




An Introduction to Estimation Theory May 1997, DAO Office Note 97-01 

the latter equality following from (6.51); wC=wt in the notation of the previous sections. 
The small-scale field wS(x, t )  is then 

ws(5, t )  (I - 11)w(2, t )  = aJeij[x - ~ ( t  - '011 , (6.55) 
I jbN 

so that  

w(2, t )  = we(., t )  + wS(2, t )  . (6.56) 

The estimation problem will be to calculate the large-scale forecasts and analyses, 

(6.57) 

(6.58) 

along with the corresponding error covariances 

Before proceeding, observe first that 

WX.) - w?(.) = (ws(+,tk)Iw;) I (6.61) 

according to  (6.30), (6.56) and (6.58); a similar relation holds for wL(2)' - wif (2). The 
conditional expectation on the right side of (6.61) does not vanish in general: writing a 
single aperture function fke(.) as a Fourier series 

m=--03 

(6.62) 

the integral in  (6.26) evaluates to  

2T 00 

w(,,tk)fke(z)dz = 2r ajb-je-iju(tk - t o )  . (6.63) 
j=-m 

Thus the right side of (6.61) vanishes only if for all the aperture functions b j = O  for all 
ljl > N ,  assuming the original field W O ( X )  h a s  power at all small scales ((laj12)#0 for all 
Ijl> N ) ;  cf. (6.55). In fact, the closer the observations are to point observations, the closer 
the spectrum { b j }  is to being flat (lbJ1 =constant). However, the unconditional expectation 
(w"(z, t k ) )  vanishes according to (6.45) and (6.55): 

( W S ( I , t k ) )  = 0 .  (6.64) 
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Small-scale information therefore arises solely from the observations in this simple exarnple. 
From (6.61) and (6.64) we see that the large-scale analysis w t ( x )  amounts to  discarding 
the small-scale information contained in all current and past observations. 

To solve the filtering problem (6.57)-(6.60), first write the observation equation (6.20) 
as 

W i  = Hk We(. , t k )  + Epk + ET , (6.65) 

where the representativeness error E;  is given by 

e; = HI, w “ ( * ,  t k )  , (6.66) 

and has mean zero according to  (6.64). Since the coefficients aj are Gaussian-distributed, 
as is the measurement error eP, and since Hk is a linear operator, the large-scale signal 
Hk we(. , t k )  is still a Gaussian random vector and so is the observation error E: = E ;  + E T ;  
cf. (2.14). The large-scale signal, representativeness error and measurement error are also 
mutually uncorrelated in view of (6.21), (6.46), (6.54) and (6.55). Therefore the analysis 
update equations (6.41)-(6.43) still hold if we replace w:, W E ,  Pl and PL by wif, w p ,  ef 
and P p ,  and if we replace the measurement error covariance matrix Rk by the observation 
error covariance matrix. Let u s  now calculate this matrix. 

According to  (6.16), (6.17), (6.49) and (6.55), 

(w”(z1,t)w”(22,t)) = 2 ( b j I 2 )  COS[j(, l  - 22,3 

C”(q  - 2 2 )  

= C(Z1 - 2 2 )  - Ce(21 - 22) ; 

j>N 

Cs(xl  - 2 2 )  is the small-scale climatological covariance and 

(6.67) 

is the large-scale climatological covariance. Note that since we have assumed the function 
C(z1  - 22) to  be known, for example as any of the traditional isotropic covariance models 
(cf. Daley 1991), then C“(z1 - 2 2 )  can be calculated by use of the latter equalities in (6.67) 
and (6.68). Thus the observation error covariance matrix is 

(6.69) 

which is the sum of the representativeness error covariance matrix and the measurement 
error covariance matrix. Here the notation is as in  (6.42). 

