwise and uniform in x.t We saw earlier that  C ( x )  is a n  even 
function, C ( - x )  =C(x ) ,  which follows also from (6.48) since a-j=iij .  Thus the expansion 
(6.48) can be rewritten as 

00 

C ( x )  = ( t 2 c ( la ,  1 2 )  cos (jx) . 
j=1 

(6.49) 

Similarly, according to  (6.12) and (6.44), the Gaussian random variables aj  themselves 
are the Fourier coefficients of the random field wo(x) - (wo(x)) = wo(x) - c: 

M 

(6.50) 

where the convergence is both mean-square and almost sure (cf. Lokve 1963, pp. 485-486; 
Papoulis 1984, pp. 301-302; Yaglom 1987, $2.7, Example 3). In view of (6.3) we have also 

(6.51) 
j=-m 

This simple expansion gives rise naturally to a finite-dimensional filtering problem, as fol- 
lows. 

Suppose we are interested only in a “large-scale” analysis of w(x, t ) ,  which we will 
define to be the conditional mean of the first N 2 0  waves in the expansion (6.51) of w(x, t ) .  
Thus let Il denote the operator from B to  B”, n = 2 N  + 1, defined for random fields wo(x) 
satisfying Assumptions 6.1 to  6.4 by the truncated random Fourier series 

N 

(6.52) 
j=-N 

n is a projection operator, 

n2 = n .  (6.53) 

Then the large-scale field we(,, t )  is defined to  be 

~ ~ 

‘C(z) is twice-differentiable according to Assumption 6.1, in particular the first derivative d C ( z ) / d z  is 
continuous, and it follows from (6.11) and (6.12) that C(z) is S?r-periodic. Standard results from Fourier 
analysis imply pointwise and uniform convergence in this case. 
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the latter equality following from (6.51); wC=wt in the notation of the previous sections. 
The small-scale field wS(x, t )  is then 

ws(5, t )  (I - 11)w(2, t )  = aJeij[x - ~ ( t  - '011 , (6.55) 
I jbN 

so that  

w(2, t )  = we(., t )  + wS(2, t )  . (6.56) 

The estimation problem will be to calculate the large-scale forecasts and analyses, 

(6.57) 

(6.58) 

along with the corresponding error covariances 

Before proceeding, observe first that 

WX.) - w?(.) = (ws(+,tk)Iw;) I (6.61) 

according to  (6.30), (6.56) and (6.58); a similar relation holds for wL(2)' - wif (2). The 
conditional expectation on the right side of (6.61) does not vanish in general: writing a 
single aperture function fke(.) as a Fourier series 

m=--03 

(6.62) 

the integral in  (6.26) evaluates to  

2T 00 

w(,,tk)fke(z)dz = 2r ajb-je-iju(tk - t o )  . (6.63) 
j=-m 

Thus the right side of (6.61) vanishes only if for all the aperture functions b j = O  for all 
ljl > N ,  assuming the original field W O ( X )  h a s  power at all small scales ((laj12)#0 for all 
Ijl> N ) ;  cf. (6.55). In fact, the closer the observations are to point observations, the closer 
the spectrum { b j }  is to being flat (lbJ1 =constant). However, the unconditional expectation 
(w"(z, t k ) )  vanishes according to (6.45) and (6.55): 

( W S ( I , t k ) )  = 0 .  (6.64) 
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Small-scale information therefore arises solely from the observations in this simple exarnple. 
From (6.61) and (6.64) we see that the large-scale analysis w t ( x )  amounts to  discarding 
the small-scale information contained in all current and past observations. 

To solve the filtering problem (6.57)-(6.60), first write the observation equation (6.20) 
as 

W i  = Hk We(. , t k )  + Epk + ET , (6.65) 

where the representativeness error E;  is given by 

e; = HI, w “ ( * ,  t k )  , (6.66) 

and has mean zero according to  (6.64). Since the coefficients aj are Gaussian-distributed, 
as is the measurement error eP, and since Hk is a linear operator, the large-scale signal 
Hk we(. , t k )  is still a Gaussian random vector and so is the observation error E: = E ;  + E T ;  
cf. (2.14). The large-scale signal, representativeness error and measurement error are also 
mutually uncorrelated in view of (6.21), (6.46), (6.54) and (6.55). Therefore the analysis 
update equations (6.41)-(6.43) still hold if we replace w:, W E ,  Pl and PL by wif, w p ,  ef 
and P p ,  and if we replace the measurement error covariance matrix Rk by the observation 
error covariance matrix. Let u s  now calculate this matrix. 

