ENSO Response
(with a focus on the GEOS-5 S25-1.0 Model)

Taken primarily from Chen et al. 2017: ENSO Precipitation and Temperature Forecasts
in the North American Multimodel Ensemble: Composite Analysis and Validation, J.
Climate, http://dx.doi.org/10.1175/JCLI-D-15-0903.1

Additional figures available at http://www.cpc.ncep.noaa.gov/products/NMME/enso/
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ENSO Years

Seasonal Oceanic Nino Index (ONI; Kousky and Higgins 2007)
:http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml

TABLE 1. Selected years used in the ENSO composite analysis. The years are chosen based on
|ON]) = 0.5 on average for the three consecutive months prior to the mitial ime of model

integration. The 1982-2010 set is used for model and observed composites. The 1950-2010 set is

used for observed composites only.
IC Oct 1 Nov 1 Dec 1 Jan 1 Feb 1
Month Nov Dec Jan Feb Mar
ENSO Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold
1950-1981 | 1951 | 1950 | 1951 | 1954 | 1951 | 1950 | 1952 | 1951 | 1952 | 1951 1

1953 [ 1954 [ 1953 | 1955 1953 | 1954 | 1954 | 1955 | 1954 | 1955 CompOSItes for
1957 [ 1955 1957 | 1956 [ 1957 | 1955 | 1958 | 1956 | 1958 | 1956 1 -
1963 [ 1956 1963 | 1964 [ 1963 | 1956 | 1959 | 1957 | 1959 | 1957 Observatlons (1950
1965 [ 1964 [ 1965 | 1970 1965 | 1964 | 1964 | 1965 | 1964 | 1965 20 10)
1968 [ 1970 1968 | 1971 | 1968 | 1970 | 1966 | 1971 | 1966 | 1971

1969 | 1971 | 1960 | 1973 ) 1969 | 1971 | 1969 | 1972 | 1969 | 1972
1972 [ 1973 | 1972 | 1975 ) 1972 | 1973 | 1970 | 1974 | 1970 | 1974

1975 | 1976 1976 1974 | 1973 [ 1975] 1973 | 1975 . .
1977 1977 | 1975 | 1977 | 1976 | 1977 | 1976 Composites for Hindcasts
1978 1978
19822010 | 1982 | 1985 | 1082 | 1083 | 1982 | 1983 | 1983 | 1084 | 1983 | 1984 (1982-2010)

1986 | 1988 | 1986 | 1985 | 1986 | 1984 | 1987 | 1985 | 1987 | 1985
1987 [ 1998 | 1987 | 1988 | 1987 | 1988 | 1988 | 1980 | 1988 | 1989
1991 | 1999 | 1991 | 1995 ) 1991 | 1995 | 1992 | 1995 | 1992 | 1996

1997 | 2000 1994 [1998 | 1994 [ 1998 [ 1995 [1999 | 1995 | 1999 Focus on lead 1-month
2002 | 2007 | 1907 | 1099 | 1997 | 1090 | 1008 | 2000 | 1998 | 2000 .
2004 | 2010 | 2002 | 2000 | 2002 | 2000 | 2003 | 2001 | 2003 | 2001 composites for N ov, Dec,
2000 7004 | 2007 | 2004 | 2007 | 2005 | 2006 | 2005 | 2006
2006 | 2010 | 2006 | 2010 | 2007 | 2008 | 2007 | 2008 Jan, Fe b , Mar
2000 2000 2010 | 2009 | 2010 | 2009
TotalNo. | 8 7 0 | o W | o 0 | 10 | 10 | 10
of events
from 1953 (NDJFM is the average of
TotalNo. | 16 | 16 | 20 | 17 | 20 | 18 | 21 | 20 | 21 | 20
Fotal No. the four 1-month lead

o e composites)
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FIG. 5. ACC of all models and months for (a) El Nino precipitation anomaly composites, (b) La
Nina precipitation anomaly composites, (c) El Nino temperature anomaly composites. and (d) La
Nina temperature anomaly composites, validated with 1950-2010 observations. Values greater
than 0.2 are significant at the 90% confidence level based on student’s t test. The level of green

shading corresponds to the range of ACC values indicated by the color bar.
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El Nino Temperature

Nov Dec
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GEOS-5 E| Nino T2m anomaly composites (1982-2010) for Lead-1 forecasts with initia

conditions of (a) October 1, (b) November 1, (c) December 1, (d) January 1, and (e)
February 1, and for (f) five-month (NDJFM) aggregates. The anomaly unit is mm/day.
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La Nina Temperature
GEOS-5 Observations

GEOS-5 La Nina T2m anomaly composites (1982-2010) for Lead-1 forecasts with initial Observed composites (1950-2010)
conditions of (a) October 1, (b) November 1, (c) December 1, (d) January 1, and (e)
February 1, and for (f) five-month (NDJFM) aggregates. The anomaly unit is °C.



