


Abstract 

Statistical analysis methods are generally derived under the assumption 
that forecast errors are strictly random and zero in the mean. If the short-term 
forecast, used as the background field in the statistical analysis equation, is in 
fact biased, so will the resulting analysis be biased. The only way to  properly 
account for bias in a statistical analysis is to  do so explicitly, by estimating the 
forecast bias and then correcting t h e  forecast prior to analysis. 

We present a rigorous method for estimating forecast bias by means of data  
assimilation, based on a n  unbiased subset of the observing system. The result 
is a sequential bias estimation and correction algorithm, whose implementation 
involves existing components of operational statistical analysis systems. The 
algorithm is designed t o  perform on-line, in the context of suboptimal data  as- 
similation methods which are based on approximate information about forecast 
and observation error covariances. The added computational cost of incorporat- 
ing the algorithm into an operational system roughly amounts to  one additional 
solution of the statistical analysis equation, for a limited number of observa- 
tions. Off-line forecast bias estimates based on previously produced assimilated 
data  sets can be produced as well, using an existing analysis system. 

We show that our sequential bias estimation algorithm fits into a broader 
theoretical framework provided by the separate-bias estimation approach of 
estimation theory. In this framework the bias parameters are defined rather 
generally and can be used to describe systematic model errors and observational 
bias as well. We illustrate the application of on-line forecast bias estimation and 
correction in a simulated data  assimilation experiment with a one-dimensional 
forced-dissipative shallow-water model. A climate error is introduced into the 
forecast model via topographic forcing, while random errors are generated by 
stochastic forcing. In this simple experiment our algorithm is well able to  
estimate and correct the forecast bias caused by this systematic error, and the 
climate error in the assimilated data set is virtually eliminated as a result. 
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1 Introduction 

Atmospheric data assimilation systems combine observational data with a background 

field, usually consisting of a short-term model forecast, in order to produce accurate 

and comprehensive analyses of atmospheric fields and parameters. Optimal analysis 

accuracy, in a proper statistical sense, is obtained when the ensemble means and 

ensemble covariances of the error fields associated with the model forecasts and with 

the observations are known and accurately specified. Since these statistics are not 

generally available, actual implementations of statistical data assimilation algorithms 

are always suboptimal. 

A large portion of the research pertaining to the specification of error statistics in data 

assimilation systems has concerned covariance modeling, which is the development of 

methods for representing and estimating forecast and observation error covariances. 

Error statistics required for optimal interpolation (01) are usually estimated from 

time series of observed-minus-forecast residuals (Rutherford 1972; Hollingsworth and 

Lonnberg 1986; Lonnberg and Hollingsworth 1986; Daley 1991; Bartello and Mitchell 

1992). Advanced statistical data assimilation techniques aim to improve the accuracy 

of forecast error statistics by taking into account the effect of model dynamics on the 

evolution of forecast errors (Ghil et  al. 1981; Dee 1991; Cohn and Todling 1996). 

The point of departure in covariance modeling is complete knowledge of the means. 

Most often it is Siiiipiy asstiriled that t2e f~ i -e~as t  iilcjdel as wel l  as the ubservl~lg 111- 

struments are unbiased; that is, the mean errors are zero or they have been removed. 

Identification and correction of observational bias is an important component of oper- 

ational data assimilation systems. Examples include radiation correction procedures 

. .  11 
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for radiosonde observations (Julian 1991), and bias removal schemes for cloud-cleared 

radiance (Eyre 1992). Some numerical weather prediction centers use 6-hour model 

forecasts to provide a reference for removing bias from the observations (Baker 1991), 

at the risk of perpetuating any existing biases in the forecast itself. 

The term forecast bias is synonymous with non-zero mean forecast error; if present, 

the forecast model is a biased estimator of the actual atmosphere. Forecast bias is 

due to the presence of systematic errors in the forecast model, such as are caused 

by incorrect physical parameterizations, numerical dispersion, or faulty boundary 

conditions. Often the effects of such errors persist for a certain amount of time, and 

are detected when specific aspects of the model climatology differ from the actual 

atmospheric climatology as derived from observations. Although it is well known 

that systematic errors contribute significantly to forecast errors (see, for example, 

Reynolds et al. 1996), the problem of estimating and properly accounting for forecast 

bias in data assimilation systems has received little attention so far. 

Saha (1992) has estimated forecast bias in the U.S. National Centers for Environ- 

mental Predictions (NCEP)' model by averaging one month of differences between 

one-day forecasts and the verifying operational analyses. It is not uncommon to evalu- 

ate systematic errors in a forecast model by using analyses as a reference (e.g., Takacs 

and Suarez 1996). The success of this approach obviously depends on the validity of 

the underlying assumption that the analyses themselves are unbiased. Tenenbaum 

(i996) has shown by using independent (;.e., not assimiiatedj aircraft data that an- 

alyzed jet stream winds obtained from various operational centers are significantly 

biased. The likely explanation for this is that the analyses are produced from biased 

Formerly the National Meteorological Center (NMC). 
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forecasts; sparse observations of jet stream winds will, at best, only partially remove 

this bias. Thus, if forecast bias is a problem, then it is not safe to assume that 

analyses are unbiased. 

The purpose of this article is to present a rigorous, yet practical, method for estimat- 

ing forecast bias in an atmospheric data assimilation system. The method is fully 

consistent with the state-space approach of estimation theory, originally presented 

in the context of atmospheric data assimilation by Ghil e t  al. (1981). This theory 

requires explicit assumptions on statistics of observation errors and on forecast errors, 

possibly including unknown systematic (;.e., non-zero mean) components. From these 

assumptions it is then possible to derive a consistent set of algorithms for estimating 

forecast bias and for producing unbiased analyses. 

The basic assumption we adopt here is that there exists a subset of the observing 

system for which bias is negligible compared to the forecast bias. In addition, we 

explicitly define forecast bias as the time-mean (climatological) error in the short- 

term forecast, and this is the quantity we set out to estimate. We are then able to 

derive a rigorous sequential forecast bias estimation algorithm, whose implementation 

involves existing components of statistical data assimilation systems. Consequently 

one can incorporate forecast bias estimation in an operational system with only minor 

modifications. The algorithm is designed to perform in the context of suboptimal data 

assimilation methods in which error covariance information is only approximate. The 

added computationai cost of on-iine forecast bias estimation is roughiy one aciditionai 

solution of the statistical analysis equation. Off-line forecast bias estimates can be 

produced as well, using an existing data assimilation system and stored output from 

a previous data assimilation run. 
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To provide our bias estimation algorithm with a firm theoretical footing, we briefly 

review the so-called separate-bias estimation approach of estimation theory. Friedland 

(1969) formulated the bias estimation problem for a class of linear stochastic-dynamic 

systems with constant bias parameters, and showed that estimates of these parameters 

can be obtained separately from the estimates of the dynamic state variables. Other 

authors subsequently clarified and extended Friedland’s formulation (e.g., Tacker and 

Lee 1972; Mendel 1976; Friedland 1978; Ignagni 1981; Ignagni 1990; Zhou et al. 1993). 

