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A Multi-model Analysis for the Coordinated Enhanced Observing 1 

Period (CEOP) 2 

ABSTRACT 3 

A collection of eight operational global analyses over a 27 month period have been 4 

processed to common data structures to facilitate comparisons among the analyses and global 5 

observational data sets. In the present study, we evaluate the global precipitation, outgoing 6 

longwave radiation (OLR) at the top of the atmosphere and basin-scale precipitation over the 7 

United States. In addition, a multi-model ensemble is created from a linear average of the 8 

available data, as close to the analysis time as each system permits. The results show that the 9 

monthly global precipitation and OLR from the multi-model ensemble has generally better 10 

comparison to the observations than any single analysis. Likewise, the daily precipitation from 11 

the ensemble exhibits better statistical comparison (in space and time) to gauge observations 12 

over the Mississippi River Basin. However, the statistics have seasonality, where the members of 13 

the ensemble are much improved, and closer to the ensemble mean, during winter. Using the 14 

global precipitation and OLR, the sensitivity is tested to selectively choosing the members with 15 

the best statistical comparisons to the reference data. Only small improvements in the statistics 16 

are found when comparing a selective ensemble to the full ensemble. The ensemble data and the 17 

variance of the ensemble should make a useful point of comparison for the development of 18 

global analyses. 19 



 2

1.  Introduction 1 

Ensembles means of simulations using different models have been shown to provide a 2 

result better than any of the contributing members. At weather scales, improved hurricane 3 

predictions have been found through such super ensembles (Krishnamurti et al. 2003). In climate 4 

simulations and predictions, a multi-model approach also tends to provide the better result 5 

(Philips and Gleckler 2006). Additionally, ensembles of stand-alone land process models (using 6 

observations and analyses as prescribed forcing) show the smaller biases and errors than the 7 

contributing members (Dirmeyer et al 2006). In retrospective-analyses (or reanalyses) of the 8 

weather and climate, numerous diagnostic fields are classified as being related to the model 9 

uncertainties, as opposed to fields closely related to assimilated observations, and therefore 10 

lower quality and requiring further validation when evaluated (Kalnay et al, 1996). Compo et al. 11 

(2006) demonstrated that assimilating only surface pressure with an ensemble filter approach can 12 

produce reasonable weather patterns. It stands to reason then that an ensemble based on 13 

operational analyses diagnostics (assimilating large amounts of satellite and radiosonde 14 

observations) can produce not only reasonable weather systems, but an improved representation 15 

than any single analysis. A difficulty to this point is that a collection of analyses would be 16 

required to provide enough members of such an ensemble. 17 

The Coordinated Enhanced Observing Period (CEOP, Koike et al. 2004) has collected 18 

concurrent observations and operational analyses for the period October 2002 – December 2004, 19 

where a primary objective was to quantify the uncertainty of analyses (Bosilovich and Lawford 20 

2002). Requests were sent to numerical weather prediction centers for contributions to the CEOP 21 

model data archive. As of January 2008, eight analyses for the full period have been submitted. 22 

While a suggested variable list was included in the request, data structures were not strictly 23 

provided. So that, the contributed data was on various grids and each center provided its default 24 
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analysis and forecast cycle data. In short, the data are not immediately comparable among the 1 

various centers. This paper presents the first results of the Multi-model Analysis for CEOP 2 

(MAC). The purpose of MAC is to homogenize the data files, providing a common spatio-3 

temporal grid of the analyses, using as many of the most common variables in order to facilitate 4 

comparisons among the analyses and observational data. In this framework, we can then assess 5 

the current state of uncertainties among the analyses. 6 

In addition to homogenizing the data structures, a mean and variance of the data has been 7 

produced. We hypothesize that the extensive use of observations in modern analysis/forecast 8 

systems will provide commonality and the uncorrelated model errors that exist in the analyses 9 

can be reduced in an ensemble average of the analyses. If so, the ensemble of analyses can 10 

provide a baseline for comparison of physical quantities not easily observed or have no 11 

independent source. Comparing an individual analysis to the ensemble will show the 12 

uncorrelated error in that system, while comparing the ensemble to observed data will show the 13 

correlated errors common among analyses (in combination with observed uncertainty). In this 14 

manuscript, we summarize the homogenization of the data, the development of the ensemble and 15 

variance, and present comparisons of key model diagnostics at monthly and daily time scales.  16 

2. Data and Methods 17 

 Early in the formulation of the Coordinated Enhanced Observing Period (CEOP), the 18 

need for global model analysis data to support science objectives became apparent.  19 

Additionally, the observations being developed for CEOP would be very useful to the validation 20 

of model analyses and forecasts.  Invitations were sent to the major international Numerical 21 

Weather Prediction and data assimilation Centers (NWPCs).  Ten centers responded favorably, 22 

and by the end of 2006, seven centers provided 27 months of data for the CEOP EOP-3 and -4 23 
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(Oct 2002-Dec2004).  Two separate model contributions from one center gave a total of eight 1 

analyses. The contributing centers are: 2 

• Bureau of Meteorology Research Centre (BMRC) 3 

• Centro de Previsão de Tempo e Estudos Climáticos (CPTEC, The Center for Weather 4 

Forecasts and Climate Studies) 5 

• Experimental Climate Prediction Center (ECPC) 6 

• Japan Meteorological Agency (JMA) 7 

• Meteorological Services of Canada (MSC) 8 

• National Centers for Environmental Prediction (NCEP) 9 

• United Kingdom Meteorological Office (UKMO) 10 

 11 
In general, comparisons of the analyses from the NWPCs has primarily been through the 12 

single-point Model Output Location Time Series (MOLTS) co-located with CEOP reference 13 

sites or considering only one model system (Yang et al. 2007; Chou et al. 2007; Rikus 2007, 14 

Milton and Earnshaw, 2007; Hirai et al. 2007; Meinke et al. 2007; Kato et al. 2007 and 15 

Bosilovich et al. 2007).  To get at the comparison of global grids, an ensemble of the analyses 16 

was developed for several purposes.  First, the variance of the analyses can provide a measure of 17 

uncertainty in analyses.  It also provides a range of the state-of-the-art analyses.  Second, this 18 

ensemble may make a better benchmark for comparing individual analyses than simply 19 

differencing any one against another.  Lastly, a synthesis of the model output would facilitate use 20 

of the data in the broader science community where, increased use of the data should expose 21 

weaknesses in individual systems and the ensemble, leading to eventual improvements in the 22 

models. 23 

There are several major differences in the structures of the model output data, that users 24 

of the original CEOP contributions would need to address. The original structure of the model 25 
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data from the NWPCs participating in CEOP is archived (in Grib1 format) by the Model & 1 

Data group at the Max Planck Institute (MPI) for Meteorology in Hamburg, Germany. Aside 2 

from the format, there are few similarities in the contributed data. Each center provided various 3 

analysis/forecast data in their time series. Many provided their analysis to 6 hour forecast. As a 4 

rule, the data closest to the analysis provided by each center were used for that center’s time 5 

series in this comparison. Details on the location of each center’s data relative to the 6 

analysis/forecast cycle are provided in the appendix. In general, the model spatial grids were also 7 

different. Not all centers provided the same output variables. 42 of the most common 8 

meteorology and flux fields were selected and included in the data processing (list is in the 9 

appendix). The steps to create the ensemble and variance are as follows: 10 

1. Generate a 6-hourly dataset for all centers, using consistent units and timing 11 

2. Interpolate the 6-hourly data from each center to a common grid (1.25° lat-lon) 12 

3. Create an ensemble mean and standard deviation of the 6-hourly time series 13 

4. Create daily-averages and monthly-averages from the 6-hourly ensemble mean 14 

5. Create daily and monthly-averages of the individual centers 15 

6. Create daily and monthly standard deviations between the individual centers 16 

7. Write the interpolated data for all centers, the mean, and the standard deviation at 17 

the 6-hourly, daily, and monthly times in the final formats of NetCDF and grib1 18 

