Land evapotranspiration in reanalyses

Comparisons to observations-based datasets, land-surface models and IPCC simulations

Brigitte Mueller

ETH Zurich

With contributions from the LandFlux-EVAL team

1

1. Evapotranspiration in reanalyses

 Global analysis of land-atmosphere coupling (2m-air temperature from reanalyses)

Motivation

Evapotranspiration (ET) important because of:

- Hydrology and water resources
- Link to other variables of the hydrological cycle (soil moisture, precipitation...) and carbon cycle
- Land-atmosphere feedback and seasonal prediction
- Large uncertainties

The hydrological cycle

Trenberth et al. J. Climate, 2011

ET in reanalyses

	Land-surface scheme	Characteristics
ERA-Interim	TESSEL	
MERRA	GEOS-5 Catchment LSM	
MERRA-Land	See MERRA, with changes in interception and snow parameters	Off-line replay of MERRA Precipitation forcing corrected with GPCP (newer version with CPC-un)
CFSR-NCEP	NOAH	Observed precipitation (GLDAS)
NCEP (NCAR)	OSU LSM	
JRA-25	Simple Biosphere (SiB) model	

ET dataset categories

- Diagnostic datasets:
 Based on observations (satellite, Fluxnet etc.)
- Land-surface models: Models driven with observation-based forcing
- Reanalysis products: Models with assimilation of observations
- Climate models: IPCC CMIP3 and CMIP5 global climate model simulation

ET dataset categories

- Diagnostic datasets:
 Based on observations (satellite, Fluxnet etc.)
- Land-surface models: Models driven with observation-based forcing
- Reanalysis products:
 Models with assimilation of observations
- Climate models: IPCC CMIP3 and CMIP5 global climate model simulation

Reference datasets

ET evaluation: Research questions

How well do the reanalyses perform compared to other datasets?

- > Are there large differences between IPCC CMIP3 and CMIP5 models?
- What is the influence of forcing on ET?
- > Trends in ET?

Global land ET means

1989-1995

Only common land pixels considered.

IACETH

Median ET 1989-1995

Reference datasets

Reanalyses

IPCC CMIP3

IPCC CMIP5

Relative interquartile range of ET

Differences to reference datasets

Reanalyses - Reference

IPCC CMIP3 - Reference

IPCC CMIP5 - Reference

. . .

IACETH

11

Main findings 1

- Globally, range between reanalyses similar (+/-5.8 W/m²) to diagnostic datasets (+/- 5.9 W/m²)
- LSMs and IPCC simulations smaller range
- Arid regions: Reanalyses and IPCC models high range between datasets (within category)

Only common land pixels considered.

IACETH

Global land ET means

W/m2

③ GSWP Sensitivity runs

COLA with different precipitation forcings

2 WaterMIP

LSMs and global hydrological models, same forcing data

1 GSWP-LSMs

Several LSMs driven with same forcing data

IACETH

IACETH

16

IACETH

Global mean values – ET vs P

IACETH

1989-1995 averaged values in mm/d

www.iac.ethz.ch/groups/seneviratne

IACETH

Global land-ET variability according to MTE and independent models.

Jung et al. Nature, 2010

Global land-ET variability according to MTE and independent models.

Jung et al. Nature, 2010

Mean yearly precipitation: 4.6 mm/d 0.9 mm/d

Trend change 1998-2005 versus 1989-1997

IACETH

www.iac.ethz.ch/groups/seneviratne

Main findings 2

- Critical role of forcing data not clear
- Reanalyses relatively high ET and precipitation globally
- Decline of trend in Southern Hemisphere arid regions supported
- > Trend change in tropical regions uncertain

Part II: Land-atmosphere coupling

Our study:

- Relation of hot temperature extremes and preceding drought conditions
- > at the hottest month of each year
- > over 1979-2010 period

Hot extremes and drought conditions

Number of Hot Days = NHD

Days with temperature above 90th-percentile of 1979-2010 reference period Maximum 2-m air temperature from: ERA-Interim, MERRA, CFSR-NCEP

Standardized precipitation index = SPI

'Observed' precipitation deficits accumulated in previous 3 months from: CRU, GPCP, CPC

Coupling: Research questions

How useful is temperature from reanalyses for hot extreme studies?

In which regions is there a strong relation between hot day occurrence and moisture deficits?