Separate-bias estimation algorithms can be applied more generally to estimate model 

error parameters and observational bias as well. 

The organization of this paper is as follows. In section 2 we discuss forecast errors 

and their statistics, and show that the usual statistical analysis equation produces 

biased analyses in the presence of forecast bias. We show in section 3 how forecast 

bias can be estimated sequentially in a data assimilation system, provided unbiased 

(or bias-corrected) observations are available. Section 4 contains a concise review of 

the bias estimation theory originally developed by Friedland (1969), and there we 

reconcile our approach to forecast bias estimation with this theory. In section 5 we 

discuss certain practical aspects of forecast bias estimation, for off-line as well as on- 

line implementations. Here we also describe a simple numerical experiment based on a 

linear, one-dimensional shallow water model with topographic and stochastic forcing. 

The climate of the forecast model in this experiment differs from the simulated ’true’ 

climate, and we show that our algorithm successfully corrects this systematic error. 

We briefly conclude in section 6. 
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2 Bias and the analysis equation 

Here we show that a biased forecast invariably leads to a biased analysis, indepen- 

dently of the weights used in the analysis update. Bias can be reduced by assigning 

more weight to the observations, but the result will be an increasingly noisy analysis. 

We also briefly discuss the distinction between ensemble means and time averages. We 

first define forecast and observation errors and their first- and second-order statistics. 

2.1 Forecast and observation errors. 

Suppose that the n-vector w: is a model forecast valid for time tk, and w i  is the 

unknown true state of the atmosphere at that time. It is convenient to define both 

quantities in terms of the same state representation: w i  is an n-vector as well, con- 

taining, for example, the true grid-point values or spectral coefficients. The forecast 

error  is then simply 

For a pk-vector wg of measurements generated by a particular instrument at time tk, 

the observation error is defined by 

The nonlinear pk-vector function hk is the discrete forward observation operator (e.g., 

Cohn 1996), mapping model variables to the data type associated with the instrument. 

We introduce the following notation for the forecast error mean and covariance 
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and for the observation error mean and covariance 

Rk z ( ( E ;  - b;)(ei - b;)T). 15; = ( E ; ) ,  (4) 

Here ( a )  denotes the ensemble average or expectation operator, whose proper definition 

involves the joint probability distribution of forecast and observation errors. 

In order to simplify the presentation we will assume throughout that observation and 

forecast errors are uncorrelated: 

( ( E :  - b;)(Ei - bj!)T) = 0. (5) 

Removal of this assumption does not introduce any significant complications in what 

follows. 

A forecast w{ is said to be biased if the mean forecast error b: is nonzero; bi is 

the forecast bias. Similarly, the observations wi are said to be biased if the mean 

observation error or observation bias b;l. is nonzero. 

2.2 Ensemble means vs. time averages. 

We defined forecast and observation error statistics in terms of ensemble means: these 

are averages over all possible realizations of the errors, weighted by their probability 

of occurrence. This definition is appropriate since the optimality criteria underlying 

state estimation algorithms are generally formulated in terms of probability distri- 

butions of the stochastic-dynamic state variables (Jazwinski 1970; Cohn 1996). For 

example, the optimal estimate (in a rather broad sense) of the true atmospheric state 

wk given any set W of observations is provided by the conditional (ensemble) mean 

(wf,IW). This quantity is defined in terms of the joint probability distributions of wk 

and W .  
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Note, however, that the ensemble of all possible realizations of the actual atmospheric 

state is different from the ensemble of all possible realizations of the modeled atmo- 

spheric state, both in concept and in substance. Ensemble forecasting (Toth and 

Kalnay 1993; Houtekamer et al. 1996) involves different realizations of model fore- 

casts obtained by perturbing initial conditions and/or selected model parameters; the 

number of such realizations is limited only by the computing resources at hand. The 

ensemble of actual atmospheric states, on the other hand, is nothing more than a 

theoretical device. Only a single member of this ensemble exists, and only this single 

physical realization of the atmospheric state evolution is in fact observable; all general 

inferences about the ensemble rely on theory. For example, to assert that properties 

of the ensemble of actual states can be emulated by generating an ensemble of mod- 

eled states involves assumptions on the exact relationship between the model and the 

real atmosphere. 

In practice, first- and second-order forecast and observation error statistics are com- 

puted by averaging over time, usually over periods on the order of a month or so 

(Rutherford 1972; Schlatter 1975; Lorenc 1981; Bartello and Mitchell 1992). Sub- 

stitution of ensemble means by some other kind of average is, of course, a practical 

necessity. One could attempt to justify this substitution by assuming ergodicity of 

the stochastic processes involved, although this would seem to be rather farfetched. 

We will not further address this issue here but simply keep in mind the practical 

definition of forecast and observation error statistics in terms of time averages as an 

alternative to the theoretical definition in terms of ensemble means. 

Our notion of forecast bias in particular is usually associated with errors that per- 

sist for a certain amount of time. Such systematic errors are detectable when they 
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cause specific aspects of the model climatology to differ from the actual atmospheric 

climatology, as derived from observations. 

2.3 The analysis equation in the presence of bias. 

If the forecast bias were known, one could compute an unbiased forecast 

(6) Wk - f -  -wk f -  bi . 

Similarly, 

i?: = W; - b;l. (7) 

would be a set of unbiased observations. Throughout this paper we will use tildes to 

indicate that a quantity is either unbiased (in case of an estimate) or that its mean 

is zero (in case of a random vector). 

To simplify the presentation we now assume that the observation operator is linear: 

hk(.) = HI,. in (a), with Hk a PI, x n matrix. The statistical analysis equation which 

properly accounts for bias is then 

%: = %; + Kk [E: - , (8) 

where %; is the analysis at time t ~ , ,  and Kk is an n x pk gain matrix which takes into 

account the relative accuracies of forecast and observations. Independently of the 

specification of this gain, the analysis is an unbiased estimate of the true atmospheric 

sta.te: 

(9) 
t b; s ( E ; )  = 0, E a =  k - wk - a  - WI,. 

If, in particular, 

KI, = PLHT [&PLHf + & ] - I ,  (10) 
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then (8) provides the linear minimum variance estimate of the true atmospheric state 

given all observations up to and including time t k  (Anderson & Moore 1979, section 

5.2). 

In operational data assimilation systems the bias terms bg, bi are usually unknown 

and hence neglected. Using W E ,  wk f in place of %E, iGL the analysis equation is 

wi  = wL + Kk [wi - Hkwj!] . 

Taking the ensemble average and using (6) and (7) implies 

which shows that, for any gain Kk, the analysis is biased unless the forecast as well 

as the observations happen to be unbiased. Equation 12 also shows that the mean 

analysis increment (the second term on the right-hand side) does not provide a good 

estimate of forecast bias, even when bok 0, since the gain coefficients are generally 

less than one. 