Sanity checks were performed along the way, to ensure that coding errors in the calculations 19 

were not being introduced (e.g. compare back to the source data, checking the incoming solar 20 

radiation for timing). The appendix discusses issues and decisions made at each step in 21 

transforming the output data and generating the ensemble mean. The final data includes eight 22 

different analyses located at the same time with consistent grid, as well as ensemble mean and 23 
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variance of the members at 6 hourly, daily and monthly frequencies for the period of Oct 2002 1 

– Dec 2004. 2 

 3 

3. Evaluation of the ensemble and members 4 

a.  Monthly time scale 5 

Precipitation from analyses can be a useful quantity, but uncertainties have to be 6 

understood (Trenberth et al. 2007; Bosilovich et al. 2008, and the reviews therein). Many of the 7 

CEOP science objectives relate to precipitation. At monthly time scales, there are many 8 

similarities among the analyses provided here. Figure 1 shows the difference of July 2004 of 9 

each of the analyses to GPCP. CMAP precipitation is also provided as a reference for 10 

observational uncertainty. Most of the analyses show high precipitation biases in the tropical 11 

Pacific Ocean, Intertropical Convergence Zone (ITCZ) and to a lesser degree the South Pacific 12 

Convergence Zone (SPCZ). Note also, that CMAP is likewise biased slightly higher than GPCP 13 

in these areas, related to the implementation of atoll gauge observations (Yin et al., 2004). The 14 

MSC and ECPC-SFM means are much closer to GPCP than the other analyses in this respect. 15 

However, the predominance of these biases across the members leads to a similar bias pattern 16 

apparent in the MAC ensemble average. This points to a key consideration of the MAC 17 

ensemble average; systematic errors and biases among the contributing members will persist into 18 

the resulting ensemble average. 19 

 While some large scale similarities are apparent, there are still many differences in the 20 

monthly precipitation of the contributing analyses. For example, continental precipitation 21 

anomalies among the members vary greatly (Figure 1). Summary statistics of mean bias and 22 

standard deviation of the difference field are included in the title of the figure. With a standard 23 

deviation of 1.7, the MAC ensemble average has lower error in this field than any of the 24 
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contributing members. This then suggests that the uncorrelated errors are being reduced in the 1 

averaging of the ensemble. This result is also revealed in Taylor diagrams (Taylor, 2001) of the 2 

precipitation (Figure 2). Taylor diagrams compare the variance of a field with their correlation 3 

relative to a reference data field. In this example, GPCP provides the reference field, and CMAP 4 

is also included as a data point. The linear distance from the reference point (1,1 in Figure 2) 5 

shows how closely a model approximates the reference data (see also Philips and Gleckler, 2006 6 

and Bosilovich et al. 2008). This shows that the MAC ensemble average is closer to GPCP than 7 

any of the ensemble members, generally, with high correlation and variance closer to that of 8 

GPCP for July 2004. 9 

 Figure 3 extends this discussion across the entire Oct 2002-Dec 2004 period. The time 10 

series of standard deviation of the monthly mean precipitation shows that the MAC ensemble 11 

average is clearly lower than any of the individual analyses. The seasonal variability of the 12 

standard deviation is also fairly small compared to large seasonal variations in some of the 13 

analyses (such as MSC). Also, there is a large shift of the JMA data beginning in June 2003, 14 

where a substantial increase in the standard deviation may also affect the MAC ensemble 15 

statistics. ECPC-RII shows a strong annual cycle with much larger standard deviations in boreal 16 

summer than otherwise. Correlation between the MAC ensemble precipitation and GPCP is also 17 

high, but there is less separation between the highest individual analyses. There are a few months 18 

in the boreal winter of 2004 where NCEP’s precipitation correlation is nearly identical to the 19 

MAC ensemble average. 20 

 Outgoing Longwave Radiation (OLR) observations are generally high quality and 21 

provide a critical climate diagnostic. Figure 4 compares the July 2004 monthly differences of the 22 

ensemble members and mean OLR compared with Surface Radiation budget (SRB, Stackhouse 23 

et al, 200?) merged observational data product. As opposed to the precipitation comparison, wide 24 
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variations among the models are apparent.  The JMA system exhibits systematic positive biases 1 

while the UKMO shows systematic negative bias. NCEP, UKMO and MSC biases are strongest 2 

in the tropics but of different signs. While these latter three have the lowest standard deviations 3 

for this month, the MAC ensemble produces the lowest standard deviation of the difference from 4 

SRB than any single contributor. 5 

Figure 5 shows the time series of global spatial correlation and standard deviation of the 6 

monthly differences between each member and the ensemble mean with SRB OLR. Spatial 7 

correlation shows how well the pattern matches. In spatial correlation, the ensemble mean has 8 

higher correlations than any individual model.  However, the standard deviation is less clear. 9 

During Boreal winter NCEP OLR has less error than the MAC ensemble, but slightly more in 10 

error in summer. Further, the UKMO, MSC and JMA OLR data are all quite close to the MAC 11 

ensemble mean. In contrast to the precipitation statistics (Figure 3) which show that the systems 12 

are distributed along a range of values, the OLR statistics show two distinct clusters in the 13 

systems. The ECPC systems and CPTEC have markedly higher error in OLR. This result begs 14 

the question: Will choosing the statistically better systems improve the ensemble mean? 15 

b.  Selective Ensembles 16 

Using Global Soil Wetness Project (GSWP2) offline land models, Guo et al. (2007) 17 

tested the sensitivity of the ensemble average to the soil moisture quality of the ensemble 18 

members. It was shown that adding better (higher correlation, lower error) members to an 19 

ensemble average reduced the error of the ensemble, but adding data with lower skill did not 20 

significantly degrade the ensemble while the better systems were in place. There are several 21 

differences between that study and the present data. First, Guo et al. (2007) were using the long 22 

reanalysis data, but these were few compared to the number of GSWP2 offline land models 23 

considered. The offline models all used similar and prescribed atmospheric forcing. The 24 



 9

prescribed forcing likely reduces the degrees of freedom in the simulated realizations, 1 

compared to the three dimensional data assimilation data in the present analysis here. The 2 

distribution of error evaluated by Guo et al (2007) varies evenly across the ensemble members. 3 

This is somewhat different from the error we see generated in the three dimensional operational 4 

analyses here. Figure 5 shows that the OLR error delineates a subset of analyses that are less 5 

skillful than the rest. Precipitation error, on the other hand, does show a more uniform 6 

distribution across the members (Figure 3). Guo et al. (2007) also had a larger number of 7 

ensemble members in that study. 8 

Here, we test the MAC ensemble average against a selective member ensemble, 9 

determined from each systems statistics in Figure 3 and Figure 5, using the 27-month means of 10 

the statistics to rank the systems. In each analysis we remove the lowest three scores from the 11 

comparison, for precipitation, BMRC, CPTEC and ECPC-RII are eliminated and for OLR, 12 

