

Toward integrated seasonal predictions of carbon flux: lessons learned from NASA's subseasonal-to-seasonal predictions

Lesley Ott¹, E. Lee^{1,2}, F. Zeng^{1,3}, C. Rousseaux^{1,2}, G. Hurtt⁴, J. Randerson⁵, A. Chatterjee^{1,2}, Y. Chen⁵, L. Chini⁴, S. Davis⁵, L. Ma⁴, B. Poulter¹, L. Sun⁴, D. Woodard^{5,6}

¹NASA Goddard Space Flight Center ²USRA ³SSAI ⁴Department of Geography, University of Maryland ⁵University of California, Irvine ⁶Now at JGCRI

- Introduction to modeling at NASA
- Motivation for subseasonal to seasonal (S2S) forecasting
- Moving beyond meteorology can we predict how the carbon cycle will change on seasonal timescales?
- What would a seasonal carbon forecast look like? Examples of predictions:
 - Human emissions
 - Fires
 - Land-atmosphere flux
- Summary and conclusions

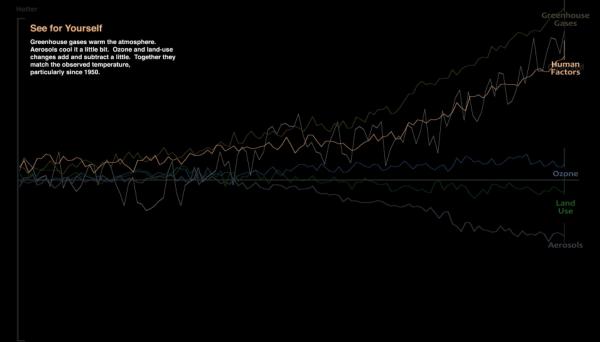
NASA

Earth System Modeling at NASA

Global Modeling and Assimilation Office (GMAO) ee for Yourse and subtract a little. smoke 2017 Jul 31

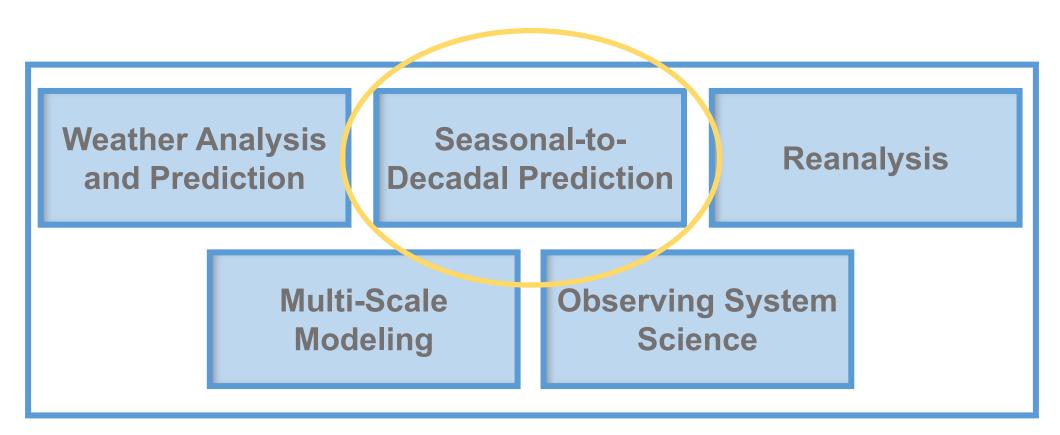
- Retrospective analysis of satellite era
- Seasonal-decadal prediction
- High spatial resolution
- Focus on data assimilation
- https://svs.gsfc.nasa.gov/12772

Goddard Institute for Space Studies (GISS)



- Paleoclimate simulation capability
- Century-scale climate projections
- Support IPCC modeling ensembles
- New effort on comparative planetology
- https://svs.gsfc.nasa.gov/30615

Themes of GMAO's Research and Products



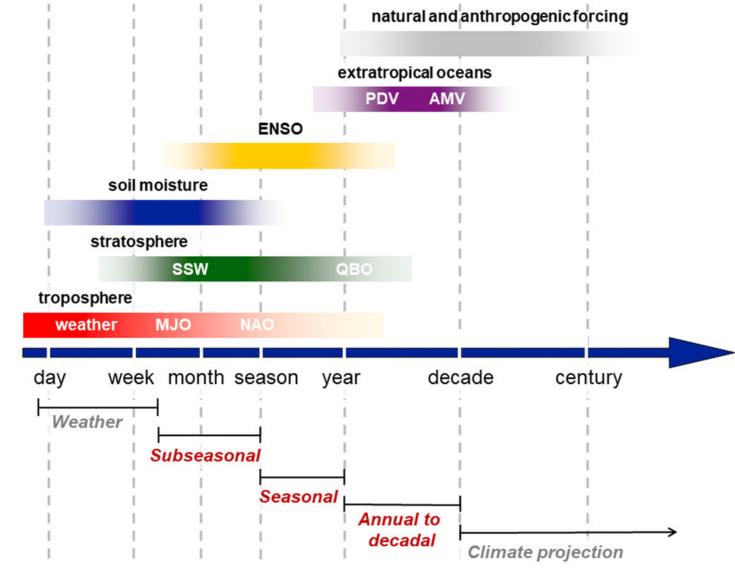
- Central theme is to use, support, and plan for NASA's Earth Observations
- Goddard Earth Observing System (GEOS) model and data assimilation system central to all components
- Modular system is highly flexible, can be configured to increase complexity depending on application
- Aerosol, carbon, and composition cut across, represented in each theme