According to  (6.16), (6.17), (6.49) and (6.55), 

(w”(z1,t)w”(22,t)) = 2 ( b j I 2 )  COS[j(, l  - 22,3 

C”(q  - 2 2 )  

= C(Z1 - 2 2 )  - Ce(21 - 22) ; 

j>N 

Cs(xl  - 2 2 )  is the small-scale climatological covariance and 

(6.67) 

is the large-scale climatological covariance. Note that since we have assumed the function 
C(z1  - 22) to  be known, for example as any of the traditional isotropic covariance models 
(cf. Daley 1991), then C“(z1 - 2 2 )  can be calculated by use of the latter equalities in (6.67) 
and (6.68). Thus the observation error covariance matrix is 

(6.69) 

which is the sum of the representativeness error covariance matrix and the measurement 
error covariance matrix. Here the notation is as in  (6.42). 

T 
= Hlk[H2kCS(. - *)] + Rk 7 
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The analysis update equations are therefore given by 

W?(X)  = wk e’ (.) 4- K ~ ( x )  (WE - HkW;’ - Am € k )  1 (6.70) 

p p ( z i , 2 2 )  = p , ’ ( z 1 , . 2 )  - K k ( z i ) H i k C ’ ( * ,  e 2 2 ) .  (6.72) 

Except for those giving rise to  the representativeness error covariance matrix, each of the 
integrals represented by H k ,  H l k ,  and H 2 k  in these equations can be evaluated exactly: 
they act on functions in the finite-dimensional space f?”, or B” x B”, and by orthogonality 
of the basis (sinusoidal) functions, the aperture functions f k e ( 2 )  in these integrals may be 
truncated to their projections n f k e ( 2 )  in evaluating the integrals; cf. (6.20), (6.24), (6.26) 
and (6.63). The integrals involved in calculating the representativeness error covariance 
matrix would have to be calculated numerically, to some specified degree of accuracy. The 
initial analysis equations, as in (6.33) and (6.34), are given by 

(6.73) 

(6.74) 

wo ea (x) = (we(., to))  = c ,  

P0ea(% .2) ( [ W ( ( Z l ,  t o )  - c] [we(,,, t o )  - c] ) = C‘(Xl  - 2 2 )  ; 

cf. (6.68). 

It remains to  calculate the evolution of the conditional mean and covariance between 
observation times. Since the projection operator n commutes with ud/dz  and d/d t ,  from 
(6.1) and (6.54) we find that 

X S U K  awe awe = 0 .  (6.75) 

Taking the conditional expectation with respect to  W P 1  in (6.75), it follows that  w;’(x) 
defined in (6.57) is given by the solution t k )  of the equation 

(6.76) 

starting from initial condition i ? e ( X , t k - l ) = W ~ - l ( X ) .  Similarly, %’(XI, 22) is given by the 
solution Pe(x l ,  z2, t k )  of the equation 

ape dPP ape = 0 ,  -;7t+uK+uaz, (6.77) 

starting from initial condition P e ( z l ,  Z 2 , t k - l ) = p E l ( 2 : l ,  2 2 ) .  Since the initial conditions 
for (6.76) and (6.77) lie in the finite-dimensional spaces f3” and B” x an respectively, these 
equations may also be solved exactly, for example by evolving the spectral coefficients 
directly. Thus the filtering problem (6.57)-(6.60) is solved. 