ECPC-SFM, ECPC-RII and CPTEC are eliminated (BMRC did not provide OLR). Figure 6a and 13 

b shows the time series of statistics including an ensemble mean of the 5 most skillful analyses 14 

precipitation for the selective ensemble. The spatial correlation of precipitation does indicate an 15 

apparent improvement (by approximately 0.01) on average for the whole period. However, this 16 

seems quite small compared to the low values of the data that was excluded. The MAC ensemble 17 

standard deviation was already a standout compared to the ensemble members. A selective 18 

ensemble does reduce the error, but only by a small margin. Also in June and July 2003, the 19 

selective ensemble standard deviation is slightly higher than that of the full MAC ensemble. 20 

For OLR spatial correlation, there are two distinct clusters of systems (higher and lower), 21 

though all are fairly high correlations with the lowest average of monthly correlations being 22 

0.91. The MAC ensemble at 0.98 correlation to SRB is higher than any individual system, but 23 

being so high, there is little room for improvement. Removing the lowest 3 systems from the 24 
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ensemble does not increase the skill of the ensemble spatial correlation. However, in standard 1 

deviation, where NCEP winter months OLR error shows better skill than the MAC ensemble, the 2 

selective ensemble shows some improvement beyond the NCEP skill. The standard deviation or 3 

the ensembles is reduced on average from 8.6 Wm-2 (a difference of 1 Wm-2). So that, for some 4 

cases, a selective ensemble may provide better results, but as a rule the full ensemble will be just 5 

as accurate. While this is an improvement, and the selective ensemble skill is higher than any 6 

contributing member, the improvement is generally small in comparison to the full ensemble. 7 

The difficulty with selective ensembles is that there is no way to tell the degree that any single 8 

member may contribute to the ensemble or in what variable at any given time (e.g. seasonality as 9 

in the precipitation standard deviation Figure 6a). Since any improvements may be small, the full 10 

ensemble will be more reliable in most cases. However, if the ensemble size increases, and 11 

generally error prone members identified, selective ensembles could be justified. 12 

The JMA OLR statistics show a general improvement over the period (Figure 5). The 13 

JMA OLR is also included in the selected ensemble. However, in neither of the ensembles is an 14 

improvement of the statistics in time noticeable (Figure 6 c and d). The ensembles’ statistics are 15 

more steady compared to the individual analyses. This suggests that the individual impact of the 16 

improvement of any one operational analysis in time has limited effect on the ensemble of 17 

analyses. 18 

c.  Synoptic Time Scale 19 

The previous analysis shows that the MAC ensemble can generally produce monthly data that 20 

compares favorably to global data sets. Because the analyses use data near the observation time, 21 

weather patterns should also be resolved in the ensemble. However, the averaging of the 22 

ensemble may smooth fields, such as precipitation, at the 6 hourly and daily time scales. 23 

Precipitation should be a difficult quantity to compare with at these time scales. The Climate 24 
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Prediction Center (CPC) provides 1/4 degree daily gridded gauge only precipitation data set 1 

for the United States (Shi et al. 2003). We evaluate the daily time series of precipitation over the 2 

Mississippi River basin and sub-basins for the period of Jan 2003 to Dec 2004. 3 

 Figure 7 shows the Mississippi River Basin (MRB) on the MAC grid, which we will 4 

focus this evaluation. Five sub-basins contribute to the MRB drainage into the Gulf of Mexico. 5 

The gauge data were box-averaged up to the MAC grid for comparison purposes. For each daily 6 

basin average of the CPC observations over two years, the data are compared to the 7 

corresponding daily basin average of each model and the ensemble. Figure 8 shows the scatter 8 

diagram of the two years of daily time series data. It seems quite remarkable that the MAC 9 

ensemble average is clustered so closely to the observations at daily time scales. In some models, 10 

clear biases are apparent, positive (ECPC RII, JMA, NCEP) and negative (ECPC SFM). Most 11 

individual models have noticeable scatter in the data points. BMRC, ECPC RII and ECPC SFM 12 

tend to be some of the coarser source data sets (GET a table of resolution of the source data), 13 

which may have some influence on their results. 14 

T1 shows the statistics of the area averaged daily time series for the MRB and each of the sub 15 

basins. The MAC ensemble bias tends to be small, but positive, following the consensus of the 16 

ensemble members. Note that the MAC area weighted bias cannot be computed by linear 17 

averaging the area weighted bias of each member, in part because of missing data in the source 18 

data (see the Appendix). Even in the smaller sub-basins, the MAC ensemble time series has 19 

some of the highest temporal correlation to the observations, and the standard deviation of the 20 

time series differences are always the lowest. These temporal statistics suggest that the MAC 21 

ensemble precipitation is generally consistent with the weather scale observations. 22 

To pursue this further, we computed spatial statistics (correlation and standard deviation 23 

of the difference from the gauge observations across the domain) for the MRB each day of the 24 
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2003-2004 period. Figure 9 shows the monthly average of the daily spatial statistics. In the 1 

standard deviation of the difference, the MAC ensemble is nearly always the lowest value (low 2 

indicates small squared difference from the observations). This is most apparent in the warm 3 

season when the errors are generally larger than other seasons. In the winter seasons, the 4 

analyses start to group together and their values are generally smaller, but the ensemble still 5 

tends to be the smallest (or nearly the smallest) error.  6 

In spatial correlation, there is more separation among the different analyses throughout 7 

the annual cycle (Figure 9b). Some of the analyses that perform better for the whole period (see 8 

T1) are closer to the high values of the MAC. In some months, the MAC ensemble is not the 9 

highest spatial correlation. These are generally the winter months. In the winter, dynamics and 10 

initial conditions of the data analysis provide skillful forecasts that allow more accurate 11 

precipitation. In the summer, physical processes and mesoscale systems govern the observed 12 

precipitation, the forecasts and analyses have more uncertainty. While this is not a surprising 13 

result, the fact that the MAC ensemble has noticeably more skill at the daily spatial statistics 14 

than the member analyses during the summer is a very interesting result. 15 

Figure 10 and F8 compare two individual days, one summer (10 July 2003) and one 16 

winter (23 Dec 2004), precipitation from the MAC to observations. These two days were chosen 17 

because they exhibit some of the largest precipitation amounts when averaged over the MRB. 18 

For 10 July 2003, the primary maximum of precipitation is reasonably well located in the central 19 

United States, but the MAC Ensemble contours do not show the detailed structure apparent in 20 

the observations, and also underestimates the intensity at the core of the event. UKMO is chosen 21 

for as a member of the ensemble, with reasonable statistics. In the July case, UKMO does 22 

produce a larger amount in the core, but misses the southward extent of the event. The standard 23 

deviation of the daily MAC precipitation resembles the mean with the largest values near the 24 
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core of the rain event. Statistically speaking, the MAC data has a higher correlation to and 1 

smaller variance than the UKMO data for the MRB, but not without some deficiency.  2 

In the December example (F8a), a strong frontal system extends across the United States, 3 

west of the Appalachian Mountain chain. A secondary maximum of precipitation is evident in 4 

the southeastern United States. The MAC ensemble seems to locate the main frontal 5 

precipitation well, but the width of the core is wider than apparent in the gauge observations. The 6 