Given an analysis equation of the form (11) in which bias is not explicitly accounted 

for, it is nevertheless interesting to consider the particular gain RI, which leads to the 

smallest total (systematic plus random) root-mean-square (rms) analysis error. This 

is important from a practical point of view since (11) is precisely the equation being 

solved in operational sequential data assimilation systems. It is not difficult to show 

that the rms analysis error due to (11) is minimal for 

- 1-1 
(13) 

- --f - r  
Kk = Y;H; [HkFLHI t R k J  , 

with 

(14) 

(15) 

f f T  f bf bf T - 
p: = (44 ) = p, + k( k )  , 

Rk E ( E ; ( E ; ) ' )  = Rk t bfC(bi)T. 
- 
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- 
The analysis resulting from (11) with Kk = Kk is still biased, as is true for any gain 

K,. An unbiased analysis can be produced only if explicit estimates of forecast bias 

and observation bias are available. 

2.4 A scalar example. 

Suppose that wkf and wg are both scalars, with 

b, f -  - (E,) f = b, P i  = ( ( E ;  - b)2) = u2, 

b i  = ( E ; )  = 0, Rk = = g2. 

Using (S), the optimal analysis is given by 

for which 

b i  = 0, ( (E ; )~ )  = -U 1 2  . 
2 

Ignoring forecast bias as in (12) would give instead 

b" - -b, 1 ( ( E ; ) ~ )  = i b 2  1 + 1 2  . 
"2 

The magnitude of the mean analysis increment in this case is b /2  and would under- 

estimate the forecast bias by a factor of two. 

Note that the analysis reduces the bias but does not remove it. Suppose now that 

b = 0, i.e. the typical magnitude of the random component of forecast error is equal 
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to that of the systematic component. Increasing the weight of the observation as in 

(13) then gives 

which is still biased but has somewhat less total variance: 

1 1 5 
b” - 4, 

“ - 3  ( ( & i ) 2 )  = 9 ” 2  -t y“2. (23) 

Drawing the analysis even closer to the observation would further reduce the bias 

but increase the total analysis error variance, due to the random error component. 

Figure 1 summarizes this example; it shows the dependence on the weight A’ of the 

analysis bias, the standard deviation of the random component of analysis error, 

and the total expected analysis error if (12) is used. This example shows clearly 

that, unless bias is explicitly accounted for, it can be reduced only at the expense of 

increasing the noisiness of the analysis. 
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1.8- - total error 

1.6- - - systematicerror 

random error 

K 

Figure I: Analysis error as a function of the scalar gain coef3cieiii E(, w h w  

forecast bias is not explicitly accounted for in the analysis, for 
the scalar example presented in section 2. The dotted horizontal 
line indicates the minimum analysis error level obtainable with an 
unbiased forecast. 
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3 Sequential bias estimation 

Forecast bias can be estimated by comparing forecasts with observations, i.e., from 

observed-minus-forecast residuals. Without additional information it is not possible 

to separate the effect of forecast bias on these residuals from that of biased observa- 

tions. We therefore assume, in this section, that a subset of the observing system is 

unbiased. This then leads to a sequential estimation algorithm for the time-averaged 

forecast error. First , we briefly discuss observed-minus-forecast residuals and their 

first- and second-order statistics. 

3.1 0 bserved-minus-forecast residuals. 

The observation operator introduced in (2) is a device for comparing forecasts with 

observations. The observed-minus-forecast residuals defined by 

are routinely computed in operational data assimilation systems. The residual Pk- 

vector time series {vk} is often referred to as the innovation sequence, although this 

terminology is not entirely correct since it presumes optimality of the data assimilation 

algorithm (Anderson & Moore 1979, section 5 . 3 ) .  In any case, these residuals contain 

important information about the actual observation and forecast errors, since 

where the linearized observation operator Hk, a Pk x n-matrix, is defined by 
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Equation 25 is obtained by linearizing (24) about the forecast state and using (1) 

and (2). The accuracy of the approximation (25) depends on the size of the forecast 

errors; it is exact for linear observation operators. 

The residual mean and covariance are easily obtained from (25): 

We used the additional approximation (Hk.) rz Hk(.); for linear observation operators 

(27) and (28) are both exact. Compare (28) with (10); specification of optimal weights 

in the analysis update requires complete knowledge of the residual covariance. 

3.2 A state-space description of forecast bias. 

We now assume that there exists a subset of the observing system for which bias is 

negligible: 

b;l M 0, (29) 

f or, rather, that lbil << IHkb,I in some meaningful sense. This amounts to the 

requirement that systematic errors, if any, have been effectively removed from the 

observations. In that case (25) can be re-written 

where ijk is a noise term whose first- and second-order statistics are 
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This follows from (25) and (29) by noting that i j k  = v k  - ( v k )  and using (28). 

Equation (30) can be regarded as a measurement model for the forecast bias b:. It ex- 

presses the relationship between the observations, the forecast, and the actual forecast 

bias under the assumption (29). If observations alone are insufficient to completely 

determine forecast bias, they must be supplemented with additional information. We 

therefore introduce a state model for b[ which describes its evolution in time. For- 

mulation of the state model in fact amounts to an explicit definition of the quantity 

we wish to estimate, i.e., of our notion of forecast bias. 

Our practical goal is to estimate the time-mean forecast error, averaged over a time 

period which exceeds synoptic time scales. By definition, this quantity is approxi- 

mately constant in time, so that a reasonable state model for b: is the persistence 

model 

This model will serve to predict forecast bias for time t k  based on a previous bias 

estimate valid for time t k - 1 .  

Forecast errors are state-dependent, and the evolution in time of forecast bias is 

therefore iikeiy to be more compiex than the persistence modei ( 3 3 )  suggests. For 

example, the presence of a systematic error in the convective parameterization of a 

forecast model will result in systematic but transient short-term forecast errors in 

convectively active regions. Tibaldi and Molteni (1990) and Miyakoda and Sirutis 

(1990) discuss systematic forecast errors which occur during the onset of blocking, 

and their impact on forecast skill. It will be a challenge to express this type of 
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information explicitly in terms of a bias evolution model of a more general form, say) 

where g is some nonlinear operator. 

Equations (30) and (33) (or (33’)) together constitute a state-space description (An- 

derson and Moore 1979) of the forecast bias b:. Given such a description, the esti- 

mation of this quantity becomes a standard problem in estimation theory. Griffith 

and Nichols (1996) pursue a similar approach, but in the context of variational data 

assimilation. They propose to extend the variational continuous assimilation method 

(Derber 1989) by introducing a deterministic evolution model for model error, anal- 

ogous to (33‘). The model error is then treated as part of the control variable in the 

vxiational formulation of the data assimilation problem, and can be estimated along 

with the forecast trajectory using adjoint techniques. 