We note that in this simple example there is no “aliasing” of the small-scale information 
contained in the observations onto the large-scale analyses and forecasts: by definition [see 
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(6.54), (6.57), (6.58)], these extract only the  large-scale information contained in the obser- 
vations, the small-scale information being simply discarded [see (6.61) and the discussion 
thereafter]. Further, since w"(x,t)  lies in f?\B" (the complement of B" in B), so does the 
conditional expectation on the right side of (6.61), so that 

(6.78) 

which follows from (6.53) and (6.55). Therefore, since IIwea(x, t)=wea(x, t ) ,  operating on 
(6.61) with Il gives the relation 

w?(x) = rIwZ(x); (6.79) 

that  is, the analyses resulting from the finite-dimensional algorithm (6.70)-(6.72), (6.76), 
(6.77) are just the projections onto B" of those resulting from the infinite-dimensional 
algorithm (6.39)-(6.43). Similar relations hold for w:j, Pf" and ef. 
6.4 Concluding remarks 

Let us now summarize the results of this very simple example, and use them t o  provide a way 
of thinking about realistic geophysical data  assimilation problems. First of all, we have seen 
that by defining B" first, and only then developing a discretization, an exact, implementable 
filter algorithm h a s  been designed. This filter algorithm involves, perhaps surprisingly, no 
model error term. Had a different discretization of the dynamics been chosen, i.e., one 
incompatible with the discrete estimation problem imposed by the definition of B", then 
model error would have arisen. Such model error in th i s  simple example could perhaps 
be modeled stochastically by considering the leading-order terms in the truncation error 
expansion of the chosen discretization. While in principle it appears best t o  define B" 
first, then to  define the finite-dimensional estimation problem to be solved, and only as the 
final step to develop an  appropriate discretization, in the real world th is  will be a practical 
impossibility at least for some time, since large-scale geophysical models take many years 
to  develop: currently we are usually given a discrete model, then asked to  develop a data  
assimilation algorithm. For this reason alone, model error is inevitable. 

There are many other sources of model error, however. In our simple example, the 
absence of model error was due to the invariance of the continuum dynamics under the 
action of the projection operator II from f? to B". If the advection speed had not been con- 
stant, this invariance would no longer have held. In this case, a different choice of B" could 
perhaps ameliorate model error. For most nonlinear problems, it is unlikely that for any 
choice of B" one could develop a projection operator under which the dynamics would be 
invariant. For instance, energy- and enstrophy-cascade processes (cf. Gauthier et al. 1995; 
Tanguay et al. 1995) would likely lead to model error; this error could possibly be mod- 
eled stochastically (cf. Leith 1990). Assumptions made from the outset in the governing 
continuum dynamics, such as the hydrostatic assumption and the traditional shallowness 
approximations (Phillips 1966) in the atmospheric primitive equations also lead to model 
error. Finally, stochastic forcing arises from uncertain parameters in  physical parameter- 
izations and boundary conditions. Errors from all these sources will ultimately have to 
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be modeled, and the models tuned by adaptive procedures such as that suggested by Dee 
(1995). 

Concerning representativeness error, it should be noted that  the exact treatment in 
our example was enabled by the homogeneity of the random field w(x,t):  this property 
led to the absence of correlation between the large-scale part of the signal Hkwe and the 
representativeness error Hkw", and also to state-independence of the mean and covari- 
ance matrix of the representativeness error. While geophysical fields generally do not have 
this property, it is sometimes possible to  introduce a change of coordinates such that ho- 
mogeneity or isotropy holds approximately (e.g., Desroziers and Lafore 1993; Carton and 
Hackert 1990; Derber and Rosati 1989; Vanmarcke 1983, p. 81). The "kernel" Pef + C" in 
(6.71) upon which the observation operator H k  acts generally contains power at all spatial 
scales. Current-generation global analysis systems for numerical weather prediction also 
involve such a kernel (Parrish and Derber 1992; Heckley et al. 1992), but truncate it a t  
finite spectral resolution and instead lump the representativeness error covariance matrix 
together with the measurement error covariance matrix. Equation (6.71) suggests that  it 
may be more natural to  sum the forecast error covariance model (- P'f)  together with a 
small-scale climatological covariance model ( n ~  C") in accounting for representativeness er- 
ror, resulting in a covariance model with power at all scales. In principle this is possible by 
modeling the sum directly as a covariance function (with power at all scales), rather than as 
a truncated spectral expansion. The Physical-space Statistical Analysis System (da Silva 
et al. 1995) is one effort being developed along these lines. By the analogy between model 
error and representativeness error drawn in 5 2, it appears that  the stochastic forcing E: in 
(2.9) must also contain power at  all scales in general, and therefore should be considered as 
a random field rather t h a n  as a random vector. 