UKMO has more precipitation than observed along the southern extent of the core. The MAC 7 

ensemble has little resemblance to the secondary south eastern maxima, while the UKMO 8 

system does have more precipitation there (though no closed contours evident). Even with these 9 

apparent differences, there is little statistical difference between the MAC ensemble and the 10 

UKMO data, for this case. The standard deviations of the ensemble precipitation are generally 11 

related to the occurrences of precipitation and the systems that generate the precipitation.  12 

Roads and Betts (2000) compared the ECMWF and NCEP reanalysis water budgets over 13 

the MRB. All components of the regional water budgets had differences between them. The level 14 

of that evaluation cannot be duplicated with the present analyses as not all data are available 15 

(notably, a soil moisture storage diagnostics among the systems is not uniform, total 16 

runoff/drainage water would also be required). Yet, the results at the synoptic time scale suggest 17 

that much may be learned about regional water budgets from an ensemble of analyses approach. 18 

The evaluation here does not address the diurnal cycle of precipitation in analyses. Ruane and 19 

Roads (2007 a&b) evaluate reanalyses diurnal cycles globally and regionally, finding significant 20 

deficiencies in both the phase and amplitude of diurnal precipitation. While 6 hourly data are 21 

available in this multi-model data set, only 27 months may limit certain statistics. 22 

 23 
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d.  Global Energy Budget 1 

Nearly all of the systems provide the components to evaluate the Earth’s global energy 2 

budget components. Recently, Trenberth et al. (2008, henceforth TFK) revised assessments of 3 

the energy budget components based on newly available data and models. The assessment 4 

utilized GPCP, International Satellite Cloud Comparison Project (ISCCP) and Clouds and the 5 

Earth’s Radiant Energy System (CERES) observations. The TFK period of interest was March 6 

2000 to May 2004. We compare the 2 year (Jan 2003-Dec 2004) globally averaged energy 7 

budget from the ensemble members and mean to the representative values developed by TFK. 8 

 Table 3 shows the major components of the Earth’s global energy budgets at the surface 9 

and top of the atmosphere (TOA), as well as precipitation (representative of atmospheric latent 10 

heat). At the top of the atmosphere, all models use much the same solar forcing. The analyses 11 

tend to overestimate OLR and underestimate reflected shortwave compared to the TFK 12 

estimates, which suggests that the clouds or the effect of clouds on the radiation is 13 

underestimated in the ensemble of analyses. The surface latent heating in the ensemble members 14 

is generally higher than the TFK estimate, and it would appear that this is driven by too much 15 

downward shortwave radiation at the surface. However, the ensemble average downward and 16 

upward longwave radiations at the surface exceed the TFK estimates by roughly the same 17 

amounts. Both have smaller biases than the surface latent heat and downward shortwave 18 

radiation. The downward longwave radiation at the surface has a substantial amount of 19 

variability while upward longwave radiation is consistent, related to the use of prescribed SSTs. 20 

TFK estimate the net heating of the global surface at 1.2 W m-2. The variability of net surface 21 

heating across each of the member analyses is substantial, ranging from strong warming to 22 

strong cooling of the surface. However, the MAC ensemble average net surface heating is 23 

comparable to the TFK estimate.  24 
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 1 

4. Summary and conclusions 2 

The Multi-model Analysis for CEOP (MAC) comprises 8 operational global analyses as 3 

well as their ensemble mean and standard deviation. The method to unify the data structures in 4 

space and time has been discussed here. The goal of the project is to simplify the comparisons of 5 

the analyses with existing observations, as well as compare among the different analyses. We 6 

hypothesized, based on the results of several previous studies using multiple model simulation 7 

results, that the ensemble mean of the analyses should provide data that is as skillful as or better 8 

than the most skillful contributing member. This is founded on the use of similar observations in 9 

each of the analyses, so that random errors in each system will be minimized when ensemble 10 

averaged. We focus the testing of the data on precipitation and outgoing longwave radiation, 11 

variables that are predominantly driven by the model physics, but also have reliable global 12 

observations data sets for verification. 13 

At monthly time scales, we find that the statistics produced by the ensemble of the 14 

analyses are similar to or better than the best contributing member. This is generally true for the 15 

duration of the period, though in OLR, the NCEP analysis shows slightly better results compared 16 

to the full ensemble during boreal winter. The global precipitation of the ensemble mean is much 17 

better than any of the members. Comparing the members and ensemble to global energy budget 18 

estimeate (from Trenberth et al 2008) shows where the analyses are similar and where they vary. 19 

While the global net surface energy from any given system may show imbalance, the ensemble 20 

net surface energy is inline with the estimate. The ensemble also show the best or nearly so 21 

temporal and spatial statistics compared to daily gauge observations in the well instrumented 22 

Mississippi River Basin, even to the level of the sub-basins. 23 

The impact of selectively choosing the most skillful ensemble members to create a new 24 
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ensemble is also tested. Generally speaking, the improvement that is gained by choosing the 1 

most skillful members is small, and may be exaggerated in the present tests given a fairly small 2 

number of members. In one case, where there is a clear separation in skill between two sets of 3 

analyses, the selective ensemble did produce noticeably smaller error. However, even that 4 

improvement is relatively small when comparing the range of error in the members that were not 5 

included in the selective ensemble. 6 

While the ensemble mean of the analyses does compare well with the observations 7 

presented here, it does so by retaining the information in each analysis that is correlated. The 8 

higher skill of the ensemble average indicates that the random or system-specific errors in the 9 

contributing members are minimized. However, biases that are correlated, such as high tropical 10 

precipitation, high global incoming shortwave radiation at the surface and high surface 11 

evaporation, are retained in the ensemble average. Presumably, as the systems improve, and 12 

these systematic biases are reduced, the ensemble of analyses would converge to a less biased 13 

depiction of reality before any one analysis might. It is also interesting to note that the large 14 

monthly variations of standard deviation or correlation in some of the members are minimized in 15 

the ensemble mean. Also, trends in the statistical comparison of individual analyses to the 16 

observations (e.g. apparent in the JMA OLR) do not appear to be reflected in the MAC ensemble 17 

statistics. 18 

Long retrospective-analyses were developed to address the issue of the changing 19 

modeling and data assimilation systems in operational analyses, so that climate studies could be 20 

undertaken (Bengtsson and Shukla 1988; Trenberth and Olson, 1988). In this short time series, 21 

we see that what would be major changes to any individual system is minimized in the ensemble 22 

mean so that that a long consistent climate record might be formed through an ensemble of 23 

analyses (which could also include reanalyses). However, there were no major changes to the 24 
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operational observing system during this period of investigation. Reanalyses are inherently 1 

resource intensive projects, so that only a small number have been completed (Kalnay et al. 2 

1996; Uppala et al. 2005; Onogi et al, 2007). New reanalyses are being prepared and should 3 

continue well into the future. The notion of a multi-model ensemble of operational analyses 4 

would allow the large number of meteorological agencies worldwide to contribute their data to a 5 

climate record, regardless of variations in the system being used. Given that large numbers of 6 

models are already being contributed to support IPCC projections, systems to handle these data 7 

already exist. To accomplish such a repository would also require investment of time and 8 

resources from already over burdened numerical whether prediction centers. However, the 9 

results presented here suggest that the investment would be useful to both the research 10 

community, and the contributing centers in their own system development efforts. 11 
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5. Appendix 20 

In Section 2, seven steps of the process to reformat the data are outlined. The following sections 21 

provide further details on the procedures and methods. 22 
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a.  6-hourly dataset (Step 1) 1 