Some sources of predictability

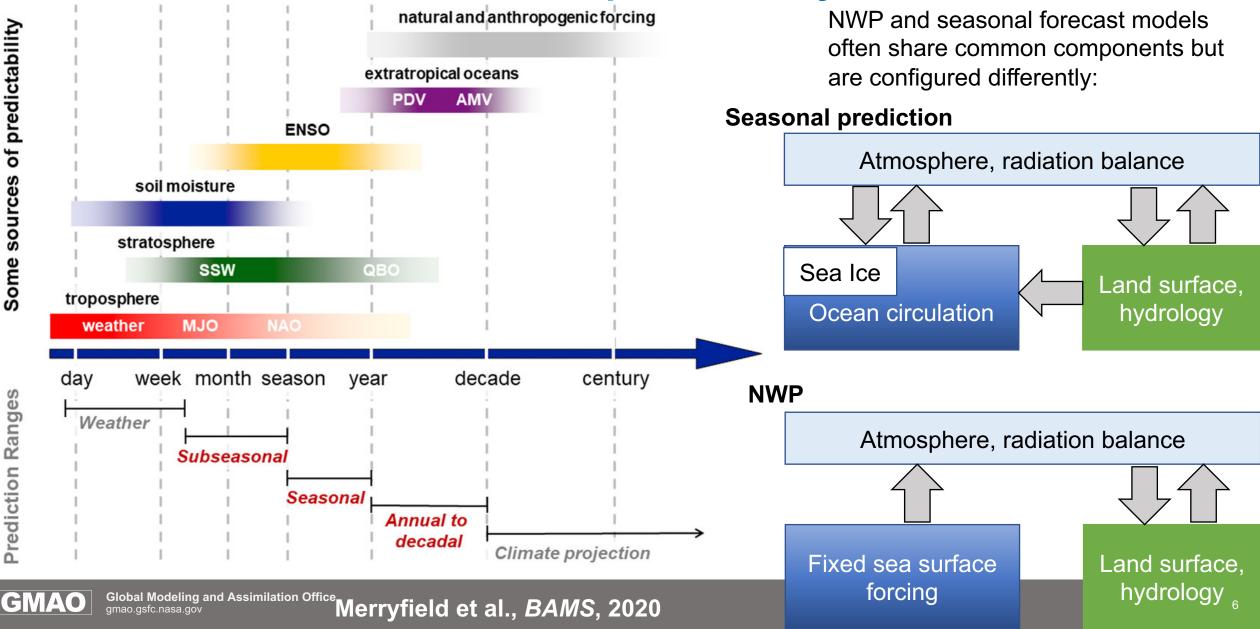
Ranges

Prediction

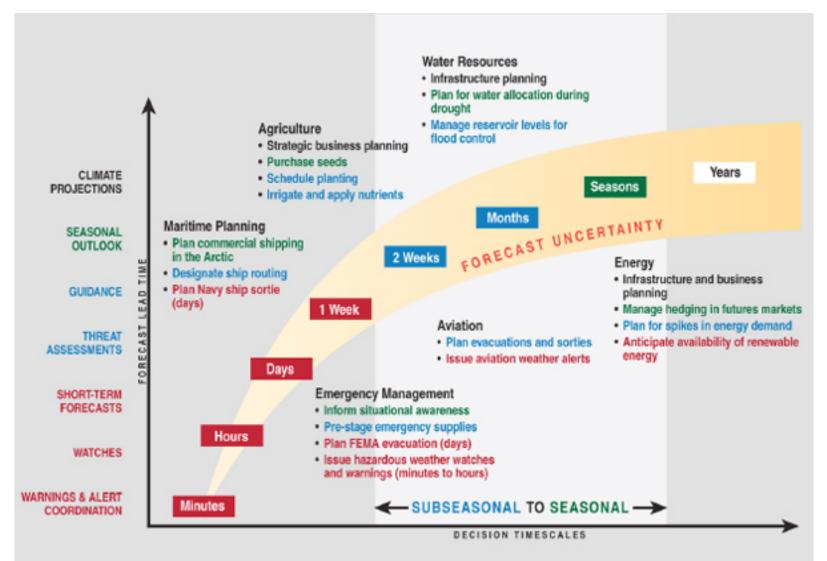
Sources of predictability



Sources of predictability



Applications supported by S2S meteorological predictions



EARTH SYSTEM PREDICTABILITY RESEARCH AND DEVELOPMENT STRATEGIC FRAMEWORK AND ROADMAP

A Report by the FAST TRACK ACTION COMMITTEE ON EARTH SYSTEM PREDICTABILITY RESEARCH AND DEVELOPMENT

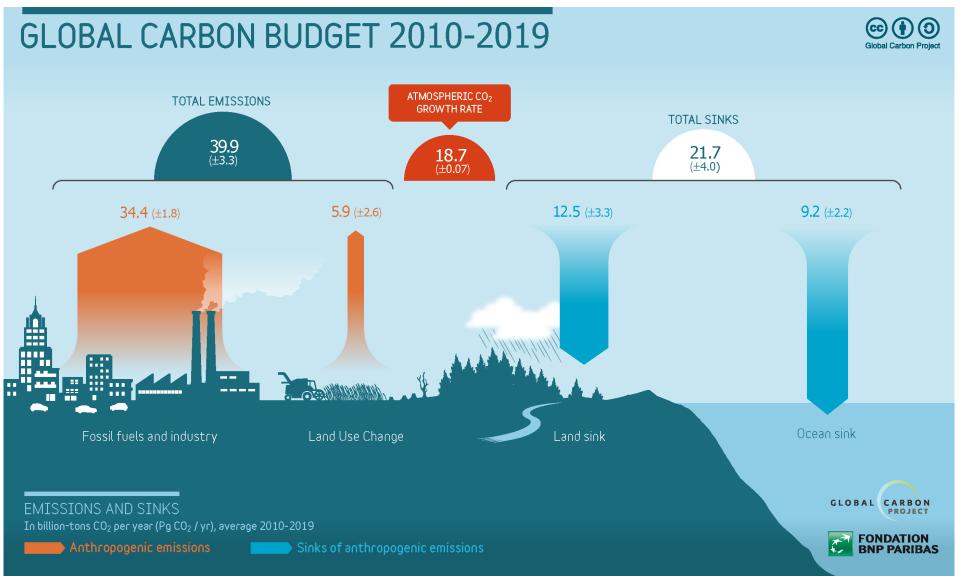
of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

October 2020

Recent focus of attention from federal government coordinated by OSTP

National Academies of Sciences, 2016

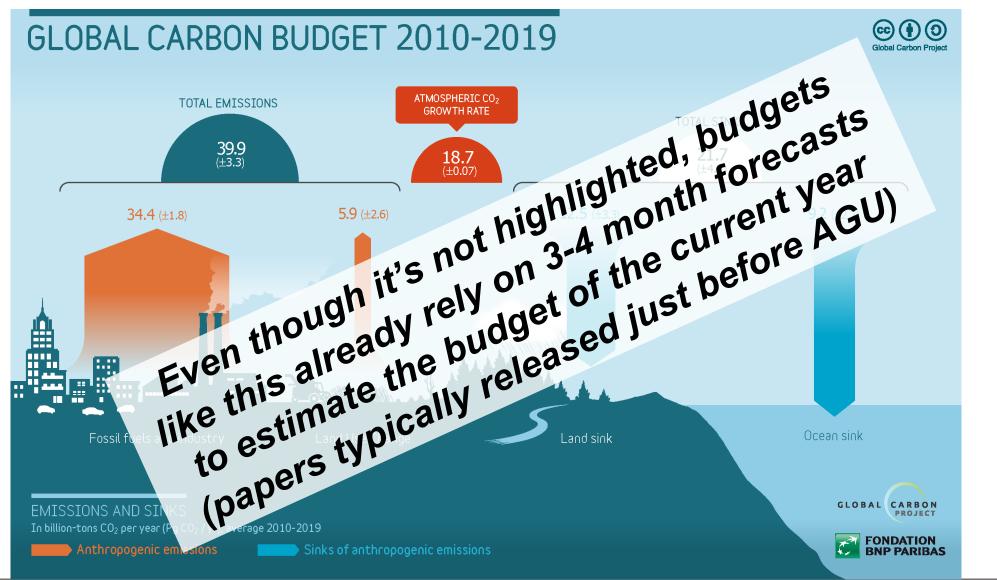
Very quick overview of the global carbon cycle



Friedlingstein et al., ESSD, 2020 ⁸

VERSITL

Very quick overview of the global carbon cycle



Could you predict how the carbon cycle is changing on S2S⁶ to interannual timescales?