3.3 Sequential estimation of forecast bias. 

A sequential bias estimation algorithm producing estimates b k  of the forecast bias 

b: can be defined recursively as follows. Given a previous bias estimate b k - 1 ,  the 

persistence model (33) predicts the forecast bias at time t k  simply by 

In c3.p.e of the more general model (33’) t h e  bias prediction might be 

An updated estimate b k  of forecast bias can be obtained by combining the bias pre- 

diction b; with the measurements provided by (30). It is easy to show from (30-32) 
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that the least-variance unbiased linear combination of prediction and measurements 

is given by 

b k  = bi, - Lk [vk + Hkbi] , (35) 

with 

where Pk- is the error covariance of the bias estimate 6;: 

E ( (bk - bk)( f b - - b i T  k ) . (37) 

The algorithm must be initialized with an a priori bias estimate bo, and it requires 

specification of the error covariances Pk- . 

For a linear stochastic-dynamic bias evolution model (in particular, for the persistence 

model (33)) it is possible to derive recursions for the covariances Pi-, as we shall show 

in section 4. Supplemented by these recursions, the algorithm (34-36) is just the 

Kalman filter for the system (30, 33). It will be more practical, however, to specify 

the covariance Pk- directly-that is, without recourse to the covariance equations- 

analogous to the direct modeling of forecast and observation error covariances in 

operational data assimilation systems. We will return to the issue of estimation error 

covariance modeling in section 5. 

In case of a linear bias model the bias estimate b k  defined by (35) is unbiased, provided 

the observations are unbiased: 

( b k )  = b k .  f (38) 

This statement follows directly from (35) combined with (as), and does not depend 

on the particular gain Lk. The least-variance property of the estimator, on the other 
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hand, holds only if the error covariances Pi-, Pi, and Rk are correctly specified in 

(36). Actual implementations of the algorithm will generally be suboptimal. 

Stability properties of the sequential bias estimation algorithm can be stated in terms 

of stability properties of the Kalman filter. For linear bias models the convergence of 

b, to  b: (in the statistical mean-square sense) depends on observability and control- 

lability properties of the state-space system (30,33 or 33'). In practical terms, and 

for the persistence model (33) in particular, this means that the (unbiased) observ- 

ing system must provide sufficient coverage during the maximum time interval over 

which forecast bias can be presumed constant. Bias estimates at locations where no 

unbiased observations are available will be determined partly by the a priori bias es- 

timate b o  there, and partly by the specification of the error covariances Pi- between 

locations within and without the observed regions. 
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4 Bias estimation theory 

In this section we summarize the approach to bias estimation first developed by 

Friedland (1969) and subsequently clarified and extended by others (Tacker and Lee 

1972; Mendel 1976; Friedland 1978; Ignagni 1981; Ignagni 1990; Zhou et al. 1993). 

The work of these authors provides a rigorous framework for the sequential bias 

estimation algorithm presented in the previous section, and can be applied more 

generally to the estimation of model error parameters and/or observational bias. 

4.1 General framework. 

Friedland (1969) considered the problem of estimating the true state w: of a linear 

stochastic-dynamic process in the presence of a set of constant (but unknown) bias 

parameters p. Other than being constant, the bias parameters are rather generally 

defined, and may affect both the state model and the measurement model. In partic- 

ular, it is not assumed that observations are unbiased. The theory has been developed 

for both continuous and discrete processes; here we present only the latter. 

The framework assumes linear stochastic-dynamic state and measurement models of 

the form: 

- 
Here Ak, Bk, Hk, ck are known matrices of appropriate dimensions, and &, i j k  are 

mutually independent white Gaussian vector processes with known first- and second- 
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order statistics 

If the bias parameters p were known (or if Bk = Ck = 0) the optimal state estimate 

at time t k  based on all observations up to that time would be given by the usual 

Kalman filter equations. 

Note that the bias parameters can enter the problem in different ways, depending 

on the definition of the matrices BI, and Ck. When BI, 0 the state model (39) is 

unbiased; in our application this corresponds to an unbiased forecast model. When 

ck 0 the observations are unbiased. Generally, the term BLP represents the effect 

of unknown model error parameters entering into the state evolution. The bias vector 

/3 may consist of just a few parameters-say, unknown spectral coefficients of model 

error-or it may be dimensionally compatible with the true state wi.  

4.2 Optimal state estimation in the presence of bias. 

Optimal estimates of the true state wi and the bias parameters /3 can be obtained 

hy zpp!ying the st.nd.rc! techciqce of mgmenting the st2te vector with the bias 

parameters (e.g., Jazwinski 1970, section 8.4). Linear state and measurement models 

for the augmented state follow from (39) and (40) together with the statement that the 

bias parameters are constant. The Kalman filter for this system then simultaneously 

provides the optimal estimates of w: and p. The obvious drawback to this approach 

is that it is not a simple matter to  modify an existing implementation of a state 

estimation algorithm by introducing state augmentation. 
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Friedland showed that the Kalman filter equations for the augmented state are alge- 

braically equivalent to two loosely coupled sets of recursions, resulting in a two-stage 

estimation algorithm. The first stage consists of the usual filter equations for the state 

wk, obtained by ignoring the bias altogether. The second stage provides estimates of 

the bias parameters' p based on the output of the first stage. Results from the two 

stages can then be combined to produce the optimal (unbiased) state estimates. 

This two-stage approach to concurrent state and bias estimation is known as separate- 

bias estimation in the literature. The first stage in the algorithm was originally called 

the bias-free state estimator by Friedland, since none of the equations in this stage 

involve bias estimates. We have found this terminology to be potentially confusing 

since it suggests that bias-free state estimates are unbiased, which is not actually 

the case. We therefore prefer to use the term bias-blind state estimator, which more 

clearly indicates that bias is present yet ignored in that part of the algorithm. 

Friedland's two-stage approach is attractive for many applications because the bias 

estimator can be implemented as a supplemental component to an existing (bias- 

blind) state estimator: the design of the state estimator is unaffected by the addition 

of the bias estimator. The latter can be activated as needed, e.g. when output diag- 

nostics indicate significant bias problems. We include the complete set of algorithms 

and some important properties here without proof; see Friedland (1969; 1978) and 

Ignagni (1981; 1990) for details. 
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Bias-blind state estimator. 

The bias-blind state estimates w:, wi are given by 

W: = AkWE-1, (43) 

(44) Wz = W[ 4- Kk [Wi - HkWj!] , 

where the gain Kk is 

(45) Kk = S:Hf [HkSkHk f T  Rk]-l, 

and S[ is defined recursively by 

s[ = AkSE-,A; -t &k,  

si = [I - KkHk] s i .  
(46) 

(47) 

In the absence of bias (43-47) are just the Kalman filter equations. 

Bias estimator. 

where the gain Kf is 

and Pf is defined recursively by 

The last equation in this set depends on the state estimator gain Kk. 



Bias correction. 

Unbiased state estimates i%{, i%i are obtained by 

Initialization. 

The recursions for the two estimators are initialized by specifying a priori state and 
bias estimates w: and Po as well as the matrices Sg, P:, and Vo. Generally, if it is 
assumed that 

~6 = wo + MOP, (WOP') = 0 

with Mo a known matrix, then 

s: = ((4 - WO)(W,a - wo)') , 
p! = ( ( P o  - PXPO - PI') > 

Vo = Mo. 