For each NWPC dataset, a Grib table was used to identify and locate the subset of high-2 

priority variables listed in the Table A1.  The minimum forecast time available for each variable 3 

of the center was then pulled from the raw model data using “wgrib”.  The minimum forecast 4 

time available typically was the analysis (0-hour forecast) for the instantaneous variables, and 5 

the 0-6 hourly forecast for the average/accumulation (ave/acc) variables.  Some major exceptions 6 

include the CPTEC data, the MSC data, and some variables from the ECPC data.  The CPTEC 7 

data at 00Z is a 12-hourly forecast, at 06Z an 18-hr forecast, at 12Z a 24-hr forecast, and at 18Z a 8 

36-hr forecast.  Similarly, the average and accumulated (ave/acc) variables from 00Z to 06Z are 9 

a 12-18 hourly forecast, and so on.  The MSC instantaneous surface variable data at 12Z is an 10 

analysis/0-hr forecast, at 18Z a 6-hr forecast, at 00Z a 12-hr forecast, and at 06Z an 18-hr 11 

forecast.  The upper air data, however, was not available at 06Z and 18Z; the 12Z data is an 12 

analysis/0-hr forecast and the 00Z data is a 12-hr forecast.  The MSC ave/acc variables from 12Z 13 

to 18Z are a 0-6 hourly forecast, and so on.  Several ECPC RII and SFM instantaneous surface 14 

variables are a 6-hr forecast rather than an analysis/0-hr forecast.  Further details, including 15 

descriptions of the forecast times and missing variables are included in Tables A1 and A2. 16 

b.  Interpolation (Step 2) 17 

In order to compare and produce an ensemble, a common grid must be defined.  Since 18 

most operational analyses are near or going to ~100km spatial scales, a grid on the order of 1 19 

degrees latitude and longitude was desirable.  Also, many data products (GPCP and the existing 20 

climate reanalyses data) use a regular latitude-longitude coarse grid (2.5 degrees).  Thus, a 21 

regular latitude-longitude grid that is near the spatial scale of the observational analyses, but also 22 

can be related easily to the reanalyses coarse grid, was chosen. The resolution is 1.25º longitude 23 

by 1.25º latitude (288×144 gridpoints), with the 1,1 center point located at 179.375W, 89.375S. 24 
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The native grid from each of the NWPCs supplied to CEOP was interpolated to the 1 

common grid using a freely available routine (http://opengrads.org/ re() funnction).  In the cases 2 

where the native grid is finer than 1.25ºx1.25º, box averaging was used.  In the cases where the 3 

native grid is coarser than 1.25ºx1.25º, bilinear interpolation was be used.  No other filtering or 4 

screening of the gridded data was applied (except for some below-ground heights – details in 5 

Sections 6c-f).  At the end of this step, the data from each NWPC was on the common grid at a 6 

6-hourly time interval, with common variable names and units.  A list of the available variables 7 

for each center can be found in Table A1. 8 

c.  Ensemble Average (Step 3) 9 

The ensemble average is the straight average of all of the available variables from each 10 

NWPC at each 6-hourly time interval.  As all centers did not provide all variables, the ensemble 11 

averaging was done with those centers that did provide the given variable.  If any data was 12 

missing from one or more of the NWPCs at a given time, the ensemble average was the average 13 

of the remaining data available.  For the upper-air data at 850hPa and 700hPa, a masking to the 14 

MAC ensemble was applied for areas where the surface pressure at the given time was less than 15 

the pressure of the level (less than 850hPa or than 700hPa).  This masking was also performed 16 

for the BMRC 6-hourly data, but not for the other individual NWPCs.  The flowchart decisions 17 

used for each variable during the creation of the MAC ensemble at each of the 3292 6-hourly 18 

times is shown in Figure A1. 19 

The individual center’s interpolated variable is also provided with the MAC, so that it 20 

will be apparent when data is included in the ensemble average or not.  Also, a separate dataset is 21 

provided that enumerates the number of ensemble members for each variable for each time.  22 

Similarly, the standard deviation at each 6-hourly timestep was computed from the available data 23 

that made up the ensemble average.  The ensemble mean and standard deviation are provided as 24 
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separate datasets on the same grid and same format as the individual NWPCs described at the 1 

end of Section 3b (Step 2). 2 

 3 

d.  Daily- and Monthly-Averages (Steps 4, 5, and 6) 4 

The daily average of the ensemble mean was the simple average of the 00Z, 06Z, 12Z, 5 

and 18Z data on the given date.  For the individual NWPCs, the daily average was the same, 6 

except that if an individual variable was missing or unavailable for at least one time during the 7 

date, that variable was considered to be undefined for that center on that day.  The one exception 8 

to this is the MSC upper-air data, which was only available at 00Z and 12Z, and the daily 9 

average is just the average of these two times.  Also, for each dataset, if at least one of the four 10 

times of the day had a point masked out because the surface pressure was less than the pressure 11 

of the upper-air level, then that point was also masked out for the entire day.  The flowchart for 12 

the daily averages is shown in Figure A2.  The daily standard deviation was then calculated 13 

between the centers that had valid daily averages for each variable.  Note that the daily ensemble 14 

mean may include more data/centers than the daily ensemble standard deviation.  An example of 15 

this is to suppose the 500 hPa heights was missing for 12Z only for one center.  The 6-hourly 16 

ensemble means will include the 00Z, 06Z, and 18Z times for this center, and thus the daily 17 

ensemble mean will proportionally include this data.  However, the daily mean for this 18 

center/variable will be considered undefined, and will not be included in the daily ensemble 19 

mean. 20 

 21 

The monthly average of the ensemble mean was the simple average of all times in the 22 

month.  For the individual NWPCs, the monthly average was calculated differently.  First, all the 23 

00Z times during the month were averaged, then the 06Z times, the 12Z times, and then the 18Z 24 
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times.  Next, these four times were summed and divided by four (4).  This method was done to 1 

minimize the effect of an individual missing time on the monthly average.  For example, if a 06Z 2 

time was missing for a variable such as downward surface radiation on a single date, this missing 3 

time would have a noticeable effect on the monthly average.  If the similar times were averaged 4 

first, this problem is reduced, but does give a little extra weight to the other dates where the 5 

variable was available.  No more than 6 times during the month were allowed to be undefined 6 

(out of a typical 120 or 124 6-hourly periods).  If more than 6 times were undefined, the variable 7 

for that month was undefined.  Similarly, if a given point had more than 6 times masked because 8 

the surface pressure was less than the pressure of the upper-air level, the point was also masked.  9 

The exceptions to this were for the UKMO data (numerous missing times), for the CPTEC data 10 

(only for May 2003, due to missing data), and for the MSC data (only 00Z and 12Z data 11 

available).  The flowchart for the monthly averages is shown in Figure A3.  The monthly-12 

average standard deviation was then calculated between the individual centers’ monthly 13 

averages.  Again, because of the different methods of the monthly-average calculations, the 14 

monthly-average standard deviation will not be exactly centered about the ensemble mean 15 

monthly-average. 16 

e.  Write the gridded data out for the MAC (Step 7) 17 

Data were written to binary output, and then converted to the NetCDF and Grib1 formats 18 

for release to the contributors and community.  The resulting binary (or NetCDF) output size is 19 

roughly 284Gb (about 134Gb in Grib1).  Each file contains each variable listed in Table A1 20 