T 
= Hlk[H2kCS(. - *)] + Rk 7 
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The analysis update equations are therefore given by 

W?(X)  = wk e’ (.) 4- K ~ ( x )  (WE - HkW;’ - Am € k )  1 (6.70) 

p p ( z i , 2 2 )  = p , ’ ( z 1 , . 2 )  - K k ( z i ) H i k C ’ ( * ,  e 2 2 ) .  (6.72) 

Except for those giving rise to  the representativeness error covariance matrix, each of the 
integrals represented by H k ,  H l k ,  and H 2 k  in these equations can be evaluated exactly: 
they act on functions in the finite-dimensional space f?”, or B” x B”, and by orthogonality 
of the basis (sinusoidal) functions, the aperture functions f k e ( 2 )  in these integrals may be 
truncated to their projections n f k e ( 2 )  in evaluating the integrals; cf. (6.20), (6.24), (6.26) 
and (6.63). The integrals involved in calculating the representativeness error covariance 
matrix would have to be calculated numerically, to some specified degree of accuracy. The 
initial analysis equations, as in (6.33) and (6.34), are given by 

(6.73) 

(6.74) 

wo ea (x) = (we(., to))  = c ,  

P0ea(% .2) ( [ W ( ( Z l ,  t o )  - c] [we(,,, t o )  - c] ) = C‘(Xl  - 2 2 )  ; 

cf. (6.68). 

It remains to  calculate the evolution of the conditional mean and covariance between 
observation times. Since the projection operator n commutes with ud/dz  and d/d t ,  from 
(6.1) and (6.54) we find that 

X S U K  awe awe = 0 .  (6.75) 

Taking the conditional expectation with respect to  W P 1  in (6.75), it follows that  w;’(x) 
defined in (6.57) is given by the solution t k )  of the equation 

(6.76) 

starting from initial condition i ? e ( X , t k - l ) = W ~ - l ( X ) .  Similarly, %’(XI, 22) is given by the 
solution Pe(x l ,  z2, t k )  of the equation 

ape dPP ape = 0 ,  -;7t+uK+uaz, (6.77) 

starting from initial condition P e ( z l ,  Z 2 , t k - l ) = p E l ( 2 : l ,  2 2 ) .  Since the initial conditions 
for (6.76) and (6.77) lie in the finite-dimensional spaces f3” and B” x an respectively, these 
equations may also be solved exactly, for example by evolving the spectral coefficients 
directly. Thus the filtering problem (6.57)-(6.60) is solved. 

We note that in this simple example there is no “aliasing” of the small-scale information 
contained in the observations onto the large-scale analyses and forecasts: by definition [see 

42 



An In t roduc t ion  to Es t imat ion  Theorv  May 1997, DAO Office Note 97-01 

(6.54), (6.57), (6.58)], these extract only the  large-scale information contained in the obser- 
vations, the small-scale information being simply discarded [see (6.61) and the discussion 
thereafter]. Further, since w"(x,t)  lies in f?\B" (the complement of B" in B), so does the 
conditional expectation on the right side of (6.61), so that 

(6.78) 

which follows from (6.53) and (6.55). Therefore, since IIwea(x, t)=wea(x, t ) ,  operating on 
(6.61) with Il gives the relation 

w?(x) = rIwZ(x); (6.79) 

that  is, the analyses resulting from the finite-dimensional algorithm (6.70)-(6.72), (6.76), 
(6.77) are just the projections onto B" of those resulting from the infinite-dimensional 
algorithm (6.39)-(6.43). Similar relations hold for w:j, Pf" and ef. 
6.4 Concluding remarks 

Let us now summarize the results of this very simple example, and use them t o  provide a way 
of thinking about realistic geophysical data  assimilation problems. First of all, we have seen 
that by defining B" first, and only then developing a discretization, an exact, implementable 
filter algorithm h a s  been designed. This filter algorithm involves, perhaps surprisingly, no 
model error term. Had a different discretization of the dynamics been chosen, i.e., one 
incompatible with the discrete estimation problem imposed by the definition of B", then 
model error would have arisen. Such model error in th i s  simple example could perhaps 
be modeled stochastically by considering the leading-order terms in the truncation error 
expansion of the chosen discretization. While in principle it appears best t o  define B" 
first, then to  define the finite-dimensional estimation problem to be solved, and only as the 
final step to develop an  appropriate discretization, in the real world th is  will be a practical 
impossibility at least for some time, since large-scale geophysical models take many years 
to  develop: currently we are usually given a discrete model, then asked to  develop a data  
assimilation algorithm. For this reason alone, model error is inevitable. 

