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More typical seasonal forecast
(Small shift in PDF)
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Forecasts are evaluated in terms of integrated measures such as terciles
e.g.: how much have the climatological probabilities (1/3, 1/3, 1/3) 
for below, near and above normal changed (e.g., 0.25, 0.30, 0.45)
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Some Key Ensemble Forecast Performance Measures
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Reliability
(e.g., that temperature falls in the upper tercile)

5

0

1

0 1
Forecast Probability

Observed 
Frequency

over-confident

Climatology 

Reliability: 
distance to 45°
line – smaller 
is better

45° line

1/3



Resolution
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Barbara G. Brown UCAR

Brier Score Decomposition Relates Reliability and Resolution
(mean squared difference between forecast probabilities and actual outcomes)

If reference forecast 
is climatology then:

Brier Skill Score (BSS)
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Perfect forecast:  BSS=1
Reference forecast (climatology):  BSS=0
Better (Worse) than reference forecast:  BSS>0 (BSS< 0)

(RES = REL)

BSS and Reliability Diagram



Sharpness (forecast frequency histogram)
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Environment Canada



Some Results from NMME
(courtesy Emily Becker NOAA/CPC)

• Reliability diagrams showing the three-category 
reliability and sharpness for each individual model, 
lead-1 seasonal forecasts. 

• T2m and precip are aggregated over northern 
hemisphere (23N-75N) land, and SST is aggregated 
over the Nino3.4 region. 

• 1982-2010 retrospective forecasts are from the CPC in-
house NMME data set, leave-one-out cross-validation. 

• T2m observational data is from GHCN+CAMS, precip
obs data is CAMS, and SST obs data is OISSTv2.
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T2m, Northern Hemisphere Land
Reliability Diagram: T2 NH, 3 category

Courtesy Emily Becker NOAA/CPC

lead-1 seasonal forecasts,
1982-2010
Northern Hemisphere (23N-
75N) land
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T2m, Northern Hemisphere LandReliability Diagram: T2 NH, 3 category, 
Courtesy Emily Becker NOAA/CPC

lead-1 seasonal forecasts,
1982-2010
Northern Hemisphere (23N-
75N) land
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Line of no skill
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P rate, Northern Hemisphere Land
lead-1 seasonal forecasts,
1982-2010
Northern Hemisphere (23N-
75N) land

Reliability Diagram: Precipitation NH, 3 category
Courtesy Emily Becker NOAA/CPC
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P rate, Northern Hemisphere Land
lead-1 seasonal forecasts,
1982-2010
Northern Hemisphere (23N-
75N) land

Reliability Diagram: Precipitation NH, 3 category
Courtesy Emily Becker NOAA/CPC
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Line of no skill



SST, Niño3.4 region
lead-1 seasonal forecasts,
1982-2010
SST is aggregated over the 
Nino3.4 region

Reliability Diagram: Nino3.4,   3 category
Courtesy Emily Becker NOAA/CPC
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SST, Niño3.4 region
lead-1 seasonal forecasts,
1982-2010
SST is aggregated over the 
Nino3.4 region

Reliability Diagram: Nino3.4, 3 category
Courtesy Emily Becker NOAA/CPC
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Line of no skill



19

Jan-> 
FEB

Mar-> 
Apr

May-> 
Jun

Jun-> 
Jul

Jul-> 
Aug

Aug-> 
Sep

Sep-> 
Oct

Nov-> 
Dec

Dec-> 
Jan

SST in Main Development Region (1-Month Lead) Zhao Li



Consistency

• do observations lie within the forecast 
ensemble spread?
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Malaquias Peña
IMSG at EMC/NCEP/NOAA
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Malaquias Peña
IMSG at EMC/NCEP/NOAA



Rank Histograms:
1 month lead (seasonal mean)

CFS2 GFDL

NINO34
SST

US 
Precip

GEOS-5



Rank Histograms:
3 month lead (seasonal mean)

CFS2 GFDL

NINO34
SST

US 
Precip

GEOS-5



25

Nino3.4: ratio of 
ensemble 
spread to 
standard error 
of estimate
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How to Improve Consistency?

• Calibrate the spread after the fact
– probably something NMME/CPC should do (they only want the raw output)

• Improve initial ensemble to better sample the uncertainties
– more ensemble members
– choose the fastest growing  (e.g., breeding)

• Perturb the model (much recent work done focusing on ECMWF system)1

– addresses uncertainties due to model error 
- structural: missing physics
- uncertainties in existing physics (e.g., perturbed parameter)

- focus of research has been broader – seen as a way of improving skill, 
reducing bias, improving consistency, reliability, etc
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1Note: No perturbed physics of any kind is used  in CFSv2: good ensemble spread may be the result of a forecast 
model that  has good variability in the tropics on intraseasonal time scales. Initial conditions may also play a 
role in that they come from a weakly coupled data assimilation system (Suranjana Saha : EMC/NOAA)



Perturbed Atmospheric Model- focus on convection
(Christensen et al. 2015; Weisheimer et al 2011)

– perturbed parameter:  values of a selected set of parameters are sampled from a 
distribution representing the uncertainty in their values, with each ensemble 
member assigned a different set of parameters
• Used by MetOffice in GLoSea5 - random parameter perturbation scheme (Bowler et al, 2008)