(with the common naming convention).  Common utilities, ncdump and wgrib, can be used to 21 

identify the vital information needed to access the data.  A grib table common to all processed 22 

centers and the MAC is also provided.  The data will be sent to the NASA Goddard Data 23 

Information Services Center (DISC) and the Max-Planck Institute Model and Data Center. 24 
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7.  List of Tables 1 

Table 1 Statistics from the 2 year area average time series of daily precipitation compared to 2 

gauge observations. a) the mean difference from observations (mm day-1), b) the standard 3 

deviation of the difference from observations (mm day-1) and c) temporal correlation to 4 

the observed time series. 5 

Table 2 Daily statistics for the MRB precipitation of each analyses and the MAC ensemble 6 

compared to gauge observations. For each day, the correlations are on the upper row and 7 

the standard deviations are on the lower row. 8 

Table 3 Global average of energy budget components for each of the analyses, the ensemble 9 

mean (MAC) and the values reported by Trenberth et al. (2008) (TFK). MAC indicates 10 

the global average of the gridded ensemble data, not the average of the members’ global 11 

averages. The standard deviation (Sdev) is the standard deviation of the global averages 12 

of the members’ values in the table. Units are W m-2, except for precipitation (mm day-1). 13 

NETSfc indicates the net downward heat flux at the surface. 14 
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8.  Tables 1 

Table 1 Statistics from the 2 year area average time series of daily precipitation compared to 2 

gauge observations. a) the mean difference from observations (mm day-1), b) the standard 3 

deviation of the difference from observations (mm day-1) and c) temporal correlation to the 4 

observed time series. 5 

a) Mean Bias MRB Red Ark Missouri Upper Miss Ohio Lower Miss
BMRC -0.29 -0.77 -0.09 -0.26 0.14 -0.85
CPTEC 0.03 -0.01 0.19 0.01 0.22 -0.80
ECPCRII 0.66 0.63 0.61 0.50 0.77 0.92
ECPCSFM -1.02 -1.31 -0.81 -0.98 -0.77 -1.66
JMA 0.57 0.83 0.34 0.39 0.64 1.16
MSC 0.11 0.12 -0.02 0.22 0.21 0.26
NCEP 0.70 0.48 0.50 0.58 1.30 1.07
UKMO 0.46 0.38 0.45 0.37 0.50 0.72
MAC 0.15 0.04 0.14 0.10 0.38 0.10

b) Std Dev MRB Red Ark Missouri Upper Miss Ohio Lower Miss
BMRC 1.16 2.04 1.03 2.45 2.55 3.57
CPTEC 0.91 1.92 1.05 1.78 2.47 3.25
ECPCRII 1.35 2.43 1.46 2.21 3.03 4.07
ECPCSFM 1.14 2.19 1.06 2.23 2.23 3.53
JMA 0.98 1.77 0.94 1.47 2.11 3.82
MSC 0.57 1.54 0.73 1.40 1.80 2.68
NCEP 0.76 1.33 0.80 1.38 1.99 2.80
UKMO 0.65 1.37 0.83 1.34 1.59 2.44
MAC 0.52 1.11 0.54 1.14 1.47 2.32

c) Corr MRB Red Ark Missouri Upper Miss Ohio Lower Miss
BMRC 0.84 0.81 0.80 0.72 0.88 0.82
CPTEC 0.90 0.84 0.82 0.85 0.87 0.85
ECPCRII 0.86 0.85 0.87 0.85 0.85 0.78
ECPCSFM 0.85 0.79 0.78 0.78 0.90 0.84
JMA 0.93 0.90 0.91 0.92 0.93 0.84
MSC 0.97 0.91 0.92 0.93 0.94 0.91
NCEP 0.95 0.94 0.93 0.93 0.95 0.90
UKMO 0.97 0.92 0.92 0.91 0.94 0.94
MAC 0.97 0.95 0.95 0.95 0.96 0.92  6 
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Table 2 Daily statistics for the MRB precipitation of each analyses and the MAC ensemble 1 

compared to gauge observations. For each day, the correlations are on the upper row and the 2 

standard deviations are on the lower row. 3 

MAC BMRC CPTEC ECPCRII ECPCSFM JMA MSC NCEP UKMO

0.78 0.22 0.56 0.52 0.45 0.79 0.74 0.50 0.75
3.75 5.68 4.45 5.65 4.91 4.39 4.11 5.05 4.29
0.91 0.84 0.82 0.90 0.88 0.84 0.90 0.93 0.92
3.22 4.34 5.48 3.84 3.82 3.46 3.97 3.09 3.39

10JUL2003

23DEC2004
 4 

 5 

 6 
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Table 3 Global average of energy budget components for each of the analyses, the ensemble 1 

mean (MAC) and the values reported by Trenberth et al. (2008) (TFK). MAC indicates 2 

the global average of the gridded ensemble data, not the average of the members’ global 3 

averages. The standard deviation (Sdev) is the standard deviation of the global averages 4 

of the members’ values in the table. Units are W m-2, except for precipitation (mm day-1). 5 

NETSfc indicates the net downward heat flux at the surface. 6 

Center LH SH RLd sfc RLu sfc RSd sfc RSu sfc RLu toa RSd toa RSu toa NETSfc Precip
BMRC 92 18 350 400 167 25 -19.3 3.32
CPTEC 99 22 347 401 206 24 244 100 7.4 3.40
ECPC-RII 96 7 337 400 202 24 247 341.4 92 11.9 3.21
ECPC-SFM 84 17 333 400 207 27 249 341.4 91 13.0 2.47
JMA 90 17 320 398 204 25 257 341.4 88 -6.2 3.15
MSC 91 20 334 397 201 28 249 342.0 94 -0.6 2.61
NCEP 95 9 332 398 208 29 248 87 8.5 3.26
UKMO 95 16 345 399 180 22 235 341.5 105 -7.2 3.58
MAC 92 16 337 399 197 26 247 341.5 93 1.1 3.12
Sdev 4.6 5.3 9.8 1.3 15.2 2.4 6.6 0.2 6.5 11.3 0.38
TFK 80 17 333 396 184 23 238.5 341.3 101.9 1.2 2.73  7 

 8 
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 1 

9. List of Figures 2 

Figure 1 Monthly precipitation differences for each of the ensemble members, the ensemble 3 

mean, and CMAP from GPCP merged precipitation data. Units are mm day-1. 4 

Figure 2 Taylor diagrams (Taylor 2001) for global, global land, global ocean and tropics 5 

precipitation. GPCP merged precipitation is the reference data set. The diagrams compare 6 

spatial correlation (to GPCP) of the analysis to standard deviation normalized by the 7 

reference data set. Linear distance to the 1,1 point is a measure of skill in reproducing the 8 

reference data set. CMAP (grey dot) is also provided as a measure of uncertainty in the 9 

observations. 10 

Figure 3 Standard deviation of the monthly global differences from GPCP (a) and correlation to 11 

GPCP (b) for the MAC ensemble mean, each ensemble member and CMAP merged 12 

observations.  13 

Figure 4 Monthly OLR differences each of the ensemble members and the ensemble mean from 14 

Surface Radiation Budget (SRB) OLR (BMRC did not provide OLR). The mean and 15 

standard deviation of the differences shown in each map are summarized above the maps. 16 