Strong relationships between many components and known sources of predictability suggest yes:

- Connections between soil moisture and vegetation
- Relationship between ENSO phase and tropical ocean carbon flux
- Relationship between ENSO and atmospheric growth rate

Could you predict how the carbon cycle is changing on S2S to interannual timescales?

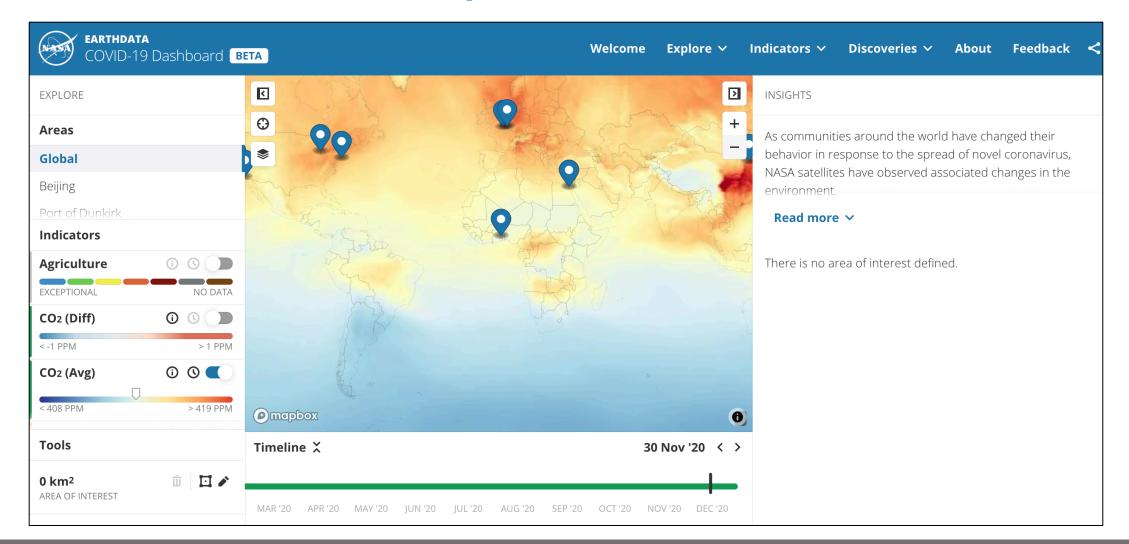
Strong relationships between many components and known sources of predictability suggest yes:

- Connections between soil moisture and vegetation
- Relationship between ENSO phase and tropical ocean carbon flux
- Relationship between ENSO and atmospheric growth rate

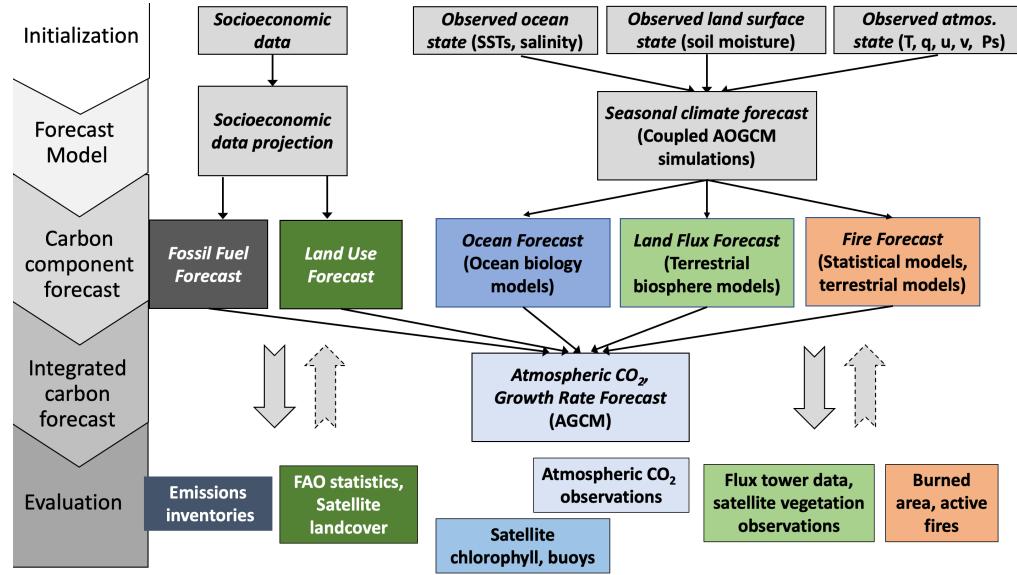
Why would you predict how the carbon cycle is changing on S2S to interannual timescales?

- Ability to test understanding of carbon cycle in real time
- Support better measurement opportunities field campaigns and adaptive remote sensing
- Because of delays in running offline models and input datasets, a recent prediction might be the best information we have about current conditions
- Need to know how well S2S predictions support an array of applications forestry, fire management, fisheries, agriculture
- High quality predictions could even have policy implications helping countries understand their emissions and mitigation strategies (*spoiler alert – not there yet)

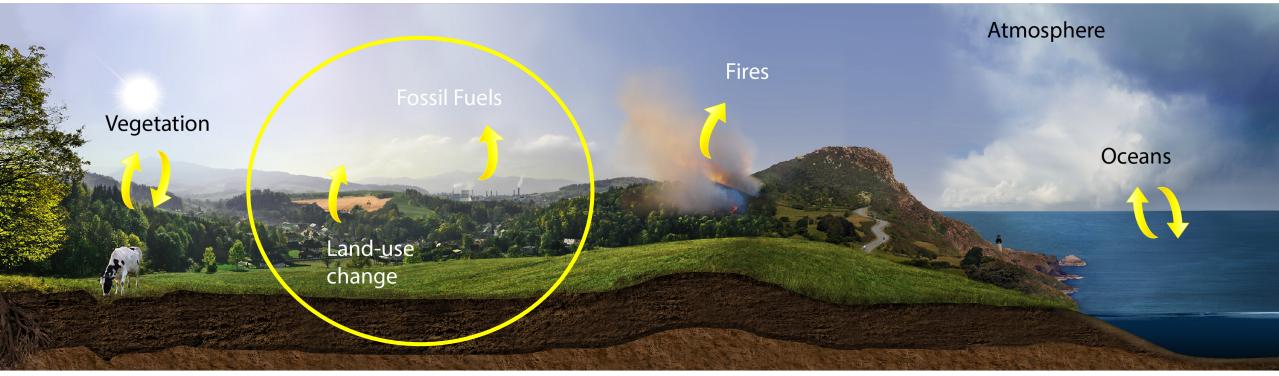
Increase for near real time information on changes in CO₂ and other species since COVID-19