4.3 Properties and some extensions. 

Friedland (1969) showed that the P ,  defined by (48-53) are optimal estimates of the 

bias parameters P ,  given all observations up to and including time t k .  The matrices 

Pf are the actual estimation error covariances: 
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The unbiased state estimates *:,@E defined by (54, 55) are optimal, with error 

covariances given by 

P: = ((G: - wk)(Gi - w y )  = s: + U,Pf-,u;, 

The cross-covariances between the state estimates and the bias estimates are 

Unless P = 0 the bias-blind state estimator (43-47) is suboptimal and produces 

biased state estimates w,, f wi. The quantities S,, f S i  are covariance matrices, i.e., 

they are in fact positive semidefinite, but (61, 62) show that they differ from the 

actual estimation error covariances P,,P; for the unbiased estimates Gj!, Gi. One 

can prove, however, that the covariances SL, S i  do converge to Pi ,  P i  as IC -+ oc), 
provided the model system (39, 40) is uniformly completely observable and uniformly 

completely controllable. In that case the second term in each of the equations (61,62) 

approaches zero as the bias parameter estimates converge, since the Uk, Vk defined 

by (51-53) will remain bounded due to the stability of the bias-blind state estimator. 

f 

Several extensions to the two-stage state and bias estimation algorithm have been 

proposed based on natural generalizations of the linear, constant-bias framework pro- 

vided by the model system (39, 40). Various authors (Tacker and Lee 1972; Ignani 

1990) have considered model systems in which the bias parameters /3 are allowed to 

vary in time. Optimal bias and state estimates can still be obtained using simple 

extensions of Friedland's two-stage estimator, provided the variation in time of the 

bias parameters can be modeled and the resulting model system is still linear. Oth- 
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ers (Mendel 1976; Zhou et al. 1993) have proposed modifications to the algorithms 

designed to handle nonlinear state models; the resulting estimates are, of course, 

suboptimal. 

4.4 Forecast bias estimation. 

Using our definition (3) of forecast bias in section 2, 

b[ G (wk f - W i )  

= (W[ - w:> - (Ukfi,-l) 

= -u,p 

where we used (54) and the fact that iij; and b k - 1  are unbiased estimates of the true 

state wf, and the bias parameters p, respectively. In fact, /?k is an unbiased estimate 

of p as well, so that 

are both estimates of forecast bias b;. Their error covariances are 

using (SO). 

The estimate b i  predicts forecast bias at time t k  based on data prior to t k :  the 

corrected (unbiased) forecast (54) is 

wf- f -1;- 
k - W k  k '  
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The second estimate b k  is an update of the first, using additional data available at time 

t k .  Optimality of the bias estimator implies that these are the least-variance estimates 

given the observations upon which they are based; in particular, the updated estimate 

b k  is more accurate than bl,. 

We will now review the sequential forecast bias estimation algorithm (34-36) devel- 

oped in section 3, using the theory presented here. Consider the special case in which 

the measurement model (40) is unaffected by the bias parameters, i.e., 

Ck = 0. (73) 

This corresponds to the assumption that observations are unbiased. Equations (51- 

53) then reduce to 

lultiplying (48) by -Uk and using (68-70) and (74), we obtain the ,.xecast bias 

update equation 

(77) 

(7Q\ 
\"'I 

Compare (76, 78) with (35, 36); they are identical by virtue of (24), (61), and (70). 

The covariance update equation implied by (50) is 
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where we used (77) and (70, 71). 

Equations for the forecast bias prediction b i  and its error covariance PL- can be sim- 

ilarly obtained. For prediction, however, it is necessary to define the precise relation- 

ship between the bias parameters p and the evolution of the true state, represented 

by the matrix Bk in the state model (39). In section 3 we took a somewhat different 

approach by directly modeling the evolution in time of the forecast bias itself. In 

case of the persistence model (33) this is easily reconciled with the present theory, as 

follows. If the forecast bias b: is presumed constant in time, (67) implies that 

But then (68, 69) together imply 

which is just (34). Similarly, (70, 71) together imply 

b- b P, = P k - 1 .  

Note from (75) that (80) corresponds to the particular choice 

in the state model (39), for an arbitrary (but constant) matrix U. It would be 

farfetched to assume that the model (39) with this choice of BI, provides a realis- 

tic description of the actual state evolution. For this and other practical reasons it 

makes sense to bypass the covariance equations (79, 82) altogether and instead ap- 

proximate the estimation error covariances directly, as is usually done in operational 

data  assimilation systems. 
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4.5 The unbiased analysis equation revisited. 

Still assuming unbiased observations (Ck E 0) it follows from (51) and (53) that 

vk = [I - KkHk] uk (84) 

which, together with (55, 69) implies 

showing how the updated forecast bias estimate b k  may be used to obtain the optimal 

(unbiased) analysis. 

Equation (85) can be used to re-derive the unbiased analysis equation (8),  as follows. 

Using (44) and (76), 

The covariance relation (61) can also be written as 

P: = s: + Pk-, (88) 

and this together with (49),  (78) implies 

(89) f T  {KI, + [I - KkHlc] L k }  = PLHT [HkPkHk + &I- ' ,  
which proves (8); since iGi = WE here [observations are unbiased). 

Another useful way to express the unbiased analysis equation is in terms of the quan- 

tity 
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which is the a posteriori unbiased forecast. From (86) we simply obtain 

- - a  I-f 
Wk = Wk + Kk 
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5 Implementation in practice 

In this section we summarize the on-line and off-line bias estimation algorithms and 

address some practical issues. We also present the results of a simple numerical 

experiment performed with a linear one-dimensional shallow-water model. 

5.1 Selection of observations for bias estimation. 

The basic assumption leading to the ability to estimate forecast bias is that unbiased 

observations are available for this purpose. In practical terms this means that obser- 

vational bias must have been effectively removed, so that any remaining systematic 

component of the time-averaged observed-minus-forecast residuals can be attributed 

to forecast bias. This requirement is not realistic for all data types used in oper- 

ational data assimilation systems. In practice one may therefore need to define a 

limited subset of observations to be used for the purpose of estimating forecast bias. 

We will use the superscript notation 1 to indicate that a quantity is associated with 

this restricted subset. In particular, w? denotes the vector of unbiased observations 

at time t k ;  it is a subset of the full set of observations W E .  Similarly let hb,Hi, and 

R! be the corresponding restrictions of the observation operator hk, the linearized 

observation operator Hk, and the observation error covariance Rk, respectively. 

The off-line algorithm produces estimates of forecast bias based on stored output from 

an assimilation system. The on-line algorithm, on the other hand, utilizes current 

forecast bias predictions and updates in order to produce unbiased forecasts and 
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analyses. Bias estimates are based exclusively on observations which are considered 

unbiased. The computational cost of bias estimation is roughly that of a single 

solution of the analysis equation for a limited number of observations. 
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Ofl-line forecast bias estimation. 

bias prediction: 

bias update: 

On-line forecast bias estimation and correction. 

orccast and bias prediction: 

)ias update: 

znaly si s : 
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5.3 Covariance modeling. 