– stochastic physics schemes: e.g., a stochastic perturbation to the input to a 
deterministic scheme, such as by using a stochastic representation of convective 
available potential energy or convective inhibition

– perturbed parameter ensembles provide an attractive way to include stochasticity
into a parameterization scheme in a physically motivated way.  E.g., the 
stochastically perturbed parameterization tendencies (SPPT) scheme, used 
operationally at ECMWF1. 
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1 Actually two stochastic parameterization schemes are used at ECMWF. SPPT (Palmer et al. 2009) uses multiplicative noise to perturb the total 
parameterized tendencies about the average value that a deterministic scheme represents, thus addressing model uncertainty due to the physical 
parameterization schemes. The second scheme, stochastic kinetic energy backscatter (SKEB) (Berner et al. 2009), represents a physical process absent from 
the IFS deterministic parameterization schemes. It uses random streamfunction perturbations to represent upscale kinetic energy transfer, counteracting the 
kinetic energy loss from excessive dissipation in the numerical integration schemes

e is a random variable with specified 
spatial and temporal structure, Pi are 
the 5 physics terms in IFS, D is 
dynamics, K is horizontal diffusion



SQRT(W’W’) 500mb Annual Mean

Fortuna 2.5 versus MERRA 
(used incurrent seasonal 
forecast system)

WMP_F120 versus 
MERRA

WMP_F120 versus 
MERRA-2



Perturbed Ocean Model
Andrejczuk et al. 2016 : Oceanic Stochastic Parameterizations 

in a Seasonal Forecast System

“The oceanic variability induced by the atmospheric forcing of the 
coupled system is, in most regions, the major source of ensemble 
spread.“

Some impact was found “… in regions of strong eddy activity, such as 
along western boundary currents in the Gulf Stream and Kuroshio
regions, in the North Atlantic subpolar region, and also in parts of the 
Southern Ocean.”

“Similar results were found by Juricke et al. (2014) in the context of 
applying stochastic perturbations to the sea ice strength in seasonal sea ice 
modeling. They showed that after a few weeks the atmospheric variability 
is the largest contributor to sea ice ensemble spread.”
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Perturbed Land Model
MacLeod et al. Perturbing hydrology parameters in seasonal forecasts
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MacLeod et al. (2015) Improved seasonal prediction of the 2003 European heatwave through better 
uncertainty representation in the land surface, QJRMS 142:694 pp 79-90

Conclusions: mixed depending on method 

We show here that perturbing parameters in CY41R1 gives large 
improvements in terms of soil moisture reliability.

The model spread/error ratio is increased with perturbation. For soil 
moisture the SP experiments give the largest improvement, however 
the PP experiment gives an unusually large increase in spread of soil 
temperature despite only perturbing soil hydrology parameters.

Work at ECMWF now focuses on perturbing the land-atmosphere 
coupling parameter



Conclusions/Summary Concerning Current 
GEOS-5 Seasonal Forecasting System

• Lead 1 seasonal predictions (1982-2010) of ENSO SST (both cold and warm) are skillful, reliable, have 
good resolution, and sharpness
– there is however evidence that the ensemble spread is under-dispersive

• Lead 1 seasonal predictions of T2m (averaged over NH land, 1982-2010), lack sharpness, are 
overconfident, and are marginally skillful (true for all NMME models)
– there is some suggestion that increasing the number of ensemble members may be beneficial (CFSv2 and 

FLOR have 24 members)
– Near normal category has no resolution, no skill (true for all models)
– Reinforces need to examine conditional skill (e.g., linked to ENSO, land, etc)

• Lead 1 seasonal predictions of precipitation (averaged over NH land, 1982-2010), lack sharpness, are 
overconfident, and have no skill  (true for all NMME models)
– Reinforces need to examine conditional skill (e.g., linked to ENSO, land, etc)

• There appear to be substantial differences in the quality of predictions for warmer than normal  SST 
(poor) versus colder than normal SST (better) in the MDR (true for all NMME models – need to 
understand why)

• Most success to date  in dealing with under-dispersive ensembles focused on atmospheric 
convection schemes (“oceanic variability induced by the atmospheric forcing of the coupled 
system is, in most regions, the major source of ensemble spread”) – though research on 
perturbing ocean and land appears to be in its infancy.

• Recent versions of our AGCM have much great tropical variability than the AGCM (Fortuna 2.5) 
used in our current seasonal forecast system, suggesting the next seasonal system should benefit 
from that to produce greater (more realistic) ensemble spread
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Suggest We Follow This 
Compact Style of Reliability 

Diagrams

Includes information 
on: reliability, 
resolution, sharpness, 
and skill including 
contributions to BSS 
from each (reliability 
and resolution) term

Here - compares three 
different NMME 
forecasts in one panel
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Barbara G. Brown UCAR



34

Useful references continued:

Verification of Ensembles: Barbara G. Brown UCAR, 2015.

Verification of probability and ensemble forecasts: Laurence J. Wilson
Atmospheric Science and Technology Branch Environment Canada

Ensemble Forecasting and their Verification: Malaquías Peña, 
Environmental Modeling Center, NCEP/NOAA , 2014.

Bowler, N.E., Arribas, A., Mylne, K.R., Robertson, K.B. and Beare, S.E., 2008: The 
MOGREPS short-range ensemble prediction system. QJR Meteorol Soc, 134, 
703-722, doi:10.1002/qj.234.
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