

Centro Euro-Mediterraneo per i Cambiamenti Climatici

The CMCC Global Ocean Reanalysis (1991-2010)

Andrea Storto, Simona Masina, Srdjan Dobricic, Ida Russo

4th International Conference On Reanalyses Silver Spring, 7-11 May 2012

Overview of the CMCC global ocean reanalysis systems

Selected Results of recent and forthcoming developments

Plans and applications

Usual 3DVAR/FGAT formulation with BG term preconditioning (Dobricic and Pinardi, 2008, Ocean Mod.)

$$B = VV^{T} \qquad v = V^{-1} (X - X^{B}) \qquad d = Y - M(X^{B})$$
$$J = \frac{1}{2}v^{T}v + \frac{1}{2} (d - H(Vv))^{T}R^{-1} (d - H(Vv))$$

 $V = V^H V^V$

HORIZONTAL CORRELATIONS

Modeled by means of a firstorder recursive filter (with 4 forward and back iterations):

 $V^H = W_y G_y W_x G_x$

G are recursive filter operator; W are normalization coefficients in order to have correlations with unitary amplitude. Filter coefficients depend on resolution and correlation scale.

VERTICAL COVARIANCES

Modeled by means of seasonal vertical bivariate EOFS (at either full or coarse model resolution) derived from the eigendecomposition of a properly defined error dataset:

 $V^V = S\Lambda^{1/2}$

which contains info on vertical variances and auto- and crosscorrelations.

Assimilation of SLA

Within the 3DVAR iterations, the observation operator is given by the "dynamic height" approximation.

Analysis increments profiles are driven by the vertical structure of background-error covariances through the adjoint of the Eta operator.

9

Correction of freshwater fluxes

1989-2009 SSS BIAS (psu, MODEL-WOA2009)

UNCORRECTED PRECIPITATION Precipitation fluxes - 1 are corrected with a 20 climatological coefficient 0 0 deduced from the -20 comparison between ERA-Interim and REMSS/PMWC -40 microwave satellite data -60 (Storto et al. 2012, OSD) 320 20 0 -20 **Fresh Bias Reduction** -40 in the Tropics -60 (especially ITF) 80 200 240 260 280 8 220 300 320

Correction of radiative fluxes

Locally-varying horizontal correlation length-scales

Recent extension in the global $\frac{1}{4}$ degree configuration allows for nonuniform horizontal correlation length-scales (HCLSs), i.e. recursive filter has anisotropic coefficients function of 3D **HCLSs**

·1500 ·1400

1300

1200

1100

- 1000

900

800

700

600

500

400

300

200

100

1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

1.0

Locally-varying horizontal correlation length-scales

13

Observing network

	DATASET	PREPROCESSING
IN SITU PROFILES	UKMO HADLEY EN3 DATASET [quality-checked XBT (fall-rate corrected), CTD, Argo, Moorings]	Climatology check Background quality check Horizontal Thinning Vertical Thinning Ice rejection Vertical Consistency check
SLA	CLS/AVISO Delayed time along- track products	Background quality check Horizontal Thinning Ice, coastal and Equator rejection Applicability LNM
SST	NOAA ¼ daily archived analyses (AVHRR+AMSR-E)	Climatology check Background quality check Horizontal Thinning Ice and coastal rejection

Retained observations

Observational errors

Observational errors were tuned starting from Ingleby and Huddleston (2007) with by means of the Desroziers' method (a posteriori diagnostics from assim)

PRODUCTION (1/4 degree resolution)

• 2 Releases have been produced for MyOcean (CGLORSV1 and CGLORSV2) for the period 1991-2010 (1993-2009 officially released)

> <u>Bernard Barnier's presentation tomorrow</u>

• 1 Release that fixes some problems in CGLORSV2 (sea-ice and SLA assimilation) is under production

MAIN CONCERNS

- T/S Vertical covariances may produce significant model drifts
- Optimal Initialization/Spinup for the reanalysis still needs to be addressed

PLANS

16

- Use of ensemble-derived sets of vertical covariances;
- Vertical localization operator to avoid spurious vertical correlations;

The main concern: model drifts

ENSEMBLE ØERIVED EOFS FROM COUPLED MODEL (COLLABOR. JAMSTEC/RIGC)

Flow-dependent aspects: Vertical Localization of Corrs

- Detailed EOFS comparison and implement simple large-scale bias-correction schemes for model drift mitigations;

- A balance operator ("barotropic operator") that will allow to correct u,v further to T,S. It will be possible to test the assimilation of drifter trajectories;

- Variational correction of the Mean Dynamic Topography to improve SLA assimilation;

- Multilinear bias correction of space-borne observations and reformulation of background quality check to account for actual observation misfit distributions;

- Sea-ice assimilation brought into 3DVAR (now nudging);

Estimate the interannual-to-decadal upper ocean variability (Masina el al. 2011);

Provide ocean initial condition for seasonal (Alessandri et al, 2010) and decadal forecating activities (Bellucci et al, under review);

Give a contribution to the GSOP/GODAE Ocean
View initiative on global ocean analyses
intercomparison;

 Provide a set of oceanic variables for the validation and comparison with the CMCC Earth System Model (Vichi et al, 2011)

Estimate the interannual-to-decadal upper ocean variability (Masina el al. 2011);

Provide ocean initial condition for seasonal (Alessandri et al, 2010) and decadal forecating activities (Bellucci et al, under review);

Give a contribution to the GSOP/GODAE Ocean
View initiative on global ocean analyses
intercomparison;

 Provide a set of oceanic variables for the validation and comparison with the CMCC Earth System Model (Vichi et al, 2011)

Thank you!

OCEAN GENERAL CIRCULATION MODEL

- NEMO (3.2.1) 0.25 L50 + LIM2 Sea-Ice Model
- CORE bulk formulas with 3-hourly ERA-Interim turbulent fluxes and daily freshwater and radiative fluxes (solar diurnal cycle analytically imposed)
- Correction of radiative fluxes with GEWEX/SRB
- Correction of precipitation fluxes with REMSS/PMWC
- Nudging to NOAA sea-ice concentration data (15-day relaxation scale)

DATA ASSIMILATION

- 3DVAR/FGAT formulation with weekly correction of (T,S)
- "Direct initialization"
- Horizontal correlations via first-order recursive filter
- Vertical covariances via seasonal bivariate EOFs of T, S
- Assimilation of SLA through the adjoint of the "dynamic height" formula

INITIALIZATION

- Free run initialized from 1979 (ERA-Interim) from ocean at rest and WOA climatology
- Assimilation switched on in 1989

Decadal climate predictions with the CMCC coupled model

Courtesy by A. Bellucci Time series of the maximum Atlantic MOC (AMOC, Sv; 1 Sv=106 m3s-1) at 26oN from CMCC ocean analyses (used to initialize decadal predictions) using OI and 3DVAR data assimilation schemes.

Assimilating altimetry data determines a stronger AMOC. This results in large perturbations on the initial state of the MOC for different ensemble members.

Hindcasts initialized on 1995 with Ol (black) and 3DVAR (red).