There are many other sources of model error, however. In our simple example, the 
absence of model error was due to the invariance of the continuum dynamics under the 
action of the projection operator II from f? to B". If the advection speed had not been con- 
stant, this invariance would no longer have held. In this case, a different choice of B" could 
perhaps ameliorate model error. For most nonlinear problems, it is unlikely that for any 
choice of B" one could develop a projection operator under which the dynamics would be 
invariant. For instance, energy- and enstrophy-cascade processes (cf. Gauthier et al. 1995; 
Tanguay et al. 1995) would likely lead to model error; this error could possibly be mod- 
eled stochastically (cf. Leith 1990). Assumptions made from the outset in the governing 
continuum dynamics, such as the hydrostatic assumption and the traditional shallowness 
approximations (Phillips 1966) in the atmospheric primitive equations also lead to model 
error. Finally, stochastic forcing arises from uncertain parameters in  physical parameter- 
izations and boundary conditions. Errors from all these sources will ultimately have to 
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be modeled, and the models tuned by adaptive procedures such as that suggested by Dee 
(1995). 

Concerning representativeness error, it should be noted that  the exact treatment in 
our example was enabled by the homogeneity of the random field w(x,t):  this property 
led to the absence of correlation between the large-scale part of the signal Hkwe and the 
representativeness error Hkw", and also to state-independence of the mean and covari- 
ance matrix of the representativeness error. While geophysical fields generally do not have 
this property, it is sometimes possible to  introduce a change of coordinates such that ho- 
mogeneity or isotropy holds approximately (e.g., Desroziers and Lafore 1993; Carton and 
Hackert 1990; Derber and Rosati 1989; Vanmarcke 1983, p. 81). The "kernel" Pef + C" in 
(6.71) upon which the observation operator H k  acts generally contains power at all spatial 
scales. Current-generation global analysis systems for numerical weather prediction also 
involve such a kernel (Parrish and Derber 1992; Heckley et al. 1992), but truncate it a t  
finite spectral resolution and instead lump the representativeness error covariance matrix 
together with the measurement error covariance matrix. Equation (6.71) suggests that  it 
may be more natural to  sum the forecast error covariance model (- P'f)  together with a 
small-scale climatological covariance model ( n ~  C") in accounting for representativeness er- 
ror, resulting in a covariance model with power at all scales. In principle this is possible by 
modeling the sum directly as a covariance function (with power at all scales), rather than as 
a truncated spectral expansion. The Physical-space Statistical Analysis System (da Silva 
et al. 1995) is one effort being developed along these lines. By the analogy between model 
error and representativeness error drawn in 5 2, it appears that  the stochastic forcing E: in 
(2.9) must also contain power at  all scales in general, and therefore should be considered as 
a random field rather t h a n  as a random vector. 

In the example it was also seen to  be important to evaluate the action of the integrals rep- 
resented by the observation operators Hk QS actual integrals, as opposed to, say, the simple 
interpolations carried out in conventional optimal interpolation schemes (e.g., McPherson 
et al. 1979; Lorenc 1981). This may be possible in operational practice, but only if the 
discrete function space f?. is defined precisely, for instance, only if we know precisely what 
is meant by the grid-point values of a numerical prediction model. Precise definition off?. 
and implementation of integral observation operators is likely to  be important for properly 
assimilating satellite radiances or retrieved products representing averages over regions of 
the spatial domain, and even for "point" observations such as those obtained from most 
in situ measurements. Of course, we do not know the aperture functions or averaging ker- 
nels precisely. Ultimately it may be necessary to  parameterize them and to  estimate the 
parameters during the data  assimilation process. 