In the example it was also seen to  be important to evaluate the action of the integrals rep- 
resented by the observation operators Hk QS actual integrals, as opposed to, say, the simple 
interpolations carried out in conventional optimal interpolation schemes (e.g., McPherson 
et al. 1979; Lorenc 1981). This may be possible in operational practice, but only if the 
discrete function space f?. is defined precisely, for instance, only if we know precisely what 
is meant by the grid-point values of a numerical prediction model. Precise definition off?. 
and implementation of integral observation operators is likely to  be important for properly 
assimilating satellite radiances or retrieved products representing averages over regions of 
the spatial domain, and even for "point" observations such as those obtained from most 
in situ measurements. Of course, we do not know the aperture functions or averaging ker- 
nels precisely. Ultimately it may be necessary to  parameterize them and to  estimate the 
parameters during the data  assimilation process. 

Finally, we reiterate the role of the Gaussian assumptions made here (as well as in 
operational data  assimilation systems), along with the independence of the measurement 
error from the signal. The Gaussian assumptions lead, as we have seen, to  true conditional 
mean (minimum variance) estimation procedures if in fact they are correct. Gaussian 
assumptions can be checked, at least in part, by monitoring statistics of the observed-minus- 
forecast residuals. As demonstrated in 5 5.3, for alternative densities related simply to the 
Gaussian density, it is straightforward to modify the estimation algorithm appropriately, by 
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a change of dependent variable. In the simple example given here, the dynamics are invariant 
under the change of variable v=log w, and the analysis algorithm would be trivially modified 
as suggested in 5 5.3. 

Independence of measurement error from the signal depends on the measuring device 
itself. For most in situ measurements, t h e  assumption of independence may be justified, 
provided the devices are properly calibrated. For retrieved satellite products, a method is 
currently being developed by Joiner and da Silva (1997) in part to  ensure this independence. 
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Appendix A 
Conditional Probability Densities and Expectations 

Here we review only those facts about conditional probability densities and expectations that 
allow us to  give a self-contained proof of the equivalence of conditional mean estimation 
and minimum variance estimation; cf. (3.4). Background material can be found in most 
textbooks on probability theory. We make no notational distinction here between a random 
variable and its realizations. All integrals defined below are assumed t o  exist. 

If z is a random n-vector, its expected value (or mean, or first moment) is the vector 
( z )  whose ith element is defined by 

where p z  is the probability density function of z. We abbreviate this definition of (z) by 
the notation 

where the integration is over all of IR". If f (z)  is a deterministic function of z ,  then we also 
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(-4.3) 

Now denote the first m elements of z by the m-vector x, and the remaining n -m 
elements by the (n-m)-vector y ,  so that z=[xT,yTIT. The joint probability density 
function ~ ~ , ~ ( x ,  y) is then defined as 

Px,y(x,Y) = P Z ( 4  1 ('4.4) 

and the marginal densities pz(z) and py(y) are defined by 

PZ(Z) = Pz,y(x,V)drl, ('4.5) s 
the former integral being over IR"-" and the latter over R". The expected values (x) and 
(y) are then given by 

T 
the former integral being over IR" and the latter over Etn-", so that  (z)= [(z)., (y)T] . 

The conditional density of x given y, written p,l,(zly), is defined as 

by analogy with the usual definition of the probability of occurrence of an event A given 
the occurrence of an event B ,  

(A.lO) 

Note that if x and y are independent, that is, if px,y(z,y)=pz(x)py(y), then the intuitive 
result pzly(x~y) =pZ(x) follows from (A.9).  The expected value of x given y, written (xI y), 
is defined by 

(4 Y) = / €P , ,U(€ /Y )d€  7 ( A . l l )  

and is a function of the random vector y. However, if x and y are independent, by comparing 
(A.7) and ( A . l l )  it follows that (xI y) =(x). 
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Now, since (.I y) is a function of y ,  upon taking the expectation with respect t o  y it 
follows from (.4.3) that  

((.I Y)) = J’(4 rl)P,(rl)drl 

On the other hand, from (A.7), (A.5) and (A.9) we have 

Interchanging the order of integration here gives 

(A.12) 

(A.13) 

(A.14) 

or, from (A.l1), 

Comparing (A.12) and (A.15) shows that  

((4Y)) = (.> 7 

a fundamental identity we will need. 