NHD reanalyses versus observations

Correlation of monthly NHD 1979-2010

Observations = E-OBS dataset from the EU-FP6 project ENSEMBLES

Land-atmosphere coupling

month

IACETH

Correlation number of hot days and preceding drought index (SPI)

Mueller and Seneviratne (in review)

Difference to GLACE-study

- More hot spots
- Hot spots in Southern hemisphere
- 'Truly global'
- Several years
- Based on observational data

ERA-Interim, CFSR and MERRA

CFSR-NCEP NHD with CRU SPI

MERRA NHD with CRU SPI

-0.4 -0.3 -0.2 -0.1

0.0 0.1

-10

-0.9

-0.8

-0.7 -0.6 -0.5

Number of hot days correlated to drought index SPI

Mueller and Seneviratne (in review)

IACETH

Hot day occurrence probability

Occurrence probability in % of years for above-average hot day numbers

Datasets: Number of hot days: ERA-Interim 3-month SPI: CRU

Mueller and Seneviratne (in review)

Summary

- 2 Reanalyses useful for land-atmosphere interaction studies
 - Only small differences between reanalyses in 2m-air temperature (for such studies)
 - Land-surface atmosphere coupling important in wide areas of the globe
- 1 > Uncertainties in ET in all analyzed datasets comparable
 - Large ET uncertainties in tropical regions (changes in hydrological cycle unknown)
 - ET trend decreased after 1998 in arid Southern Hemispheric regions

Thanks to the WCRP for the travel support

and the LandFlux-EVAL team S.I. Seneviratne, C. Jimenez, T. Corti, M.Hirschi, G. Balsamo, P. Ciais, P. Dirmeyer, J. Fisher, F. Ludwig, Z. Guo, M. Jung, F. Maignan, M. McCabe, R. Reichle, M. Reichstein, M. Rodell, J. Sheffield, A. Teuling, K. Wang, E. Wood, Y. Zhang for their contribution.

IPCC CMIP5 data were provided by Jan Sedlacek (IAC ETH)

brigitte.mueller@env.ethz.ch

Supplementary material

www.iac.ethz.ch/groups/seneviratne

•	NCEP	ECMWF	NASA	NASA
	CFSR	ERA-Interim	MERRA	MERRA-LAND
	Coupled Forecast System		Modern Era Retrospective-analysis	
	Reanalysis	ECMWF Reanalysis	for Research and Applications	see MERRA
Time covered	1979/1948 - present	1979-present (soon)	1979-present	see MERRA
	9h / ocean-coupled 30min,			
Forecast	land analysis 24h	12h	6h	see MERRA
Resolution	T382 (38km)	T255 (79 km)	30 km	see MERRA
		similar to Penman-Monteith,		
ET param	Penman-Monteith	feedback of skin temp on R, G	Penman-Monteith	see MERRA
LSM	NOAH	TESSEL	Catchment LSM	see MERRA
			LSM: Topographic statistics,	
	Fully coupled, GFS as		dynamical update of 3 SM-regimes	
	background assimilation		in each land tile and fluxes	Precip consistent with GPCP,
	model, and recently av.	Good precip, observ. of temp and	computed separately for the 3	Catchment model
Advantage	Observations	humidity	regimes	parameters improved
			No assimilation of land surface	
		Snow analysis, SM optimised for	obs., precip errors as for other	
		atmospheric fluxes rather than	reanalyses (regional biases.	less precipitation errors than
Problems		accuracy	intensity, diurnal cvc)	MERRA
			Excessive ET caused by overest.	Revised Cathment model
			surf. Radiation under cloudy	parameters ameliorate
Radiation	satellite, GSI	None	conditions	excessive canopy ET
	different, including other			
Surface Temp	reanalyses	T2m, rh2m for soil moisture state		
	Not assimilated, but SM/snow			
	from GLDAS driven with			Precip corrected to match
Precip	observed precip	None	None	GPCP
	ISM: Co2-based canony			
	conductance multi-layer	Use of land-surface photosynth	Improved and dynamic vegetation	
	snowpack ground water river-	based FT and natural carbon	model component Land data	
Development plans	routing scheme	dioxide schemes	assimilation included in next rean	