Finally, we reiterate the role of the Gaussian assumptions made here (as well as in 
operational data  assimilation systems), along with the independence of the measurement 
error from the signal. The Gaussian assumptions lead, as we have seen, to  true conditional 
mean (minimum variance) estimation procedures if in fact they are correct. Gaussian 
assumptions can be checked, at least in part, by monitoring statistics of the observed-minus- 
forecast residuals. As demonstrated in 5 5.3, for alternative densities related simply to the 
Gaussian density, it is straightforward to modify the estimation algorithm appropriately, by 
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a change of dependent variable. In the simple example given here, the dynamics are invariant 
under the change of variable v=log w, and the analysis algorithm would be trivially modified 
as suggested in 5 5.3. 

Independence of measurement error from the signal depends on the measuring device 
itself. For most in situ measurements, t h e  assumption of independence may be justified, 
provided the devices are properly calibrated. For retrieved satellite products, a method is 
currently being developed by Joiner and da Silva (1997) in part to  ensure this independence. 
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Appendix A 
Conditional Probability Densities and Expectations 

Here we review only those facts about conditional probability densities and expectations that 
allow us to  give a self-contained proof of the equivalence of conditional mean estimation 
and minimum variance estimation; cf. (3.4). Background material can be found in most 
textbooks on probability theory. We make no notational distinction here between a random 
variable and its realizations. All integrals defined below are assumed t o  exist. 

If z is a random n-vector, its expected value (or mean, or first moment) is the vector 
( z )  whose ith element is defined by 

where p z  is the probability density function of z. We abbreviate this definition of (z) by 
the notation 

where the integration is over all of IR". If f (z)  is a deterministic function of z ,  then we also 
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(-4.3) 

Now denote the first m elements of z by the m-vector x, and the remaining n -m 
elements by the (n-m)-vector y ,  so that z=[xT,yTIT. The joint probability density 
function ~ ~ , ~ ( x ,  y) is then defined as 

Px,y(x,Y) = P Z ( 4  1 ('4.4) 

and the marginal densities pz(z) and py(y) are defined by 

PZ(Z) = Pz,y(x,V)drl, ('4.5) s 
the former integral being over IR"-" and the latter over R". The expected values (x) and 
(y) are then given by 

T 
the former integral being over IR" and the latter over Etn-", so that  (z)= [(z)., (y)T] . 

The conditional density of x given y, written p,l,(zly), is defined as 

by analogy with the usual definition of the probability of occurrence of an event A given 
the occurrence of an event B ,  

(A.lO) 

Note that if x and y are independent, that is, if px,y(z,y)=pz(x)py(y), then the intuitive 
result pzly(x~y) =pZ(x) follows from (A.9).  The expected value of x given y, written (xI y), 
is defined by 

(4 Y) = / €P , ,U(€ /Y )d€  7 ( A . l l )  

and is a function of the random vector y. However, if x and y are independent, by comparing 
(A.7) and ( A . l l )  it follows that (xI y) =(x). 
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Now, since (.I y) is a function of y ,  upon taking the expectation with respect t o  y it 
follows from (.4.3) that  

((.I Y)) = J’(4 rl)P,(rl)drl 

On the other hand, from (A.7), (A.5) and (A.9) we have 

Interchanging the order of integration here gives 

(A.12) 

(A.13) 

(A.14) 

or, from (A.l1), 

Comparing (A.12) and (A.15) shows that  

((4Y)) = (.> 7 

a fundamental identity we will need. 

Another basic identity is that 

(m ZIY) = gT(y)(4 Y) 1 

(-4.16) 

(A.17) 

if the vector g is a function of y alone. This follows directly from the definition (A. l l )  of 
conditional expectation. 