According to the theory presented in section 4, the on-line estimates are optimal when 

f -pf  pb- 
' k -  k -  k ,  

s;- = p;-, 

where 

P: = ((GL - w:)(G{ - w y ) ,  

PL- = ( ( 6 ,  - bL)(b, - b:)*). 

Note that S i  would be the forecast error covariance in the optimal case if there were 

no bias, or if the bias were precisely known and properly handled in the analysis. The 

covariance PL, on the other hand, is the optimal forecast error covariance in case of a 

biased forecast model, and it is bounded from below by S:: it is clearly not possible 

to do as well when forecast bias is not precisely known. 

In operational data assimilation systems forecast error covariances are approximated 

on the basis of various simplifying assumptions about the forecast error fields. For 

example, it is usually assumed that height error correlations at fixed pressure levels 

zre isntr~pic, zfid that extra-tropiczl wind error fields are i n  geostrophic halance with 

the height errors. Remaining free parameters in the covariance formulations (such 

as error standard deviations and spatial de-correlation length scales) can then be 

estimated from past observed-minus-forecast residuals, although on-line estimation 

of some parameters based on current data is possible as well (Dee 1995). 

A similar direct modeling approach could be used to approximate the forecast bias 

prediction error covariance Pi-. Use of the Kalman filter recursions for these co- 
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variances in a practical application is not sensible, especially when forecast bias is 

being predicted by means of a simple heuristic model. The assumptions underlying 

covariance models for bias prediction errors 6; - b[ and for the random forecast 

errors WL - w; should be consistent. For example, it is natural to assume that the 

systematic component of forecast error is approximately geostrophic as well in the 

middle latitudes. 

Parameters for approximating the forecast error covariance P[ should be estimated 

from mean-zero observed-minus-forecast residuals 

since 

A simple prescription for the bias prediction error covariance in terms of the forecast 

error covariance Pi might be 

with 0 < y < 1 a free parameter. Consistent with (104) one should then take 

s; = (1 -y)P{. (111) 

With this covariance model the gains KI, and L k  are given in terms of Pi and Rk by 

-1  
Lk = yPLHLT [HkP,Hk I f I T  t RL] . 

It should be relatively simple to use existing software for solving the analysis equations 

with these modified gains. 
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The parameter y in our covariance model controls the stability of the bias estimates: 

the relative size of the bias updates is proportional to this parameter. An alternative 

interpretation is that y determines the extent to which observational information is 

applied toward estimating the systematic rather than the random component of error. 

In the limit when y + 0 there are no bias updates and the on-line algorithm reduces 

to the usual analysis equation with a fixed (possibly zero) forecast bias correction. 

On the other hand, when y -+ 1 the observations are used exclusively for estimating 

forecast bias; the data assimilation scheme will then rely completely on the bias- 

corrected forecast. This would be appropriate if the forecast error were in fact entirely 

deterministic. Forecast error in practice consists of both systematic and random 

components; under some circumstances their relative magnitudes may be predictable 

and this information could be used to specify the parameter y. 

5.4 A numerical experiment. 

We conclude this section with a simple application of the algorithm in a data as- 

similation system which is based on a discrete version of the linear one-dimensional 

shallow-water model 

au au ah 1 
- + u- - fv + g -  = - -u ,  at ax ax 7 

av av 1 at + U& + fu = ---2). 
7 

Equations (1 14-1 16) are obtained by linearizing the nonlinear two-dimensional shallow- 

water equations at a fixed latitude cp about a geostrophic basic state, assuming peri- 

odic height- and wind-perturbations h ,  u ,  v depending on the longitudinal coordinate 

0 5 x 5 L only. The terms on the right-hand side represent linear damping and 
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topographic forcing. Model parameters for our experiments are chosen to roughly 

represent quasi-geostrophic 500m6 scales: y = 45" (model latitude), L = 27ra sin y 

(length of the circle of latitude), a = 6.371 x 106m (earth's radius), g = 9.81m2s-2 

(gravity constant), f = 2 0  sin 8 (Coriolis parameter), R = 2n/day (earth's rotation 

rate), U = 17ms-1 (mean zonal wind), H = 8000m (mean height), and T = 5 days 

(damping time scale). The topography h, is a smoothed version of the actual to- 

pography at 45N. We solve (114-116) numerically on a uniformly spaced grid with 

M = 64 points by means of the Richtmyer two-step formulation of the Lax-Wendroff 

scheme (Richtmyer and Morton 1967), using a time step of about 12 minutes. For 

quasi-geostrophic solutions of (114-116) the perturbation velocity component u is at 

least an order of magnitude smaller than v ,  and we will therefore completely ignore 

u in the presentation of our results. 

The system (114-116) admits a stationary solution which is a function of the topog- 

raphy h,. This stationary solution represents the climate of the true atmosphere in 

our experiment. The forecast model is defined by changing the specification of the 

topography (by using data at 48N instead), resulting in a fairly large climate error. 

Figure 2 shows the true topography (dotted curve) and forecast model topography 

(solid curve) in the top panel, and the h- and v-components of the corresponding 

climates in the center and bottom panels, respectively. These climates were obtained 

by integrating (114-116), starting from a state of rest, for a period of 30 days. The 

systematic error in the forecast model which is due to the misspecification of topo- 

graphic forcing will result in biased forecasts; the rms systematic height error in a 

12-hour forecast is roughly 15m in this setup. 

A single realization of the true atmospheric state evolution is simulated by adding 
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Figure 2: Top panel: true topography (dotted curve) and forecast model 
topography (solid curve). Center panel: h-component of true 
climate (dotted curve) and forecast model climate (solid curve). 
Bottom panel: v-component of true climate (dotted curve) and 
forecast model climate (solid curve). 

a small, random forcing to the equations at each model time step. The forcing 

consists of a random linear combination of the slow modes of the system (114-116), 

the amplitude of the mode with wavenumber w being normally distributed about 

zero with standard deviation a e x p [ - ( ~ / 5 ) ~ ] .  The parameter u is chosen such that 

the typical magnitude of the random component of the 12-hour forecast height error 

is comparable to that of the systematic component of error, Le., about 15m. The 

simulated observing network provides 32 equally spaced height observations (at every 
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other grid location) and 20 observations of the meridional wind component v (at 

every other grid location where h, > 0) every 12 hours of simulation time; u is not 

observed. The height- and wind-observation error standard deviations specified in the 

data assimilation scheme are 40m and 4rns-', respectively, although for our single- 

realization experiment we actually generate perfect observations. 

-*,,I -300 

-400 ' I I I 

0 90E 180 9ow 0 

-30 I I I 

0 90E 180 9ow 0 

Figure 3: True state (dotted curve), bias-blind forecast (dashed curve), and 
bias-blind analysis (solid curve) after 48 hours of data assimilation. 
The h-component is shown in the top panel; the v-component 
in the bottom panel. Observations are taken every 12 hours as 
marked. 