Another basic identity is that 

(m ZIY) = gT(y)(4 Y) 1 

(-4.16) 

(A.17) 

if the vector g is a function of y alone. This follows directly from the definition (A. l l )  of 
conditional expectation. 

Now we establish the relationship (3.4). Denote by pk the conditional mean of the state 
wk given the observations W;, 

clk +:I W,O> * 

From (A.16) it follows that  

(w) = ( ( L ( & k ) I Y ) )  7 

( L ( E k ) )  = (((w: - W ; ) T s ( W :  - wi)  Ip;)) . 

where L(e:k) was defined in (3.3). Substituting (3.2) and (3.3) into (A.19) yields 

Adding and subtracting pk in (A.20) gives 

T 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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Since pi is a function only of W; according to  (A.18), and since the estimate WE was 
assumed to be a function only of the observations W; also, from (A.17) we have 

((Pi - W;)TS(w: - Pi) Iw;) = (Pi - W E Y  s((w: - Pi) Ip;) * (A.22) 

But 

((w: - P,)jW) = 0 ! (A.23) 

according to definition (A.18), so the expression (A.22) vanishes. Therefore we can write 
(A.21) as 

Using (A.16) and definition (3.3) again, this becomes 

+ ( E k ) )  = @(w: - Pi)) + +(Pi - WE)) . (A.25) 

The first term on the right side of (A.25) is independent of the estimate wz. The second 
term is minimized uniquely (since S was assumed positive definite) by the choice (3.4), that  
is, by setting 

wi = p i ,  (A.26) 

in  which case the second term vanishes. Thus, ( L ( E ~ ) )  is minimized uniquely by the condi- 
tional mean Pk, and the value of ( L ( E ~ ) )  at the minimum is (L(w: - pi)). 

Appendix B 
The Lognormal Distribution 

Here we describe the relationships between the first two moments of the multivariate normal 
(Gaussian) and lognormal probability densities. 

Suppose V E  R" is normally distributed with mean (v) and covariance matrix B, de- 
noted v--N((v),B). If the components wj of a vector w are defined by wj=exp(vj) for 
j =  1, 2, . . . , n,  then w is said to be lognormally distributed, written w-LN((w), P).  The 
mean vector (w) is given by 

and the covariance matrix P by 
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The mean vector and covariance matrix characterize the multivariate lognormal density 
completely, as is also the case for the normal density. 

To see ( B . l ) ,  recall that  the characteristic function # V ( W )  = (exp( iuTv) )  of v is given 
by 

#v(w) = exp(iwT(v) - $ J B ~  1 , (B.3) 

as shown in many elementary probability texts. Substituting into (B.3) the vector w=w3 

defined by wJ = -i e3 ,  where i =fl and e3 denotes the jth column of the n x n identity 
matrix, gives ( B . l )  immediately. Similarly, substituting W = W j k = W J  + W k  into (B.3) gives 

( w j w k )  = exP[(v~)  + (vk )  f i ( B ~ ~  + B k k  +28jk)]  = (Wj)(Wk)eXP(Bjk) 7 (B.4) 

so that  

P3k E ((w~ - (w~)) (wk - (Wk))) = (Wjwk) - ( W j ) ( W k )  I (B.5) 

from which (B.2) follows. 

Straightforward algebraic calculations from ( B . l )  and (B.2) show that,  if we are given 
w-LN((w) ,  P) and define v= logw (componentwise), then v-N((v), B), with 

In the special case that (wj)= 1 for all j ,  discussed in 3 5.3, one h a s  simply 

and 

in particular (vj) 6 0 for each j .  

Appendix C 
Filtering Theory on the Continuum 

While the discrete theory developed in $82-5 had the virtue of keeping the mathematics 
fairly simple, it did not allow for an adequate treatment of model error or representative- 
ness error. In $ 6  it was seen that continuum theory is required to  address these issues 
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fully, and is therefore developed here. In this appendix we carry out no discretization, so 
there will be no representativeness error; instead this error is treated in $6 .  We also do not 
consider stochastic forcing of the continuum dynamics, primarily to  simplify the mathemat- 
ical development; see, however, the discussion in $ 6.4. The observations will be supposed 
linear, since the main difficulties surrounding the treatment of nonlinear observations were 
described already in $ 5.2. The continuum dynamics will be nonlinear, however, so that we 
can highlight the role of closure approximations. Such approximations do not arise in the 
linear case. 