Overview of a seasonal forecast system for carbon

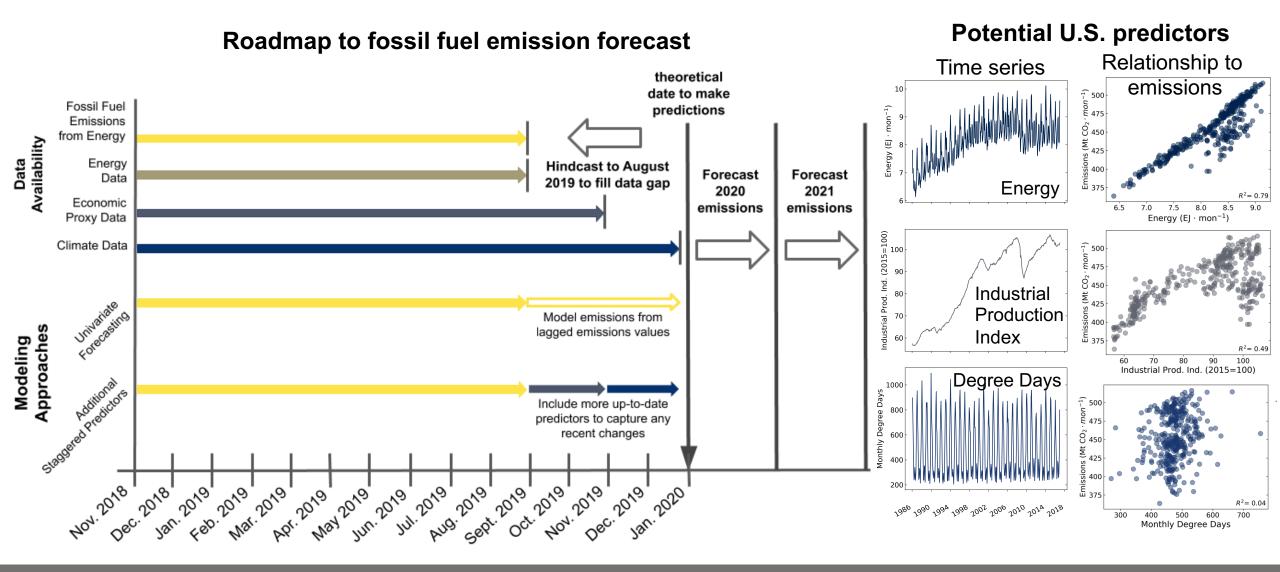


Carbon cycle components

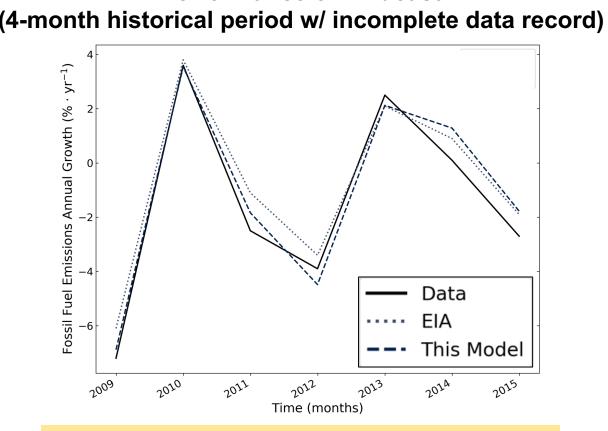


Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Predictions of human emissions

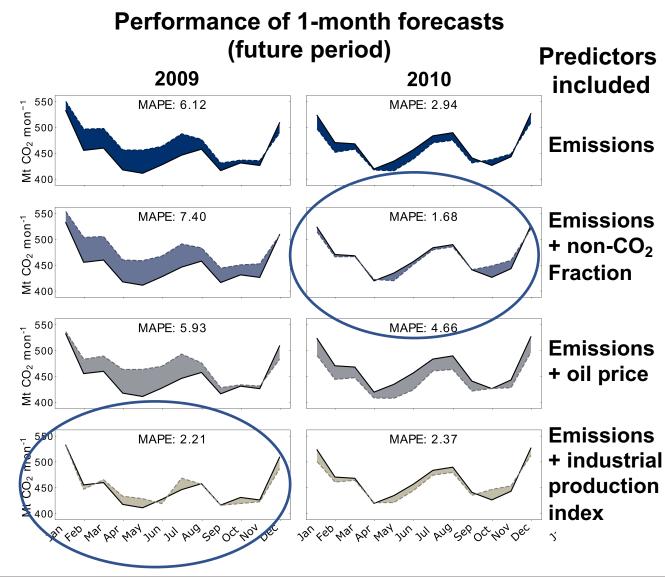


Forecasting fossil fuel emissions (1)



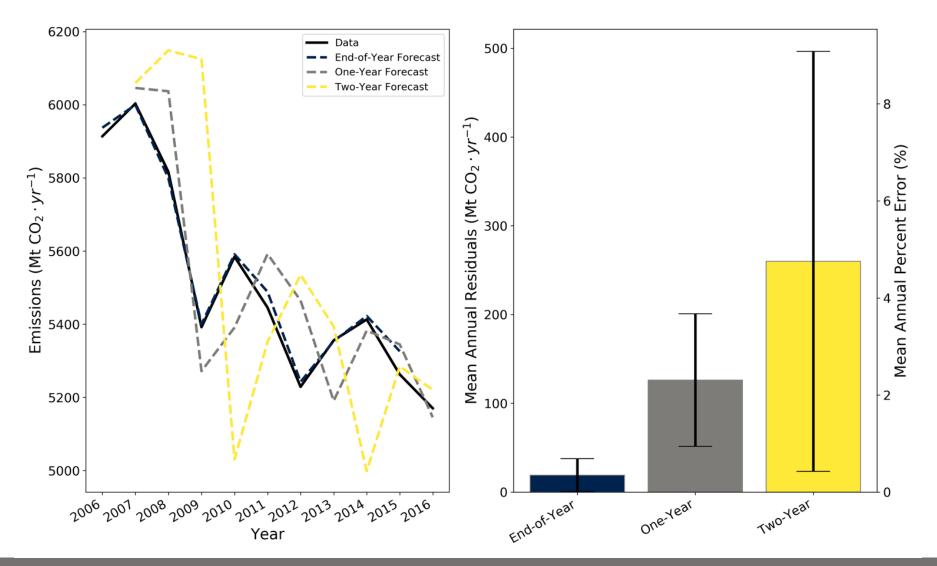
Performance of hindcast

Research model performs better than US EIA model (mean error of 0.74% vs 0.59%



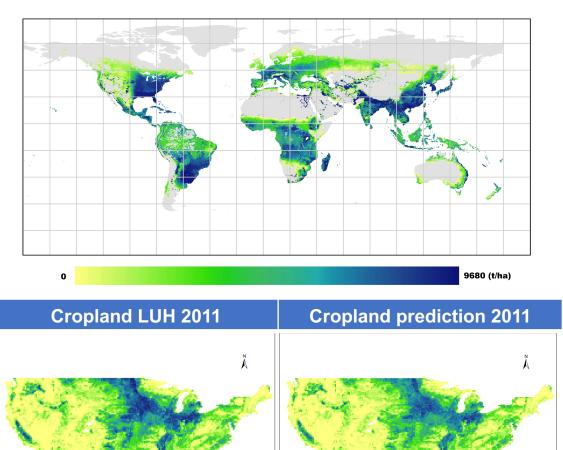
GMA

Forecasting fossil fuel emissions (2)