Rather than computing error covariances exactly in accordance with the theory, they 

will be prescribed as in (1 10) and (1 11) with y = 0.5. The forecast error covariance P[ 
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is modeled by assuming random isotropic height errors and geostrophically balanced 

wind errors. Geostrophy in (114-116) is expressed by u = 0, 2, = 7%. Thus, our 

model for P[ is completely determined by two parameters: the height error standard 

deviation 0; (taken to be constant in time and space) and a length scale parameter 1 

for the spatial height error correlations (modeled by a simple power law). No attempt 

is made to tune or optimize these covariance parameters; we take ohf = 20m (roughly 

the rms norm of the 12-hour forecast height error) and 1 = 1500km (roughly three 

grid cells). 

Figure 3 shows a typical snapshot of the bias-blind state estimates, obtained by 

ignoring the forecast bias altogether. Heights are shown in the top panel; winds 

(v-component only) in the bottom panel. The solid curves represent the analyses 

produced at 48h. The dashed curves show the forecast based on the previous (36h) 

analysis, the dotted curves indicate the true state, and height- and wind-observations 

are marked. The forecast bias is visible in these plots, particularly near the troughs 

located to the east of the main topographic features. Note that the impact of the 

observations is positive, in the sense that the analysis errors are significantly smaller 

than the forecast errors. 

Estimates of forecast bias were produced simultaneously with the bias-blind state 

estimates, based on all observations. In figure 4 we show the bias prediction (dashed 

curve) and the updated bias estimate (solid curve) after 48 hours of data assimilation, 

together with the true forecast error (dotted curve). The forecast error contains a 

random as well as a systematic component; only the latter is represented by the bias 

estimates. The bias-corrected state estimates are shown in figure 5. The analysis 

increments are now much smaller than those for the bias-blind estimates, since the 
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Figure 4: True forecast error (dotted curve), bias prediction (dashed curve), 
and updated bias estimate (solid curve) after 48 hours of data 
assimilation. The h-component is shown in the top panel; the 
v-component in the bottom panel. 

forecast bias has been greatly reduced and only the random component of error is 

being corrected in the analysis. 

Figure 6 shows the rms error evolution in time for the bias-blind (dashed curves) and 

for the bias-corrected (solid curves) state estimates, during the first 1U days of simu- 

lation. Forecast as well as analysis errors, both for height and for wind components, 

are reduced by more than a factor of two by application of the bias correction proce- 

dure. The climate error in the assimilation is reduced even more. Climate error was 
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Figure 5:  True state (dotted curve), bias-corrected forecast (dashed curve) 
and bias-corrected analysis (solid curve) after 48 hours of data 
assimilation. The h-component is shown in the top panel; the 
v-component in the bottom panel. Observations are taken every 
12 hours as marked. 

computed by simulating 40 days of data assimilation, calculating the mean analyzed 

state over the last 30 days of the assimilation, and comparing the result to the mean 

true state over the same period. In figure 7 we show the h- and v-components of 

climate error for the assimilation run without bias correction (dashed curve), for the 

run with bias correction (solid curve), as well as for a climate run of the forecast 

model in which no data are assimilated (dotted curve). The latter corresponds to the 

difference between the model and true climates, as can be seen from Figure 1 as well. 

41 



The rrns climate height error associated with the bias-corrected analyses is 0.85m, 

compared to 12.7m for the bias-blind analyses and 96.2m for the forecast model; the 

corresponding rms climate wind errors (v-component) are 0.13ms-', 0.99ms-', and 

2.9ms-l, respectively. 

o ~ l l I 1 l I 1 l l l l l l l l l I I I J  

0 12 24 36 48 60 72 84 96 108120132144156168180192204216228240 

2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  I l l  

0 12 24 36 48 60 72 84 96 108120132144156168180192204216228240 

Figure 6: Root-mean square error evolution for the bias-blind estimates 
(dashed curve) and for the bias-corrected estimates (solid curve). 
The horizontal axis represents time t k  (in hours). 
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bias correction (dashed curve), and with data assimilation and on- 
line bias correction (solid curve). The h-component is shown in 
the top panel; the v-component in the bottom panel. 
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6 Conclusion 

It is well-recognized in practice that forecast models contain systematic errors which 

can result in biased forecasts. Forecast bias may have a significant impact on the 

climatology of assimilated data sets, as well as on the instantaneous accuracy of a 

particular analysis. The bias problem has been largely ignored, however, in the devel- 

opment of data assimilation methodology. Statistical analysis methods are generally 

derived under the assumption that forecast errors are strictly random and zero in the 

mean. In actual implementations of these methods the error statistics are sometimes 

adjusted in order to reduce analysis bias, but-as we showed in section 2-this is an 

ad-hoc remedy which is only partially effective, and which causes an increase in the 

random component of analysis error. The only way to properly account for forecast 

bias in a statistical analysis scheme is to do so explicitly, by estimating the bias and 

then correcting the forecast prior to analysis. 

We presented a rigorous method for estimating forecast bias in an atmospheric data 

assimilation system based on an unbiased subset of the available observations. The 

main components of our sequential bias estimation algorithm are already available in 

existing statistical analysis systems. The added computational cost of incorporating 

the algorithm into an operational system is roughly one additional solution of the 

statistical analysis equation, for a limited number of observations. Off-line forecast 

bias estimates can be produced as well, using an existing analysis system and stored 

output from a previous data assimilation run. We plan to perform bias estimation 

experiments in the immediate future using the Goddard Earth Observing System 

(Pfaendtner et  al. 1995). 
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Forecast bias estimation merely represents the first step in addressing the bias problem 

as it affects atmospheric data assimilation. Once estimates of forecast bias become 

available they can be used to remove, or at least reduce, analysis bias. However, the 

mechanisms responsible for generating forecast bias will cause the model diagnostics 

to be flawed in many cases. This problem is critical when the output of the system is 

to be used for climate research, which requires a continuous and unbiased record of 

prognostic as well as diagnostic atmospheric variables. 

Ultimately, routine production and monitoring of forecast bias estimates in an opera- 

tional data assimilation system should lead to improvements in the formulation of the 

forecast model itself. In the meantime it will be necessary to consider bias correction 

methods in which model forcing is continuously being adjusted in order to compen- 

sate for the effect of systematic errors in the forecast model. Saha (1992) and Takacs 

(1996) have developed bias correction schemes for statistical data assimilation, while 

Derber (1989) and Griffith and Nichols (1996) address the problem in the context of 

the variational method. In future work we plan to develop bias correction methods 

which are consistent with the framework provided by the present article. 

Acknowledgements. We are grateful to Steve Cohn, Greg Gaspari, Joanna Joiner, 

Dave Lamich, Richard Mbnard, Chris Redder, Leonid Rukhovets, Larry Takacs, Ri- 

cardo Todling, and Siegfried Schubert for many interesting and useful discussions 

about forecast bias. Special thanks to Ricardo Todling for pointing out a number of 

important references in the iiterature on separate-bias estimation, and for a carefui 

review of the manuscript. 