While essentially exact filters for nonlinear dynamics can be obtained through Monte 
Carlo approaches (Evensen 1994; Mknard 1994), here we will invoke the second-moment 
closure (third- and higher-moment discard) approximation. The development will be brief 
and formal. See Cohn (1993) and references therein for more detailed discussion of this 
approximation. Curtain (1975) and Omatu and Seinfeld (1989) summarize rigorous treat- 
ments of linear stochastic PDEs in estimation theory, establishing the relationship between 
rigorous and formal approaches. 

Let the m-vector state w=w(x , t )  satisfy a system of m nonlinear PDEs ( m = 1  for 
scalar, univariate dynamics): 

where f (w)  = f (w;  a/ax) denotes an m-vector partial differential operator acting on the 
spatial variables x of the state w(x, t ) ,  which is assumed to  lie in some function space B for 
each time t .  The (unknown) initial condition w(x, t o )  =wo(x) EB will be considered t o  be 
a random field (e.g., Yaglom 1987; Vanmarcke 1983) with known mean 

Go(x) (wo(x)) 1 (C.2) 

and known covariance function 
T 

WO(X1,XZ) = ( [Wo(X1) - GO(Xd] [Wo(X2) - Go(X2,] ) ; (C.3) 

t h i s  is an m x m matrix function of two sets of spatial variables x1 and x2, and by definition 
satisfies the symmetry property 

W,T(Xl,XZ) = WO(X2,Xl) * (C.4) 

Now suppose a pk-vector of observations w;Z. taken at discrete instants of time t k ,  

k=  1, 2 ,  3, . . . , is related linearly to  the state variables and corrupted by additive noise: 

w; = H k W ( . ,  tk) + €;r" , (C.5) 

where Hk is a linear operator on the function space B. The pk-vector measurement error 
E;F" is assumed to  be Gaussian, white in time, and independent of the s ta te  w(x,tk) and 
the initial field wo(x). The measurement error bias 

(C.6) 
-m 
"k (q> 7 
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a pk-vector, and covariance matrix 

a pk xpk matrix, are both assumed to be known. 

To solve the filtering problem, first we need to develop an equation for the evolution 
between times tk-1 and tk of the conditional mean 

G = G ( x , t )  E ( w ( x , t ) / w ; - l ) .  (C.8) 

If f = f ( w )  were linear (or quadratic) in w,  the equation developed here would be exact. In 
the second-moment closure approximation, we expand f ( w )  about G ,  assuming f is twice 
continuously differentiable with respect to  w, and retain terms up to  second order only: 

fe(w) = fe(G) + Lt(G)e + 4 tr[Fe(G)eeT] , (C.9) 

for !=1, 2, . . . , m. Here fe denotes the lth element of the vector f; e is the rn-vector 
function 

e = e(x,  t )  z w(x ,  t )  - G(x, t )  ; (C.10) 

Le is the lth row of the tangent linear operator L, the m x m  matrix partial differential 
operator whose ( l , j )  t h  element is given by 

(C.11) 

th Fe is the Hessian operator, an  m x m matrix partial differential operator whose ( i ,  j )  
component is 

(C.12) 

and “tr” denotes the trace of a matrix. Taking conditional expectations in  (C.9) gives 

(fe(w)Iwi-l) = fe(G) + $ t r [ ~ i ( f ) ~ ]  (C.13) 

where 

v = ~ ( x ,  t )  (e(., t )  e’(,, t ) lw; - l )  (C.14) 

is the (conditional) variance function; V is a symmetric m x m matrix function whose diag- 
onal elements are the conditional variances of the m state variables and whose off-diagonal 
elements are conditional cross-covariances between different state variables evaluated a t  a 
given spatial location x .  
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Abbreviating (C.13) by the slightly abusive notation 

( f ( W ) j W L )  = f(G) + 4 tr[F(G)V] 7 (C.15) 

and taking conditional expectations in (C.1) leads to the mean equation 

+ f(G) + t r  [F(G)V] = 0 .  (C.16) 

