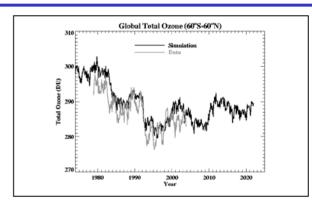


Coupled Simulations of Ozone-Climate: 1950-2100

PI: Steven Pawson/Global Modeling and Assimilation Office, NASA GSFC

Award number: SMD-Dec04-0034

Objective of Columbia Usage


- How do ozone and climate evolve through the 21st century?
- How and when will the Antarctic ozone hole recover?
- What impact do year-to-year variations have on the detection of trends?

Codes to be run on Columbia

- GEOS-4 GCM: atmospheric general circulation model
- Strat chem: middle atmospheric chemistry code

Key Milestones

- Perform and analyze a model run for the period 1950-2005, using observed SSTs and known growth rates of greenhouse gases and chlorine species
 4mo/yr
- Perform and analyze three runs, using boundary conditions and emissions scenarios developed by the international community, for the period 2005-2050
 8mo/yr

Time series of modeled (black) and observed (gray, for 1979-2003) global O₃ (Stolarski et al., sub. to J. Atmos. Sci.,, 2005). The model was the "uncoupled equivalent" of the coupled chemistry-circulation model to be used in this work

Scientific Impact

This study will give some of the first estimates of future ozone change using comprehensive circulation and chemistry modules. Results will be assessed in terms of dynamical and chemical changes, combining expertise of the team. Results will be contributed to the next WMO/UNEP assessment of ozone in the atmosphere.

Co-Is/Partners

Co-I: Richard S. Stolarski, NASA GSFC
Partners: Anne Douglass, Mohan Gupta, Paul Newman, Eric
Nielsen, NASA GSFC

Science Mission Directorate - Project Columbia Investigation