Figure 5 Standard deviation of the monthly global differences from SRB OLR (a) and correlation 17 

to SRB OLR (b) for the MAC ensemble mean, each ensemble member. 18 

Figure 6 Comparison of the statistics of the MAC ensemble (black line) compared to a selective 19 

ensemble (grey dashed line) and the range of values contributing to the full ensemble and 20 

the selective ensemble. Standard deviation from GPCP (a), Correlation to GPCP (b), 21 
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Standard deviation from SRB OLR (c) and Correlation to SRB OLR (d). CMAP 1 

precipitation is included on the precipitation panels for reference. Note that UKMO 2 

monthly OLR is missing from Dec 2002 and Oct-Dec 2004, leaving only a 3 member 3 

selective ensemble in those months.  4 

Figure 7 Five sub-basins of the Mississippi River basin – Red-Arkansas (RA), Missouri (MS), 5 

Upper Mississippi (UM), Ohio (OH) and the Lower Mississippi (LM). The outlines also 6 

show the MAC 1.25 degree grid. The collective region is referred to as the Mississippi 7 

River Basin (MRB). 8 

Figure 8 Scatter diagrams comparing area averaged MRB daily observed precipitation with the 9 

MAC ensemble and all of the contributing member data. The solid line indicates the 10 

linear fit of the data points and the dashed line indicates 1:1. Units mm day-1. 11 

Figure 9 Time series of monthly means of the daily (a) standard deviation of MRB area 12 

differences (mm day-1) and (b) spatial correlation of the MRB area precipitation from 13 

each model system to the gauge observations. 14 

Figure 10 Daily precipitation for 10 July 2003 gauge observations (a), MAC Ensemble (b), MAC 15 

– gauge differences (c), UKMO minus MAC differences (d), the UKMO daly mean (e), 16 

UKMO minus gauge observations (f), and the standard deviation of the ensemble mean 17 

(g),. Units are mm day-1. 18 

Figure 11 As in Figure 10, except for 23 December 2004. 19 
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10.  Figures 1 

 2 

Figure 1 Monthly precipitation differences for each of the ensemble members, the ensemble 3 

mean, and CMAP from GPCP merged precipitation data. 4 
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 1 

 2 

 3 

Figure 2 Taylor diagrams (Taylor 2001) for global, global land, global ocean and tropics 4 

precipitation. GPCP merged precipitation is the reference data set. The diagrams compare spatial 5 

correlation (to GPCP) of the analysis to standard deviation normalized by the reference data set. 6 

Linear distance to the 1,1 point is a measure of skill in reproducing the reference data set. CMAP 7 

(grey dot) is also provided as a measure of uncertainty in the observations. 8 
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 2 

 3 
Figure 3 Standard deviation of the monthly global differences from GPCP (a) and correlation to 4 
GPCP (b) for the MAC ensemble mean, each ensemble member and CMAP merged 5 
observations. 6 

Precipitation Std. Dev. from GPCP    a)

Precipitation Correlation to GPCP    b)
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 1 

Figure 4 Monthly OLR differences each of the ensemble members and the ensemble mean from 2 

Surface Radiation Budget (SRB) OLR (BMRC did not provide OLR). The mean and standard 3 

deviation of the differences shown in each map are summarized above the maps. 4 
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 2 

Figure 5 Standard deviation of the monthly global differences from SRB OLR (a) and correlation 3 

to SRB OLR (b) for the MAC ensemble mean, each ensemble member. 4 

OLR Standard Deviation from SRB         a)

OLR Correlation to SRB                b)
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 1 

 2 

Figure 6 Comparison of the statistics of the MAC ensemble (black line) compared to a selective 3 

ensemble (grey dashed line) and the range of values contributing to the full ensemble and the 4 

selective ensemble. Standard deviation from GPCP (a), Correlation to GPCP (b), Standard 5 

deviation from SRB OLR (c) and Correlation to SRB OLR (d). CMAP precipitation is included 6 

on the precipitation panels for reference. Note that UKMO monthly OLR is missing from Dec 7 

2002 and Oct-Dec 2004, leaving only a 3 member selective ensemble in those months.  8 

b) a)

c) d) 
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 2 

Figure 7 Five sub-basins of the Mississippi River basin – Red-Arkansas (RA), Missouri (MS), 3 

Upper Mississippi (UM), Ohio (OH) and the Lower Mississippi (LM). The outlines also show 4 

the MAC 1.25 degree grid. The collective region is referred to as the Mississippi River Basin 5 
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 1 

2 

3 

 4 

Figure 8 Scatter diagrams comparing area averaged MRB daily observed precipitation with the 5 

MAC ensemble and all of the contributing member data. The solid line indicates the linear fit of 6 

the data points and the dashed line indicates 1:1. Units mm day-1. 7 
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1

1.5

2

2.5

3

3.5

4

4.5

5

Jan03 Apr03 Jul03 Oct03 Jan04 Apr04 Jul04 Oct04

MAC
BMRC
CPTEC
ECPCRII
ECPCSFM
JMA
MSC
NCEP
UKMO

2 

Monthly Average of Daily Spatial Correlation
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 3 

Figure 9 Time series of monthly means of the daily (a) standard deviation of MRB area 4 

differences (mm day-1) and (b) spatial correlation of the MRB area precipitation from each 5 

model system to the gauge observations.  6 

a) 

b) 
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 4 
Figure 10 Daily precipitation for 10 July 2003 gauge observations (a), MAC Ensemble (b), MAC 5 
– gauge differences (c), UKMO minus MAC differences (d), the UKMO daly mean (e), UKMO 6 

 a)

g)

e)

d)

c)

b)

f)
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minus gauge observations (f), and the standard deviation of the ensemble mean (g),. Units are 1 
mm day-1. 2 
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Figure 11 5 
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Figure A1 2 

 3 

Figure A2 4 
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Figure A3 2 
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Table A1 List of variables, descriptions/names, and availability by center of data used in the 1 