El Nino Precipitation
GEOS-5 Observations

Nov Dec Nov Dec

GEOS-5 El Nino precipitation anomaly composites (1982-2010) for Lead-1 forecasts with Observed composites (1950-2010)
initial conditions of (a) October 1, (b) November 1, (c) December 1, (d) January 1, and
(e) February 1, and for (f) five-month (NDJFM) aggregates. The anomaly unit is mm/day.



La Nina Precipitation
GEOS-5 Observations
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GEOS-5 La Nina Precipitation anomaly composites (1982-2010) for Lead-1 forecasts Observed composites (1950-2010)
with initial conditions of (a) October 1, (b) November 1, (c) December 1, (d) January 1,
and (e) February 1, and for (f) five-month (NDJFM) aggregates. The anomaly unit is
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Some of Chen et al. conclusions:

- GEOS-5, CanCM4 and FLOR have difficulty in producing ENSO-
temperature relations (both in magnitude and spatial patterns)

- February tends to have higher scores than other winter months for
all models

- Most models perform slightly better in predicting El Nino patterns
than La Nina patterns

- Acloser look indicates that the GEOS-5 model has a too strong tendency to
produce a canonical (PNA-like) response to ENSO SST

- Why?

- Perhaps an incorrect sensitivity of the atmospheric response to
equatorial Pacific SST

- Perhaps due to too-strong ENSO SST anomalies that extend too far
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Evolution of Nifio 3.4 during
past strong El Nifio events
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The differences in the evolution and
mtensity of El Nifio are slightly less
pronounced in the lead-0 forecasts (not
shown).

Hino 3.4 index

oo CMCl-CanCM3 -« COLA-RSMAS-CCSM4
s—s CMCZ-CanCM4 s—as GFDL-CM2pl-aerQ4

e—a GFDL-CM2p5-FLOR-ADG e—o NASA-GMAO-062012
=—s GFDL-CM2Zp5-FLOR-BO1 =—a NCEP-CF5v2




3436 JOURNAL OF CLIMATE Vouume 15

PNA Index Sensitivity 200 hPa Helghts
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Fia. 7. (2) Sensitivity of the PNA index defined from 200-mb heights (contour interval is 0.1 SSTU ). Target
regions that were used to define the PNA pattern and the signs of their contributions to the index are indicated. The
Nimo-4 and Nifio-3 regions are depicted by black rectangles on the equator; the Nifio-3 4 region by 2 gray hatched
rectangle. (b) Sensitivity of the center over western Canada (0.5 m SSTU +). (c) PNA sensitivity multiplied by the
standard deviation of Jan SSTs (0.5 x 10 * km *). SSTs have been interpolated through land points.
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AMIP runs: Some examples showing PNA-like model bias
(300mb eddy height for DJF)
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AMIP runs: This version seems to get it about right (also very nice JJA jets)

DJF 300mb eddy heights
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Conclusions

* Previous slides suggest that a key problem with the GEOS-5 coupled model
response to ENSO is that the forecast SST anomalies extend too far to the
west (in the 1997/98 example, the PNA-like response appears to develop
after a lead time of a few months as the forecast SST anomalies
erroneously spread west of the dateline)

 However, it is also likely that the atmospheric model’s extra-tropical
response to SST in the Pacific warm pool region has systematic errors
(often resembling the PNA)

* The key point is that the Pacific warm pool region (just west of the
dateline) is critical to get the extratropical boreal winter response right
(likely impacted by both SST forecast bias and an incorrect response by the
atmospheric model to SST in that region)



Some Comments

For the coupled model: A priority should be placed on improving the equatorial
Pacific SST especially the cold tongue (extent and strength, SST gradients) and
annual cycle. The SSTs at the eastern edge of the warm pool appear to be critical
to getting the extratropical wave response correct.

For the AGCM: Getting the correct atmospheric response to the SST in that region
(Pacific warm pool) is critical for getting good forecasts over North America
(impacts the steering of storms, etc). | suspect that is even true for short term
(weather) forecasts. Need to look at summer as well.

It would be helpful to develop an in-house capability to do ENSO composites from
any set of hindcasts and AMIP-style runs (on-line, with flexibility to look at any
quantity for an lead and start month (monthly and seasonal) — suggest following
compositing convention of Chen et al.

It would be very useful to produce an estimate of the AGCM’s Green’s function
linking SST to the atmospheric response (a diagnostic tool that would allow us to
produce SST sensitivity maps for an arbitrary atmospheric quantity)
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