Land use predictions using economic models

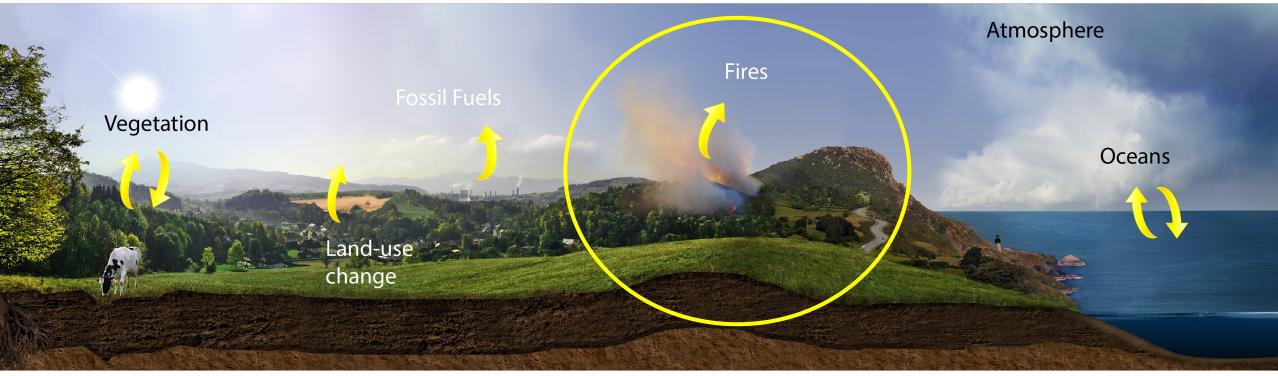
Global cropland economic return (2000)



- Simulation of major crop production using Agro-Ecological Zones model and cropland economic return calculation
- Development of Logistic Share Model of Land Use for Land Use prediction studies
- Applications in countries with reasonably good and accessible agricultural statistics (e.g. United States and Brazil)
- Because year-to-year changes are relatively small, greatest applications are on 2-5 year time horizon

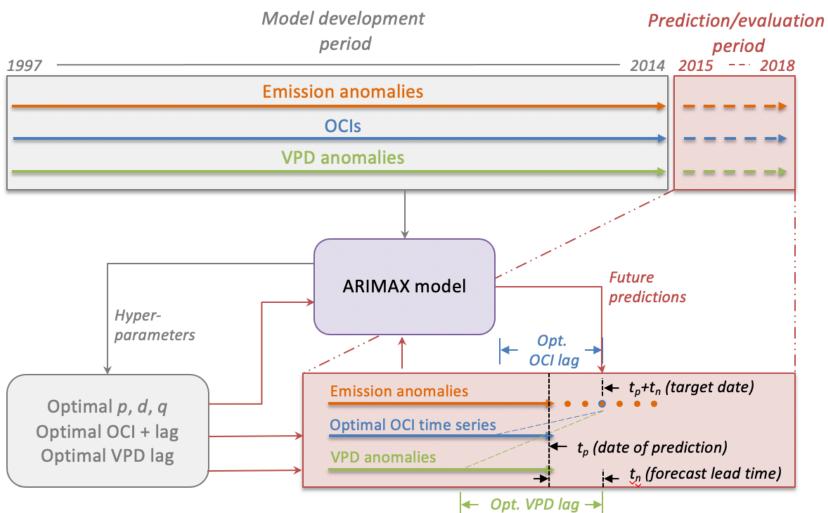
Absolute error RMSE: 0.033

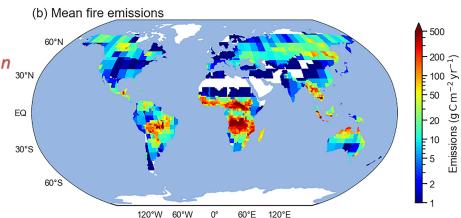
Carbon cycle components



Credit: NASA/Jenny Mottar and Abhishek Chatterjee

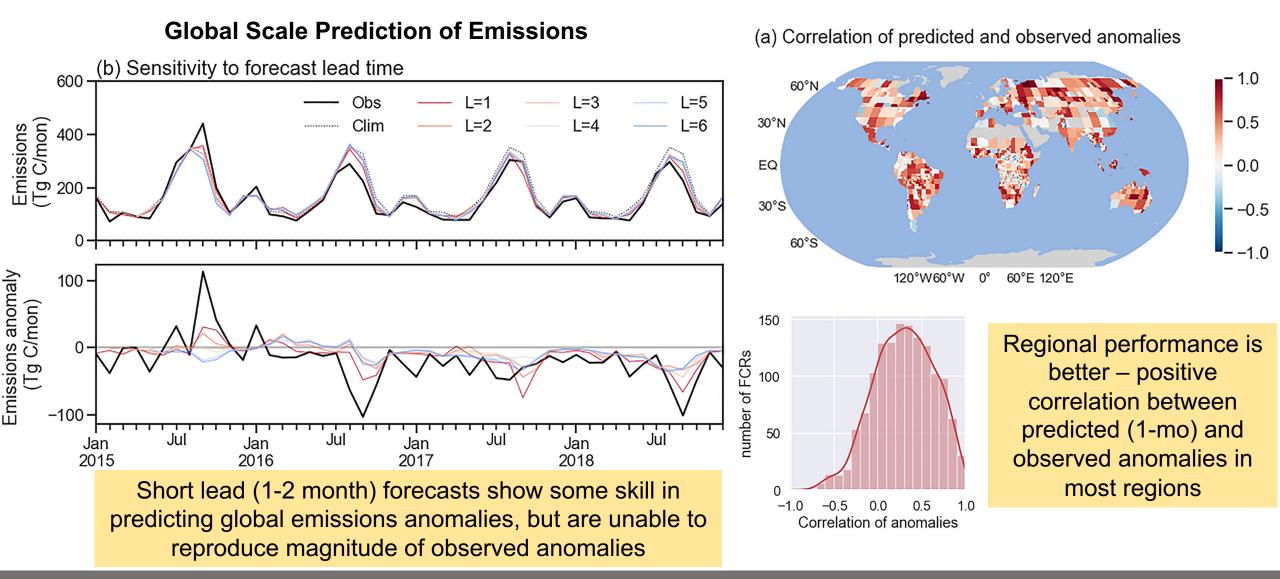
Statistical fire model





- Establish 'fire cohesive regions' with similar fire behavior and enough fires to establish statistical relationships (top)
- Analyze relationships between predictors which include emissions anomalies, ocean climate indices (large scale forcing), vapor pressure deficit (local scale forcing).
- Customized prediction model for each fire region

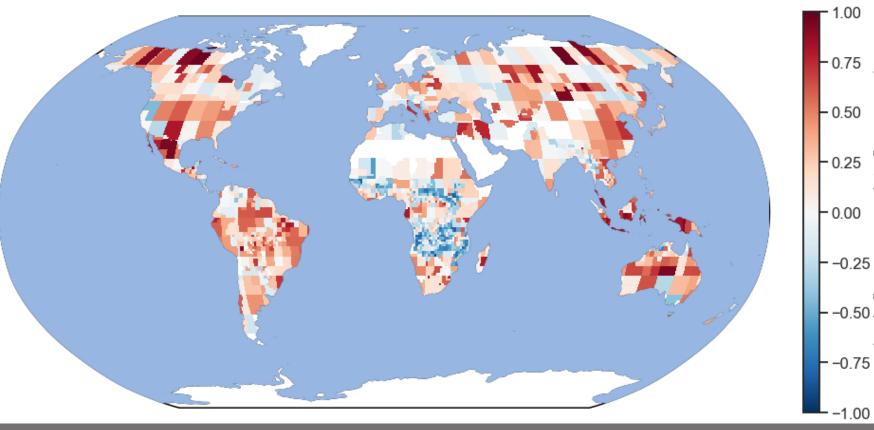
How well can we predict fires?