The mean equation is similar to  the original dynamical equation (C. l ) ,  which only governs 
the evolution of individual realizations, but incorporates a nonlinear bias correction term 
I t r  2 (FV) .  The truncated expansion o f f  (w) in (C.9) is exact i f f  is quadratically nonlinear, 
which holds for advective nonlinearity for instance, and in this case (as well as the linear 
case) the mean equation is therefore also exact. Solving the mean equation for nonlinear f 
requires access to the conditional variance function V(x, t), but not to  the entire conditional 
covariance function P(x1, xz, t ) ,  which is defined by 

P(Xl,XZ,t) = (e (x l , t )eT(xz , t ) /W~-l )  , (C.17) 

a function of two sets of spatial variables like WO(x1, XZ);  cf. ((2.3). From (C.14) and (C.17) 
it follows that 

V ( x , t )  = P ( x , x , t )  . (C.18) 

In  practice it may be possible to model V(x, t ) ,  or to  describe its evolution through Monte 
Carlo methods. Approximate evolution equations for V ( x , t )  can be developed in some 
special cases (Cohn 1993). 

To obtain an approximate covariance evolution equation, first use (C.l), (C.8) and (C.10) 
to find that 

g + f(w) - ( f ( W ) I W L )  = 0 .  (C.19) 

Substituting (C.9) and (C.15) into (C.19) gives 

de + L(G)e = 0 ,  (C.20) 

where terms quadratic in e have been discarded because in the covariance equation they 
become cubic or quartic; along with the truncated expansion (C.9) employed to  derive 
the mean equation, this completes the second-moment closure approximation. Under an 
alternative assumption that the estimation error e(x, t )  is Gaussian-distributed, the cubic 
terms would still vanish and the quartic terms would be expressed as functions of the 
quadratic terms (Jazwinski 1970, $3 9.3 and 9.4; Miller et al. 1994). As it stands, (C.20) is 
a linear PDE, coupled nonlinearly to the mean equation (C.16) through the dependence of 
L upon G .  

According to  definition (C.17), the conditional estimation error covariance function 
P =P(xl, xz, t )  has the symmetry property 

P T ( X l , X 2 , t )  = P(XZ,Xl,t) 7 (C.21) 
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dP and its time derivative satisfies 

(C.22) 

where ej =e(xj, t)  for j = 1, 2. Substituting (C.20) into (C.22) yields the covariance evolu- 
tion equation 

g + L I P +  (L2PT)T = 0 ,  (C.23) 

where L j -L(G(x j , t ) )  denotes the tangent linear operator acting on the variables xj  of 
P(x1, x2, t )  for j=1, 2. Equation (C.23) is a PDE in twice the number of spatial variables 
as the mean equation (C.16) with which it is coupled. 

Equations (C.16) and (C.23) constitute the forecast step of the second-moment closure 
filter for nonlinear continuum dynamics. In the linear case they are exact. Their solution 
a t  time tk, starting from initial conditions 

(C.24) 
(C.25) 

respectively [cf. (C.8), (C.l7)], will be denoted by w;(x) and P;(xl,x2).  The initial con- 
ditions for k = l  are given by (C.2) and (C.3), respectively. 

Unlike their discrete linear counterparts (4.8) and (4.10), in the nonlinear case (C.16) 
and (C.23) are coupled, nonlinearly in fact: the linear equation (C.23) depends on L(G),  
while the nonlinear equation (C.16) depends on V(x, t ) = P ( x ,  x, t). In the extended Kalman 
filter the nonlinear bias correction term i t r  (FV) in the conditional mean equation (C.16) 
is omitted, rendering the mean equation independent of the covariance equation. Omission 
of this term h a s  been shown both theoretically (Cohn 1993) and numerically (Evensen 
1994; Mknard 1994) to lead to spurious unbounded growth of variance for some nonlinear 
problems. T h u s  it is likely to  be important to  account for this term, either directly as in 
(C.16) or through Monte Carlo simulation of the conditional mean dynamics arising from 
(C. l ) ,  in data  assimilation schemes of the future. Mbnard (1994) has  shown for the Burgers 
equation, however, that  while the mean equation (C.16) is exact in  this case since the 
Burgers equation is quadratically nonlinear, evaluating the nonlinear bias correction term 
by solving the covariance evolution equation leads to  poor results because of the second- 
moment closure approximation in the covariance equation (C.23). 