Now we establish the relationship (3.4). Denote by pk the conditional mean of the state 
wk given the observations W;, 

clk +:I W,O> * 

From (A.16) it follows that  

(w) = ( ( L ( & k ) I Y ) )  7 

( L ( E k ) )  = (((w: - W ; ) T s ( W :  - wi)  Ip;)) . 

where L(e:k) was defined in (3.3). Substituting (3.2) and (3.3) into (A.19) yields 

Adding and subtracting pk in (A.20) gives 

T 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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Since pi is a function only of W; according to  (A.18), and since the estimate WE was 
assumed to be a function only of the observations W; also, from (A.17) we have 

((Pi - W;)TS(w: - Pi) Iw;) = (Pi - W E Y  s((w: - Pi) Ip;) * (A.22) 

But 

((w: - P,)jW) = 0 ! (A.23) 

according to definition (A.18), so the expression (A.22) vanishes. Therefore we can write 
(A.21) as 

Using (A.16) and definition (3.3) again, this becomes 

+ ( E k ) )  = @(w: - Pi)) + +(Pi - WE)) . (A.25) 

The first term on the right side of (A.25) is independent of the estimate wz. The second 
term is minimized uniquely (since S was assumed positive definite) by the choice (3.4), that  
is, by setting 

wi = p i ,  (A.26) 

in  which case the second term vanishes. Thus, ( L ( E ~ ) )  is minimized uniquely by the condi- 
tional mean Pk, and the value of ( L ( E ~ ) )  at the minimum is (L(w: - pi)). 

Appendix B 
The Lognormal Distribution 

Here we describe the relationships between the first two moments of the multivariate normal 
(Gaussian) and lognormal probability densities. 

Suppose V E  R" is normally distributed with mean (v) and covariance matrix B, de- 
noted v--N((v),B). If the components wj of a vector w are defined by wj=exp(vj) for 
j =  1, 2, . . . , n,  then w is said to be lognormally distributed, written w-LN((w), P).  The 
mean vector (w) is given by 

and the covariance matrix P by 
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The mean vector and covariance matrix characterize the multivariate lognormal density 
completely, as is also the case for the normal density. 

To see ( B . l ) ,  recall that  the characteristic function # V ( W )  = (exp( iuTv) )  of v is given 
by 

#v(w) = exp(iwT(v) - $ J B ~  1 , (B.3) 

as shown in many elementary probability texts. Substituting into (B.3) the vector w=w3 

defined by wJ = -i e3 ,  where i =fl and e3 denotes the jth column of the n x n identity 
matrix, gives ( B . l )  immediately. Similarly, substituting W = W j k = W J  + W k  into (B.3) gives 

( w j w k )  = exP[(v~)  + (vk )  f i ( B ~ ~  + B k k  +28jk)]  = (Wj)(Wk)eXP(Bjk) 7 (B.4) 

so that  

P3k E ((w~ - (w~)) (wk - (Wk))) = (Wjwk) - ( W j ) ( W k )  I (B.5) 

from which (B.2) follows. 

Straightforward algebraic calculations from ( B . l )  and (B.2) show that,  if we are given 
w-LN((w) ,  P) and define v= logw (componentwise), then v-N((v), B), with 

In the special case that (wj)= 1 for all j ,  discussed in 3 5.3, one h a s  simply 

and 

in particular (vj) 6 0 for each j .  

Appendix C 
Filtering Theory on the Continuum 

While the discrete theory developed in $82-5 had the virtue of keeping the mathematics 
fairly simple, it did not allow for an adequate treatment of model error or representative- 
ness error. In $ 6  it was seen that continuum theory is required to  address these issues 
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fully, and is therefore developed here. In this appendix we carry out no discretization, so 
there will be no representativeness error; instead this error is treated in $6 .  We also do not 
consider stochastic forcing of the continuum dynamics, primarily to  simplify the mathemat- 
ical development; see, however, the discussion in $ 6.4. The observations will be supposed 
linear, since the main difficulties surrounding the treatment of nonlinear observations were 
described already in $ 5.2. The continuum dynamics will be nonlinear, however, so that we 
can highlight the role of closure approximations. Such approximations do not arise in the 
linear case. 

While essentially exact filters for nonlinear dynamics can be obtained through Monte 
Carlo approaches (Evensen 1994; Mknard 1994), here we will invoke the second-moment 
closure (third- and higher-moment discard) approximation. The development will be brief 
and formal. See Cohn (1993) and references therein for more detailed discussion of this 
approximation. Curtain (1975) and Omatu and Seinfeld (1989) summarize rigorous treat- 
ments of linear stochastic PDEs in estimation theory, establishing the relationship between 
rigorous and formal approaches. 