Value of simple lagged predictors provides value in many regions

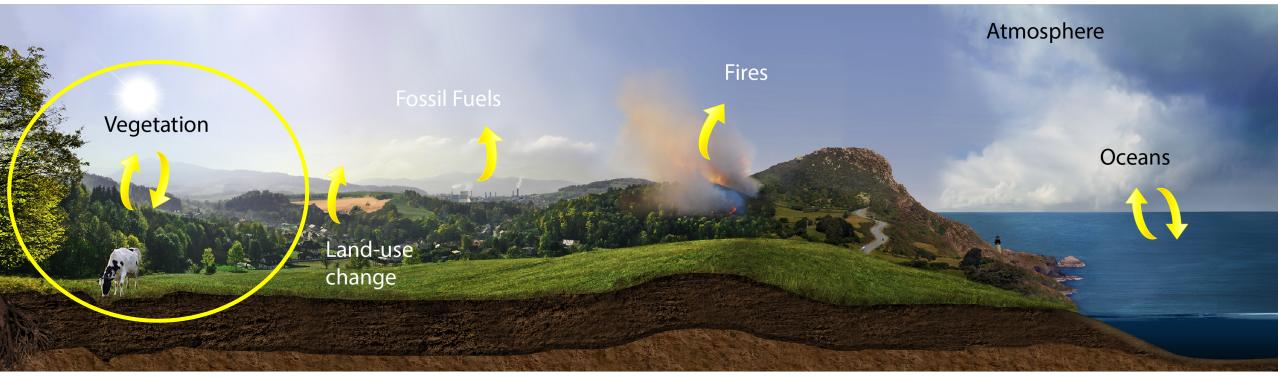
The strength of the early fire season provides information about activity in the late season, though the correlation can be positive or negative

Correlation between early, late fire season



Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

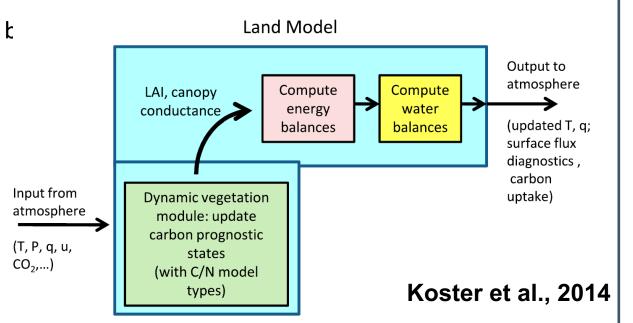
Carbon cycle components



Credit: NASA/Jenny Mottar and Abhishek Chatterjee

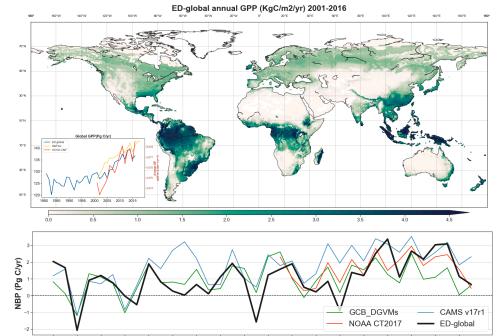
Forecasts of NEE using two terrestrial biosphere models

Catchment-CN



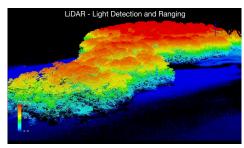
- Can be run offline or within GEOS modeling system – strong connection to met data assimilation and SMAP
- Merger of CLM C-N dynamics and GEOS water, energy balances

Global ED (UMD)



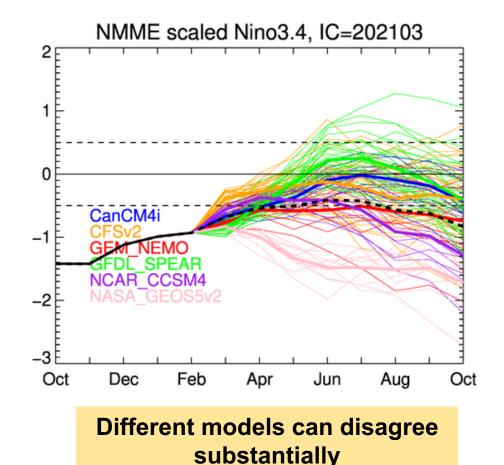
31 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

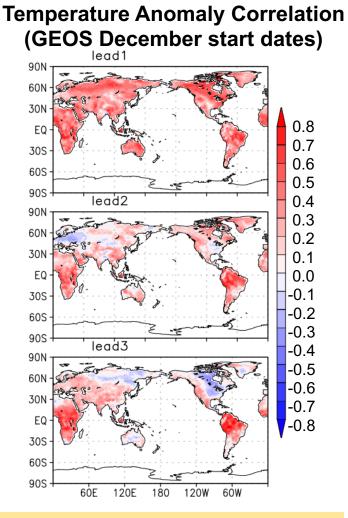
- Development of global Ecosystem Demography model (ED)
- Model-Data integration with remote sensing (LiDAR, Landsat)
- Applications in CMS, GEDI, IDS



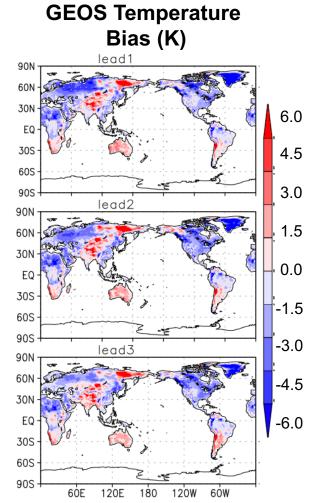
E. Lee, F. Zeng, G. Hurtt, and L. Ma

But first, a few notes about seasonal climate forecasts





Seasonal forecast are built to predict anomalies...