Equations for the conditional mean analysis w;t(x), an m-vector function of the spatial 
variables x, are now developed under the assumption that  w(x, tk)  is a Gaussian random 
field. For linear dynamics this holds automatically if WO(X) =w(x, t o )  is Gaussian, but for 
nonlinear dynamics this is an approximating assumption. These analysis equations still 
provide the best linear unbiased estimate in the absence of this assumption, as discussed 
in 5 4.4. An appropriate change of dependent variables can also be useful, as discussed in 
5 5.3. 

Under the stated assumptions, the analysis update equation has the form 
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cf. (4.43) and (4.48). Here the gain Kk is an mxpk matrix function of x, and the innovation 

produces a pk-vector independent of x, as in (C.5). T h u s  the x-dependence of wi(x) arises 
solely through that of w{(x) and that of the gain Kk(x). 

wi-Hkwk-zr f is a pk-vector as usual; while wk f is a function of x, the operation Hkwk f 

Rather than deriving the optimal gain, here we simply write down the equation for it, 
by analogy with (4.44), omitting the time subscript k now for notational convenience: 

K(x1) = (H2PfT)'[H1(H2PfT)T +R]-' . (C.27) 

Here R=Rk is the P k X p k  measurement error covariance matrix (c.7),  while H1 and H2 
denote the action of the observation operator H on the variables x1 and x2, respectively, 
of the forecast error covariance matrix function Pf = PL(x1, x2). Thus H2PfT is a pk x m 

matrix function of X I ,  and HI (H2PfT) is an ordinary pk xpk matrix; the innovation 
covariance matrix to be inverted in (C.27) h a s  dimension pk xpk. 

T 

Finally, we derive the update equation for the analysis error covariance 

P i ( X 1 ,  x2) = (e:(X1)e:T(X2)1 w;) , (C.28) 

an m x m  matrix function of x1 and x2, where 

e;(x) w(x,tk) - wE(x) ; (C.29) 

cf. (C.lO), (C.17), (C.25). Substituting (C.5) and (C.26) into (C.28) yields 

Pa(xl,x2) = ([(I - KIH1)e[-K1(em-E *m )]  [(I - K ~ H z ) ~ Z - K ~ ( E ~ - ; ~ ) ] ~ ~ W ; )  , 

(C.30) 

where the time index h a s  been omitted, I denotes the m x m  identity matrix, K j ~ K k ( x j )  
for j=1,  2, and 

e! J > k  E w(xj, t k )  - wk f (xj) , (C.31) 

for j =  1, 2. The cross-terms that appear when the bracketed terms in (C.30) are multiplied 
vanish because of the assumed independence of the measurement error and the state, so that 
( w(xJ, t k ) ( E r ) T )  = O ,  and because the assumed whiteness of the measurement error and its 

independence of the initial state implies that wk/(xj)(~;")~ = 0. These assumptions also 
allow the conditioning on W i  in the remaining two terms to  be replaced by conditioning on 
W;-l, so that (C.30) becomes 

( ) 

T 
P'(x~,xz)  = ( I -  K1H1)[(I-K2Hz)Pf7.] +KIRK:. (C.32) 

This is the so-called Joseph form (Bucy and Joseph 1968, pp. 175-176) of the analysis error 
covariance, which holds for arbitrary gains. 
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Equation (C.32) may be written as 

Pa(xl, ~ 2 )  = (I - K I H l ) P f  + M , (C.33) 

where 

M KIRK; - (I - K ~ H I ) ( K ~ H z P ~ ~ ) ~  

= [ K l R  - (I - KIH1) ( H ~ p f ~ ) ~ ]  K i  

= { K1 [HI (H2PfT)T + R] - (H2PfT)'.)K: I 

Upon substituting (C.27) into (C.34) one finds that M=O, so that 

(C.34) 

pa(x1,x2) = (I - K ~ H ~ ) P ~  , (C.35) 

the analysis error covariance update equation; cf. (4.45). Equations (C.26), (C.27) and 
(C.35) together constitute the continuum analysis update equations. 
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