Let the m-vector state w=w(x , t )  satisfy a system of m nonlinear PDEs ( m = 1  for 
scalar, univariate dynamics): 

where f (w)  = f (w;  a/ax) denotes an m-vector partial differential operator acting on the 
spatial variables x of the state w(x, t ) ,  which is assumed to  lie in some function space B for 
each time t .  The (unknown) initial condition w(x, t o )  =wo(x) EB will be considered t o  be 
a random field (e.g., Yaglom 1987; Vanmarcke 1983) with known mean 

Go(x) (wo(x)) 1 (C.2) 

and known covariance function 
T 

WO(X1,XZ) = ( [Wo(X1) - GO(Xd] [Wo(X2) - Go(X2,] ) ; (C.3) 

t h i s  is an m x m matrix function of two sets of spatial variables x1 and x2, and by definition 
satisfies the symmetry property 

W,T(Xl,XZ) = WO(X2,Xl) * (C.4) 

Now suppose a pk-vector of observations w;Z. taken at discrete instants of time t k ,  

k=  1, 2 ,  3, . . . , is related linearly to  the state variables and corrupted by additive noise: 

w; = H k W ( . ,  tk) + €;r" , (C.5) 

where Hk is a linear operator on the function space B. The pk-vector measurement error 
E;F" is assumed to  be Gaussian, white in time, and independent of the s ta te  w(x,tk) and 
the initial field wo(x). The measurement error bias 

(C.6) 
-m 
"k (q> 7 
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a pk-vector, and covariance matrix 

a pk xpk matrix, are both assumed to be known. 

To solve the filtering problem, first we need to develop an equation for the evolution 
between times tk-1 and tk of the conditional mean 

G = G ( x , t )  E ( w ( x , t ) / w ; - l ) .  (C.8) 

If f = f ( w )  were linear (or quadratic) in w,  the equation developed here would be exact. In 
the second-moment closure approximation, we expand f ( w )  about G ,  assuming f is twice 
continuously differentiable with respect to  w, and retain terms up to  second order only: 

fe(w) = fe(G) + Lt(G)e + 4 tr[Fe(G)eeT] , (C.9) 

for !=1, 2, . . . , m. Here fe denotes the lth element of the vector f; e is the rn-vector 
function 

e = e(x,  t )  z w(x ,  t )  - G(x, t )  ; (C.10) 

Le is the lth row of the tangent linear operator L, the m x m  matrix partial differential 
operator whose ( l , j )  t h  element is given by 

(C.11) 

th Fe is the Hessian operator, an  m x m matrix partial differential operator whose ( i ,  j )  
component is 

(C.12) 

and “tr” denotes the trace of a matrix. Taking conditional expectations in  (C.9) gives 

(fe(w)Iwi-l) = fe(G) + $ t r [ ~ i ( f ) ~ ]  (C.13) 

where 

v = ~ ( x ,  t )  (e(., t )  e’(,, t ) lw; - l )  (C.14) 

is the (conditional) variance function; V is a symmetric m x m matrix function whose diag- 
onal elements are the conditional variances of the m state variables and whose off-diagonal 
elements are conditional cross-covariances between different state variables evaluated a t  a 
given spatial location x .  
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Abbreviating (C.13) by the slightly abusive notation 

( f ( W ) j W L )  = f(G) + 4 tr[F(G)V] 7 (C.15) 

and taking conditional expectations in (C.1) leads to the mean equation 

+ f(G) + t r  [F(G)V] = 0 .  (C.16) 

The mean equation is similar to  the original dynamical equation (C. l ) ,  which only governs 
the evolution of individual realizations, but incorporates a nonlinear bias correction term 
I t r  2 (FV) .  The truncated expansion o f f  (w) in (C.9) is exact i f f  is quadratically nonlinear, 
which holds for advective nonlinearity for instance, and in this case (as well as the linear 
case) the mean equation is therefore also exact. Solving the mean equation for nonlinear f 
requires access to the conditional variance function V(x, t), but not to  the entire conditional 
covariance function P(x1, xz, t ) ,  which is defined by 