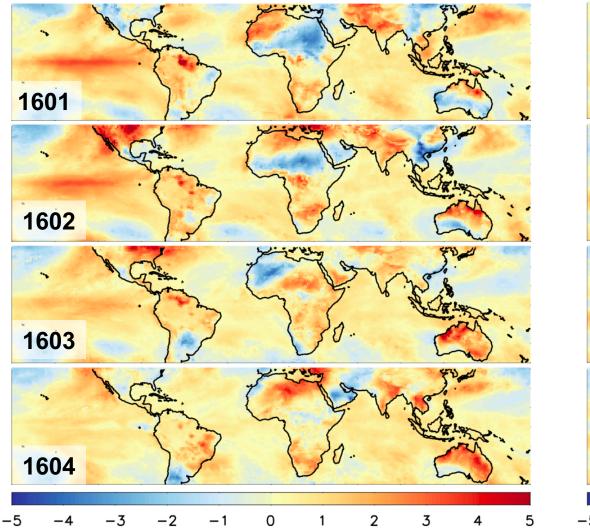


But typically contain substantial biases

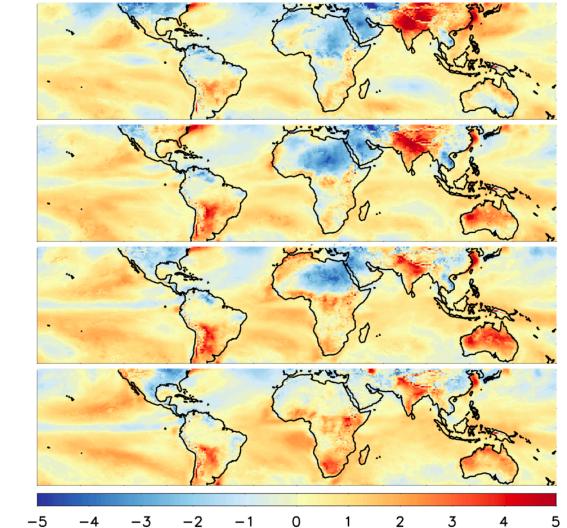
https://www.cpc.ncep.noaa.gov/products/NMME/, https://gmao.gsfc.nasa.gov/seasonal/25

Example: Predicted 2016 temperature anomalies (lead months 1-4)

Observation-driven T Anomaly (K)



Raw Seasonal Forecast T Anomaly

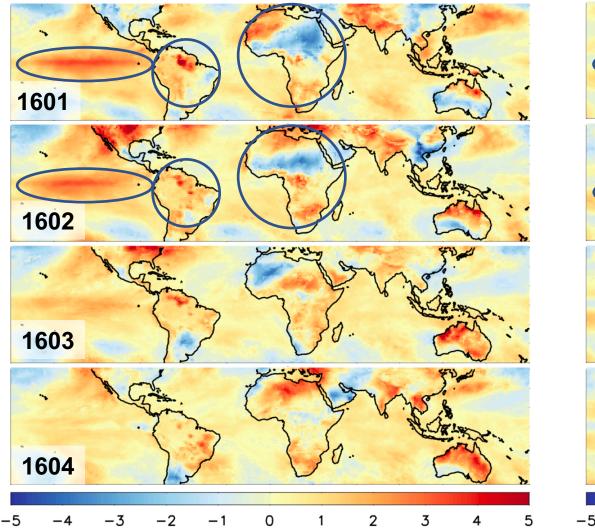


Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

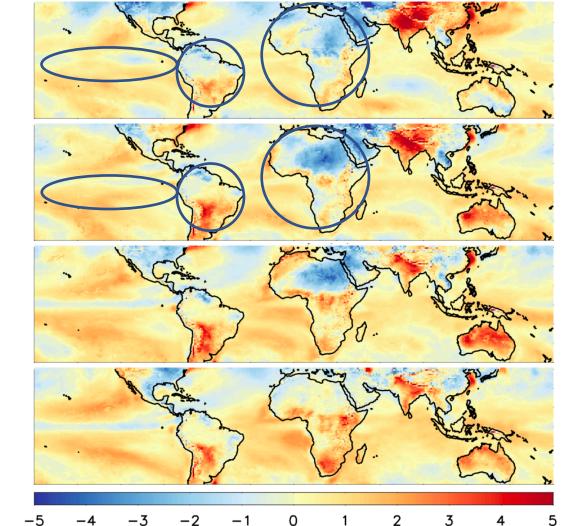
GN

Example: Predicted 2016 temperature anomalies (lead months 1-4)

Observation-driven T Anomaly (K)



Raw Seasonal Forecast T Anomaly



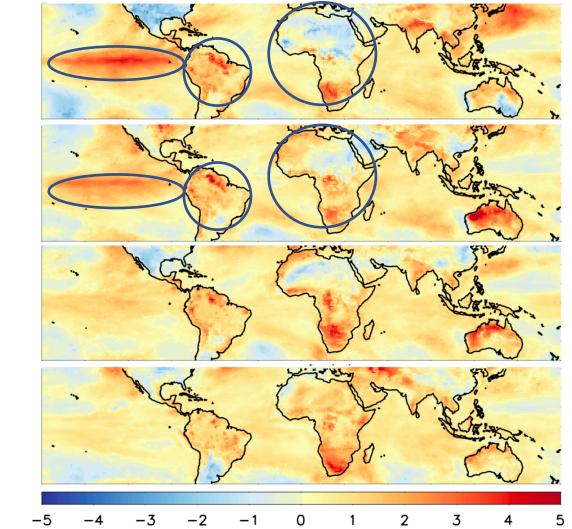
Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

Example: Predicted 2016 temperature anomalies including bias correction relative to MERRA-2

Observation-driven T Anomaly (K)



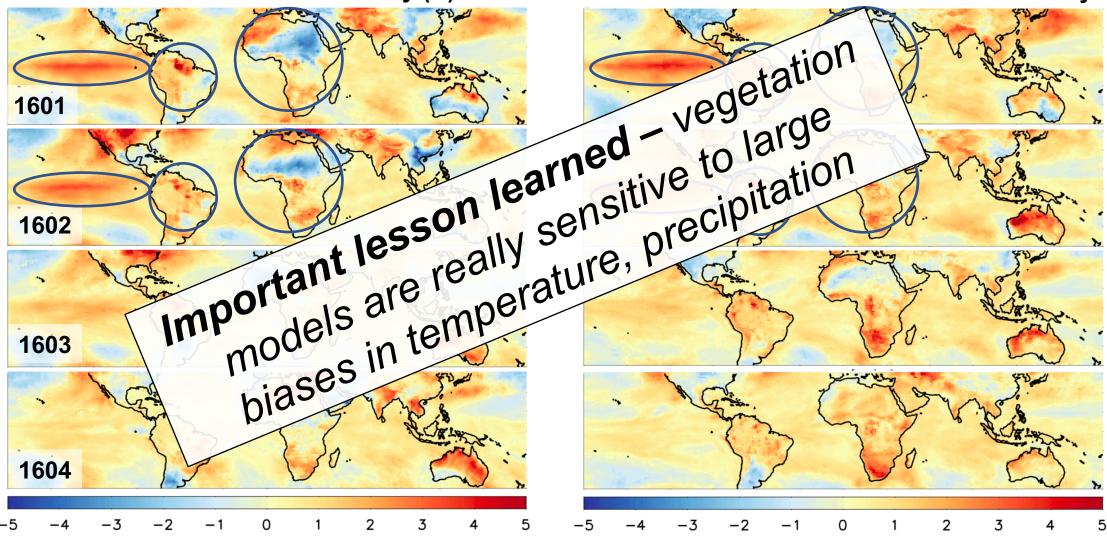
Bias-corrected Seasonal Forecast Anomaly