Catergory	Subgroup	Name	Reference	Information	Avail. yrs	Grid/Resolution
Diagnostic		UCB	Fisher et al. (2008)	Priestley-Taylor, ISLSCP-II (SRB, CRU, AVHRR)	1986-1995	0.5°
datasets		MAUNI	Wang and Liang (2008	Empirical, calibrated with Ameriflux, ISLSCP-II (SRB, CRU, AVHRR)	1986-1995	1°
		PRUNI	Sheffield et al. (2010)	Penman-Monteith ET,ISCCP,AVHRR	1984-2006	0.25°
		MPI	Jung et al. (2009)	Empirical, global upscaling of FLUXNET data, CRU etc.	1982-2008	0.5°
		GLEAM	Miralles et al.			
		CSIRO	Zhang et al. (2010)	Penman-Monteith-Leuning ET	1984-2009	
		AWB	Mueller et al. (2010)	Atmospheric water balance (GPCP, ERA-Interim)	1989-2008	2.5°
LSMs	GSWP	GS-COLA, GS-NOAH, GS- NSIPP, GS-VISA, GS-ISBA, GS- BUCK, GS-CLMTOP, GS- HYSSIB, GS-LAD, GS-MOSAIC, GS-MOSES2, GS-SIBUC, GS- SWAP	Dirmeyer et al. (2006)	13 GSWP LSM simulations, forced with ISLSCP-II and/or reanalysis data:	1986-1995	1°
	GSWP	Sensitivity runs from COLA model			1986-1995	
	GLDAS	GL-NOAH, GL-CLM, GL-MOSAIC	Rodell et al. (2004)	GLDAS LSM simulations	1979-2009	1°
	ORCH	EI-ORCH	Krinner et al. (2005)	ORCHIDEE LSM with ERA-Interim forcing	1989-2008	0.7°
		CRU-ORCH		ORCHIDEE LSM with CRU-NCEP forcing	1989-2008	0.7°
	WaterMIP	WM-GWAVA,WM-H08,WM- HTESSEL,WM-JULES,WM- LPJmL,WM-MacPDM,WM- MATSIR,WM-MPI,WM-VIC,WM- WaterG,WM-ORCHI				
	VIC	VIC	Sheffield and Wood (20	CLSM with combined model/observation dataset of meteorological forcing	1948-2008	
Reanalyses		ERA-INT	Dee and Uppala (2008))ERA-Interim Reanalysis	1989-2008	0.5°
		MERRA	Bosilovich (2008)	Reanalysis	1979-2009	0.5°x0.6°
		M-LAND		MERRA-Land Reanalysis	1979-2007	0.5°x0.6°
		NCEP	Kalnay et al. (1996)	Reanalysis	1948-2010	0.5°x0.6°
		CFSR				
		JRA-25	Onogi et al. (2007)	Reanalysis	1979-2007	2.5°
IACETH				www.	iac.ethz.ch/groເ	ups/seneviratne

CMIP3 and CMIP5 models considered

CMIP3:

CMIP5:

ECHAM5 INMSM IPSL HadGEM NCAR HacCM MRI GISS Miroc-med CCCMA GFDL BCC_CSM CanESM2 CNRM_CM5 CSIRO_Mk3 GFDL_CM3 GISS_E2H HadCM3 HadGEM2 Inmcm4 IPSL_CM5A_LR

MIROC_ESM MPI_ESM_LR MRI_CGCM3 NorESM1

All simulations: 20 century (historical)

Sensitivity experiments GSWP

	B	30	Standard forcing data: NCEP Precipitation hybrid. with GPCP, corrected for gauge undercatch & blended with GPCC Radiation from SRB
All variables	N	/11	All original NCEP meteorological data (no hybridization with observational data)
	N	/12	All original ERA-40 meteorological data (no hybridization with observational data)
Recipitation	P	91	ERA-40 precipitation (no hybridization with observational data)
	P	2	NCEP-DOE hybrid. with GPCC corrected for gauge undercatch
	· P	93	NCEP-DOE hybrid. with GPCC (no undercatch correction)
	P	94	NCEP-DOE precipitation (no hybrid. with observational data)
	Ρ	ΡE	ERA-40 precipitation hybrid. with GPCC, and blended with GPCP where gauge density is low
	R	R1	NCEP-DOE radiation
	R	R2	ERA-40 radiation
ц	F	3	ISCCP radiation

IACETH

Uncertainty - relative IQR of ET All LSMs WaterMIP

GSWP

COLA sensitivity runs (GSWP)

IACETH

Sensitivity experiments - patterns

www.iac.ethz.ch/groups/seneviratne

Cluster analysis

IPCC simulations in the cluster tree

ET in reanalyses

Land-surface model: Model land interactions with the atmosphere (partitioning of net radiation into latent and sensible heat)

IACETH

Schematics of the land surface

www.iac.ethz.ch/groups/seneviratne