MAC. 2 

 
Description Units BMRC CPTEC ECPCRII ECPCSFM JMA MSC NCEP UKMO
Surface Pressure Pa SURFPsfc PRESsfc PRESsfc PRESsfc PRESsfc SURFPsfc PRESsfc SURFPsfc
Mean Sea Level Pressure Pa MSLPsfc PRMSLmsl PRESmsl PRMSLmsl
Surface Air Temperature K TMP2m TMP2m TMP2m TMP2m TMP2m TTSUsfc TMP2m LOWT2m
Surface Skin Temperature K SURFTsfc SURFTsfc TMPsfc TMPsfc SURFTsfc TMPsfc SURFTsfc
Surface Air Moisture kg kg-1 SPFH2m RH2m SPFH2m SPFH2m SPFHhbl HUSUsfc SPFH2m LOWSH2m
Surface Eastward Wind m s-1 UGRD10m UGRD10m UGRD10m UGRD10m UGRD10m UUSUsfc UGRD10m TENUS10m
Surface Northward Wind m s-1 VGRD10m VGRD10m VGRD10m VGRD10m VGRD10m VVSUsfc VGRD10m TENVS10m
Precipitation kg m-2 s-1 APCPsfc APCPsfc PRATEsfc PRATEsfc PRATEsfc PRsfc PRATEsfc APCPsfc
Convective Precipitation kg m-2 s-1 CPRATsfc CPRATsfc ACPCPsfc
Surface Runoff kg m-2 WATRsfc WATRsfc WATRsfc N0sfc WATRsfc WATRsfc
Liquid equivalent snow depth kg m-2 SNODsfc WEASDsfc WEASDsfc I5sfc WEASDsfc
Latent Heat Flux W m-2 LHTFLsfc LHTFLsfc LHTFLsfc LHTFLsfc LHTFLsfc AVsfc LHTFLsfc LHTFLsfc
Sensible Heat Flux W m-2 SHTFLsfc SHTFLsfc SHTFLsfc SHTFLsfc SHTFLsfc AHsfc SHTFLsfc SHTFLsfc
Surface Incoming Shortwave W m-2 DSWRFsfc DSWRFsfc DSWRFsfc DSWRFsfc DSWRFsfc N4sfc DSWRFsfc TDSWSsfc
Surface Incoming Longwave W m-2 DLWRFsfc DLWRFsfc DLWRFsfc DLWRFsfc DLWRFsfc ADsfc DLWRFsfc TDLWSsfc
Surface Reflected Shortwave W m-2 USWRFsfc USWRFsfc USWRFsfc USWRFsfc USWRFsfc N4sfc-ASsfc USWRFsfc TUSWSsfc
Surface Outgoing Longwave W m-2 ULWRFsfc ULWRFsfc ULWRFsfc ULWRFsfc ULWRFsfc ADsfc-AIsfc ULWRFsfc TULWSsfc
TOA Longwave Outgoing W m-2 ULWRFtoa ULWRFtoa ULWRFtoa ULWRFtoa ARsfc ULWRFtoa TULWTtoa
TOA Shortwave Incoming W m-2 DSWRFtoa DSWRFtoa DSWRFtoa ABsfc TDSWTtoa
TOA Shortwave Outgoing W m-2 USWRFtoa USWRFtoa USWRFtoa USWRFtoa AUsfc USWRFtoa TUSWTtoa
Total Cloud Cover (0-1) TCDCclm TCDCclm TCDCclm TCDCsfc TCDCsfc TCDCclm TCDCsfc
Total Column Water Vapor kg m-2 PWATclm PWATclm PWATclm PWATclm IHsfc PWATclm
Total Column Condensed Water kg m-2 CWATprs IEsfc CWATclm
Q850 kg kg-1 SPFHprs SPFHprs SPFHprs SPFHprs SPFHprs RHprs RHprs
T850 K TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs
U850 m s-1 UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs
V850 m s-1 VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs
H850 m HGTprs HGTprs HGTprs HGTprs GPprs HGTprs HGTprs GPprs
Q700 kg kg-1 SPFHprs SPFHprs SPFHprs SPFHprs SPFHprs RHprs RHprs
T700 K TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs
U700 m s-1 UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs
V700 m s-1 VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs
H700 m HGTprs HGTprs HGTprs HGTprs GPprs HGTprs HGTprs GPprs
Q500 kg kg-1 SPFHprs SPFHprs SPFHprs SPFHprs SPFHprs RHprs RHprs
T500 K TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs
U500 m s-1 UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs
V500 m s-1 VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs
H500 m HGTprs HGTprs HGTprs HGTprs GPprs HGTprs HGTprs GPprs
Q300 kg kg-1 SPFHprs SPFHprs SPFHprs SPFHprs SPFHprs RHprs RHprs
T300 K TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs
U300 m s-1 UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs
V300 m s-1 VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs
H300 m HGTprs HGTprs HGTprs HGTprs GPprs HGTprs HGTprs GPprs
Q200 kg kg-1 SPFHprs SPFHprs SPFHprs SPFHprs RHprs RHprs
T200 K TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs TMPprs
U200 m s-1 UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs UGRDprs
V200 m s-1 VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs VGRDprs
H200 m HGTprs HGTprs HGTprs HGTprs GPprs HGTprs GPprs

Centers
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Table A2 Location in the forecast cycle of each NWPC’s variables included in the MAC. 1 

Description Units BMRC CPTEC ECPCRII ECPCSFM JMA MSC NCEP UKMO
Surface Pressure Pa analysis 12hr fcst+ 6hr fcst 6hr fcst analysis anl/6hr fcst+ analysis analysis
Mean Sea Level Pressure Pa analysis analysis analysis analysis
Surface Air Temperature K analysis 12hr fcst+ 6hr fcst 6hr fcst analysis anl/6hr fcst+ 6hr fcst analysis
Surface Skin Temperature K analysis 12hr fcst+ 6hr fcst 6hr fcst anl/6hr fcst+ 6hr fcst analysis
Surface Air Moisture kg kg-1 analysis 12hr fcst+ 6hr fcst 6hr fcst analysis anl/6hr fcst+ 6hr fcst analysis
Surface Eastward Wind m s-1 analysis 12hr fcst+ 6hr fcst 6hr fcst analysis anl/6hr fcst+ 6hr fcst analysis
Surface Northward Wind m s-1 analysis 12hr fcst+ 6hr fcst 6hr fcst analysis anl/6hr fcst+ 6hr fcst analysis
Precipitation kg m-2 s-1 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 6hr fcst 3hr fcst+ 0-6hr ave 0-6hr acc
Convective Precipitation kg m-2 s-1 0-6hr ave 0-6hr ave 0-6hr acc
Surface Runoff kg m-2 12hr fcst+ 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr acc 0-6hr acc
Liquid equivalent snow depth kg m-2 analysis 6hr fcst 6hr fcst anl/6hr fcst+ 6hr fcst
Latent Heat Flux W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Sensible Heat Flux W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Surface Incoming Shortwave W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Surface Incoming Longwave W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Surface Reflected Shortwave W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Surface Outgoing Longwave W m-2 0-6hr ave 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
TOA Longwave Outgoing W m-2 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
TOA Shortwave Incoming W m-2 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave
TOA Shortwave Outgoing W m-2 12hr fcst+ 0-6hr ave 0-6hr ave 0-6hr ave 3hr fcst+ 0-6hr ave 0-6hr ave
Total Cloud Cover (0-1) 12hr fcst+ 0-1hr ave 0-1hr ave analysis anl/6hr fcst+ 0-6hr ave analysis
Total Column Water Vapor kg m-2 analysis 12hr fcst+ 6hr fcst 6hr fcst anl/6hr fcst+ analysis
Total Column Condensed Water kg m-2 analysis anl/6hr fcst+ analysis
Q850 kg kg-1 analysis 12hr fcst+ analysis analysis anl/12hr fcst analysis analysis
T850 K analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
U850 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
V850 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
H850 m analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
Q700 kg kg-1 analysis 12hr fcst+ analysis analysis anl/12hr fcst analysis analysis
T700 K analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
U700 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
V700 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
H700 m analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
Q500 kg kg-1 analysis 12hr fcst+ analysis analysis anl/12hr fcst analysis analysis
T500 K analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
U500 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
V500 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
H500 m analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
Q300 kg kg-1 analysis 12hr fcst+ analysis analysis anl/12hr fcst analysis analysis
T300 K analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
U300 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
V300 m s-1 analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
H300 m analysis 12hr fcst+ analysis analysis analysis anl/12hr fcst analysis analysis
Q200 kg kg-1 analysis 12hr fcst+ analysis analysis analysis analysis
T200 K analysis 12hr fcst+ analysis analysis analysis analysis analysis
U200 m s-1 analysis 12hr fcst+ analysis analysis analysis analysis analysis
V200 m s-1 analysis 12hr fcst+ analysis analysis analysis analysis analysis
H200 m analysis 12hr fcst+ analysis analysis analysis analysis analysis  2 
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