45 



7 References 

Anderson, B. D. O., and J. B. Moore, 1979: Optimal Filtering. Prentice-Hall, 357pp. 

Baker, N. L., 1991: An adaptive correction procedure for radiosonde geopotential 

height biases. Preprints, Ninth Conference on Numerical Weather Prediction, 

Denver CO, 192-194. 

Bartello, P., and H. L. Mitchell, 1992: A continuous three-dimensional model of 

short-range forecast error covariances. Tellus, 44A, 217-235. 

Cohn, S. E., 1996: Introduction to estimation theory. J .  Met. SOC. Japan, in press. 

Cohn, S. E., and R. Todling, 1996: Approximate data assimilation schemes for stable 

and unstable dynamics. J .  Met. SOC. Japan, 74, 63-75. 

Daley, R.) 1991: Atmospheric Data Analysis. Cambridge University Press, 457pp. 

Dee, D. P., 1991: Simplification of the Kalman filter for meteorological data assim- 

ilation. Q. J. R. Meteorol. SOC., 117, 365-384. 

Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric 

data assimilation. Mon. Wea. Rev., 123, 1128-1145. 

Derber, J .  C., 1989: A variational continuous data assimilation technique. Mon. 

Wea. Rev., 117, 2437-2446. 

Eyre, J. R., 1992: A bias correction scheme for simulated TOVS brightness temper- 

atures. ECMWF Tech. Memo 176. 

Ghil, M., S. Cohn, J .  Tavantzis, K.  Bube, and E. Isaacson, 1981: Applications of 

estimation theory to numerical weather prediction. Pp. 139-225 in: Bengtsson, 

46 



L., M. Ghil, and E. Kallkn, Dynamic Meteorology: Data Assimilation Methods, 

Springer-Verlag, New York, 330pp. 

Griffith, A. K., and N. K.  Nichols, 1996: Accounting for model error in data assim- 

ilation using adjoint methods. Pp. 195-204 in: Computational Diflerentiation: 

Techniques, Applications, and Tools. Proceedings of the Second International 

SIAM Workshop on Computational Differentiation, Santa Fe, New Mexico, 

February 1996. Society for Industrial and Applied Mathematics, Philadelphia, 

PA. 

Friedland, B., 1969: Treatment of bias in recursive filtering. IEEE Trans. Autom. 

Contr., AC-14, 359-367. 

Friedland, B., 1978: Notes on separate-bias estimation. IEEE Trans. Autom. 

Contr., AC-23, 735-738. 

Hollingsworth, A. and P. Lonnberg, 1986: The statistical structure of short-range 

forecast errors as determined from rawinsonde data. Part I: The wind field. 

Tellus, 38A, 11 1-136. 

Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: 

A system simulation approach to ensemble prediction. Mon. Wea. Rev.? 124, 

1225-1242. 

Ignagni, M. B., 1981: An alternate derivation and extension of Friedland’s two-stage 

Kalman estimator. IEEE Trans. Autom. Contr., AC-26, 746-750. 

Ignagni, M. B., 1990: Separate-bias Kalman estimator with bias state noise. IEEE 

Trans. Autom. Contr., AC-35, 338-341. 

47 



Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory, Academic Press, 

New York, 376pp. 

Julian, P. R., 1991: RADCOR91 - The new radiosonde radiation error correction 

procedure. NMC Office Note 374. 

Kanamitsu, M., and S. Saha, 1996: Systematic tendency error in budget calculations. 

Mon. Wea. Rev., 124, 1145-1160. 

Lonnberg, P. and A. Hollingsworth, 1986: The statistical structure of short-range 

forecast errors as determined from rawinsonde data. Part 11: The covariance of 

height and wind errors. Tellus, 38A, 137-161. 

Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation 

scheme. Mon. Wea. Rev., 109, 701-721. 

Mendel, J .  M., 1976: Extension of Friedland's bias filtering technique to a class of 

nonlinear systems. IEEE Trans. Autom. Contr., AC-21, 296-298. 

Miyakoda, K., and J. Sirutis, 1990: Subgrid scale physics in l-month forecasts. Part 

11: Systematic error and blocking forecasts. Mon. Wea. Rev., 118, 1065-1081. 

Pfaendtner, J.,  S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J .  Stobie, and 

A. da Silva, 1995: Documentation of the Goddard Earth Observing System 

(GEOS) Data Assimilation System-Version 1. NASA Tech. Memo. No. 104606, 

VO!. 4, Gorlrlard- spa." Flight, center, Greenbelt, MD 20771. Avai!ah!e e!ectmr?- 

ically on the World Wide Web as 

f t p :  / /dao .gsfc .nasa.gov/pub/techmemos/volume~4.ps . Z  

Reynolds, C., R. Gelaro, and T. Murphree, 1996: Observed and simulated Northern 

48 



Hemisphere intraseasonal circulation anomalies and the influence of model bias. 

Mon. Wea. Rev., 124, 1100-1118. 

Richtmyer, R. D., and K.  W. Morton, 1967: Diference Methods for Initial-Value 

Problems, 2nd edition. Wiley-Interscience, New York, 405pp. 

Rutherford, I., 1972: Data assimilation by statistical interpolation of forecast error 

fields. J .  Atmos. Sci., 29, 809-815. 

Saha, S., 1992: Response of the NMC MRF Model to systematic-error correction 

within integration. Mon. Wea. Rev., 120, 345-360. 

Schlatter, T. W., 1975: Some experiments with a multivariate statistical objective 

analysis scheme. Mon. Wea. Rev., 103, 246-256. 

Tacker, E. C., and C. C. Lee, 1972: Linear filtering in the presence of time-varying 

bias. IEEE Trans. Autom. Contr., AC-17, 828-829. 

Takacs, L. 1996: A simple bias correction algorithm for use in the GEOS data 

assimilation system. Submitted to Mon. Wea. Rev. 

Takacs, L., and M. J.  Suarez, 1996: Dynamical aspects of climate simulations us- 

ing the GEOS General Circulation Model. NASA Tech. Memo. No.  104606, 

Vol. 10, Goddard Space Flight Center, Greenbelt, MD 20771. Available elec- 

tronically on the World Wide Web as 

f t p  : / /dao  . gsf c.. na.sa- gnv!gi~h/?-.echm~mns/vnl?lmP_ln. 38. z 

Tenenbaum, J., 1996: Jet stream wind analyses: Comparison of aircraft observations 

with analyses. Weather and Forecasting, 11, 188-197. 

49 



Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. 

Tellus, 42A, 343-365. 

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at the National Meteorological 

Center: The generation of perturbations. Bull. Amer. Meteorol. SOC., 74, 

2317-2330. 

Zhou, D. H., Y. X. Sun, Y. G. Xi, and Z. J .  Zhang, 1993: Extension of Friedland’s 

separate-bias estimation to randomly time-varying bias of nonlinear systems. 

IEEE Trans. Autom. Contr., AC-38, 1270-1273. 

50 