P(Xl,XZ,t) = (e (x l , t )eT(xz , t ) /W~-l )  , (C.17) 

a function of two sets of spatial variables like WO(x1, XZ);  cf. ((2.3). From (C.14) and (C.17) 
it follows that 

V ( x , t )  = P ( x , x , t )  . (C.18) 

In  practice it may be possible to model V(x, t ) ,  or to  describe its evolution through Monte 
Carlo methods. Approximate evolution equations for V ( x , t )  can be developed in some 
special cases (Cohn 1993). 

To obtain an approximate covariance evolution equation, first use (C.l), (C.8) and (C.10) 
to find that 

g + f(w) - ( f ( W ) I W L )  = 0 .  (C.19) 

Substituting (C.9) and (C.15) into (C.19) gives 

de + L(G)e = 0 ,  (C.20) 

where terms quadratic in e have been discarded because in the covariance equation they 
become cubic or quartic; along with the truncated expansion (C.9) employed to  derive 
the mean equation, this completes the second-moment closure approximation. Under an 
alternative assumption that the estimation error e(x, t )  is Gaussian-distributed, the cubic 
terms would still vanish and the quartic terms would be expressed as functions of the 
quadratic terms (Jazwinski 1970, $3 9.3 and 9.4; Miller et al. 1994). As it stands, (C.20) is 
a linear PDE, coupled nonlinearly to the mean equation (C.16) through the dependence of 
L upon G .  

According to  definition (C.17), the conditional estimation error covariance function 
P =P(xl, xz, t )  has the symmetry property 

P T ( X l , X 2 , t )  = P(XZ,Xl,t) 7 (C.21) 
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dP and its time derivative satisfies 

(C.22) 

where ej =e(xj, t)  for j = 1, 2. Substituting (C.20) into (C.22) yields the covariance evolu- 
tion equation 

g + L I P +  (L2PT)T = 0 ,  (C.23) 

where L j -L(G(x j , t ) )  denotes the tangent linear operator acting on the variables xj  of 
P(x1, x2, t )  for j=1, 2. Equation (C.23) is a PDE in twice the number of spatial variables 
as the mean equation (C.16) with which it is coupled. 

Equations (C.16) and (C.23) constitute the forecast step of the second-moment closure 
filter for nonlinear continuum dynamics. In the linear case they are exact. Their solution 
a t  time tk, starting from initial conditions 

(C.24) 
(C.25) 

respectively [cf. (C.8), (C.l7)], will be denoted by w;(x) and P;(xl,x2).  The initial con- 
ditions for k = l  are given by (C.2) and (C.3), respectively. 

Unlike their discrete linear counterparts (4.8) and (4.10), in the nonlinear case (C.16) 
and (C.23) are coupled, nonlinearly in fact: the linear equation (C.23) depends on L(G),  
while the nonlinear equation (C.16) depends on V(x, t ) = P ( x ,  x, t). In the extended Kalman 
filter the nonlinear bias correction term i t r  (FV) in the conditional mean equation (C.16) 
is omitted, rendering the mean equation independent of the covariance equation. Omission 
of this term h a s  been shown both theoretically (Cohn 1993) and numerically (Evensen 
1994; Mknard 1994) to lead to spurious unbounded growth of variance for some nonlinear 
problems. T h u s  it is likely to  be important to  account for this term, either directly as in 
(C.16) or through Monte Carlo simulation of the conditional mean dynamics arising from 
(C. l ) ,  in data  assimilation schemes of the future. Mbnard (1994) has  shown for the Burgers 
equation, however, that  while the mean equation (C.16) is exact in  this case since the 
Burgers equation is quadratically nonlinear, evaluating the nonlinear bias correction term 
by solving the covariance evolution equation leads to  poor results because of the second- 
moment closure approximation in the covariance equation (C.23). 

Equations for the conditional mean analysis w;t(x), an m-vector function of the spatial 
variables x, are now developed under the assumption that  w(x, tk)  is a Gaussian random 
field. For linear dynamics this holds automatically if WO(X) =w(x, t o )  is Gaussian, but for 
nonlinear dynamics this is an approximating assumption. These analysis equations still 
provide the best linear unbiased estimate in the absence of this assumption, as discussed 
in 5 4.4. An appropriate change of dependent variables can also be useful, as discussed in 
5 5.3. 

Under the stated assumptions, the analysis update equation has the form 
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cf. (4.43) and (4.48). Here the gain Kk is an mxpk matrix function of x, and the innovation 

produces a pk-vector independent of x, as in (C.5). T h u s  the x-dependence of wi(x) arises 
solely through that of w{(x) and that of the gain Kk(x). 

wi-Hkwk-zr f is a pk-vector as usual; while wk f is a function of x, the operation Hkwk f 

Rather than deriving the optimal gain, here we simply write down the equation for it, 
by analogy with (4.44), omitting the time subscript k now for notational convenience: 

K(x1) = (H2PfT)'[H1(H2PfT)T +R]-' . (C.27) 

Here R=Rk is the P k X p k  measurement error covariance matrix (c.7),  while H1 and H2 
denote the action of the observation operator H on the variables x1 and x2, respectively, 
of the forecast error covariance matrix function Pf = PL(x1, x2). Thus H2PfT is a pk x m 

matrix function of X I ,  and HI (H2PfT) is an ordinary pk xpk matrix; the innovation 
covariance matrix to be inverted in (C.27) h a s  dimension pk xpk. 

T 

Finally, we derive the update equation for the analysis error covariance 

P i ( X 1 ,  x2) = (e:(X1)e:T(X2)1 w;) , (C.28) 

an m x m  matrix function of x1 and x2, where 

e;(x) w(x,tk) - wE(x) ; (C.29) 

cf. (C.lO), (C.17), (C.25). Substituting (C.5) and (C.26) into (C.28) yields 

Pa(xl,x2) = ([(I - KIH1)e[-K1(em-E *m )]  [(I - K ~ H z ) ~ Z - K ~ ( E ~ - ; ~ ) ] ~ ~ W ; )  , 

(C.30) 

where the time index h a s  been omitted, I denotes the m x m  identity matrix, K j ~ K k ( x j )  
for j=1,  2, and 

e! J > k  E w(xj, t k )  - wk f (xj) , (C.31) 

for j =  1, 2. The cross-terms that appear when the bracketed terms in (C.30) are multiplied 
vanish because of the assumed independence of the measurement error and the state, so that 
( w(xJ, t k ) ( E r ) T )  = O ,  and because the assumed whiteness of the measurement error and its 

independence of the initial state implies that wk/(xj)(~;")~ = 0. These assumptions also 
allow the conditioning on W i  in the remaining two terms to  be replaced by conditioning on 
W;-l, so that (C.30) becomes 

( ) 

T 
P'(x~,xz)  = ( I -  K1H1)[(I-K2Hz)Pf7.] +KIRK:. (C.32) 

This is the so-called Joseph form (Bucy and Joseph 1968, pp. 175-176) of the analysis error 
covariance, which holds for arbitrary gains. 
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Equation (C.32) may be written as 

Pa(xl, ~ 2 )  = (I - K I H l ) P f  + M , (C.33) 

where 

M KIRK; - (I - K ~ H I ) ( K ~ H z P ~ ~ ) ~  

= [ K l R  - (I - KIH1) ( H ~ p f ~ ) ~ ]  K i  

= { K1 [HI (H2PfT)T + R] - (H2PfT)'.)K: I 

Upon substituting (C.27) into (C.34) one finds that M=O, so that 

(C.34) 

pa(x1,x2) = (I - K ~ H ~ ) P ~  , (C.35) 

the analysis error covariance update equation; cf. (4.45). Equations (C.26), (C.27) and 
(C.35) together constitute the continuum analysis update equations. 
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