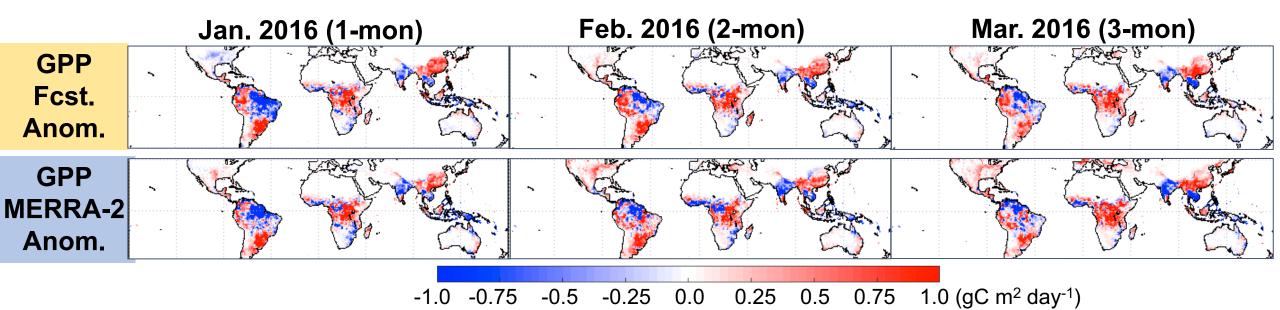
Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

Example: Predicted 2016 temperature anomalies including bias correction relative to MERRA-2

Bias-corrected Seasonal Forecast Anomaly



Catchment-CN Flux Anomalies (model truth)

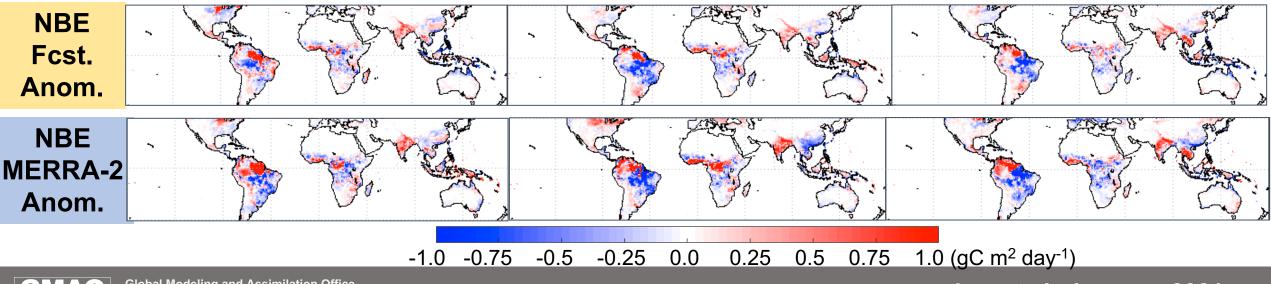


Next steps:

- Use bias-corrected seasonal forecast meteorology to drive biosphere models
- Compare to simulation driven by reanalysis (observed) meteorology
- GPP = Gross Primary Production, amount of carbon fixed by biomass during photosynthesis

Catchment-CN Flux Anomalies (model truth)

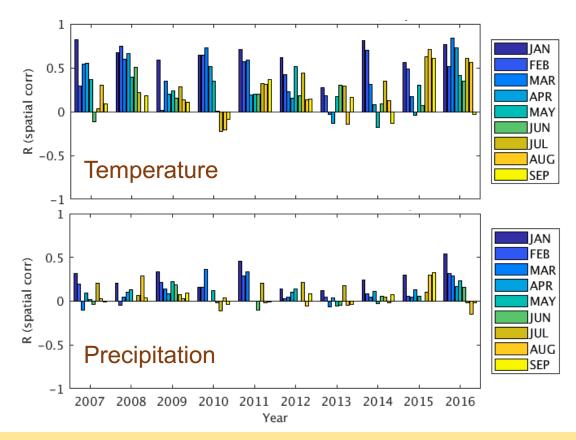
- With bias-corrected seasonal forecast meteorology, the model is largely able to reproduce the spatial pattern of GPP estimated using reanalysis data
- NBE = Net Biome Production, net exchange of carbon between ecosystem and atmosphere
- NBE = Ecosystem respiration + fire emissions GPP



Assessing the potential predictability of land flux forecasts (model truth experiments)

- 10 years of biosphere model hindcasts (2007-2016) starting in December
- Anomalies in GPP and NBE calculated for seasonal hindcasts and reanalysis driven simulation
- Spatial anomaly correlation coefficient assesses ability of forecast to reproduce the anomaly pattern for example, where should we look for an interesting event?
- *Temporal anomaly correlation coefficient* assesses ability of forecast to predict unusual event at a given location

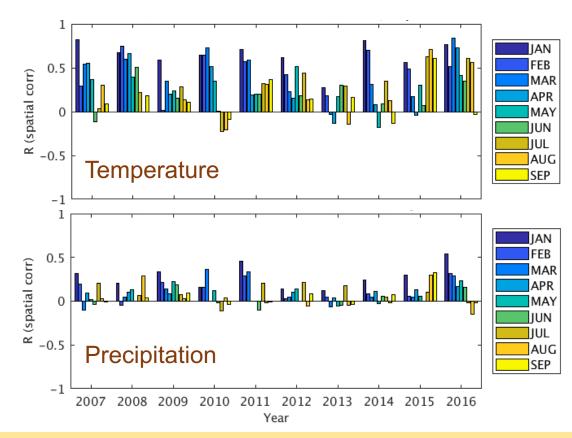
Tropical spatial anomaly correlations



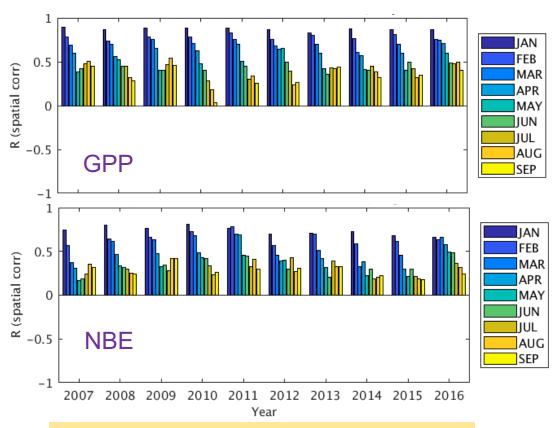
- Temperature predictions perform best in first few months though this can vary substantially by year
- Temperature is easier to predict than precipitation

(C

Tropical spatial anomaly correlations



- Temperature predictions perform best in first few months though this can vary substantially by year
- Temperature is easier to predict than precipitation



Predictions of carbon flux (GPP, NBE) anomalies are better than the forecasts of the underlying meteorological variables

(C

Assessing contributions to land carbon predictability

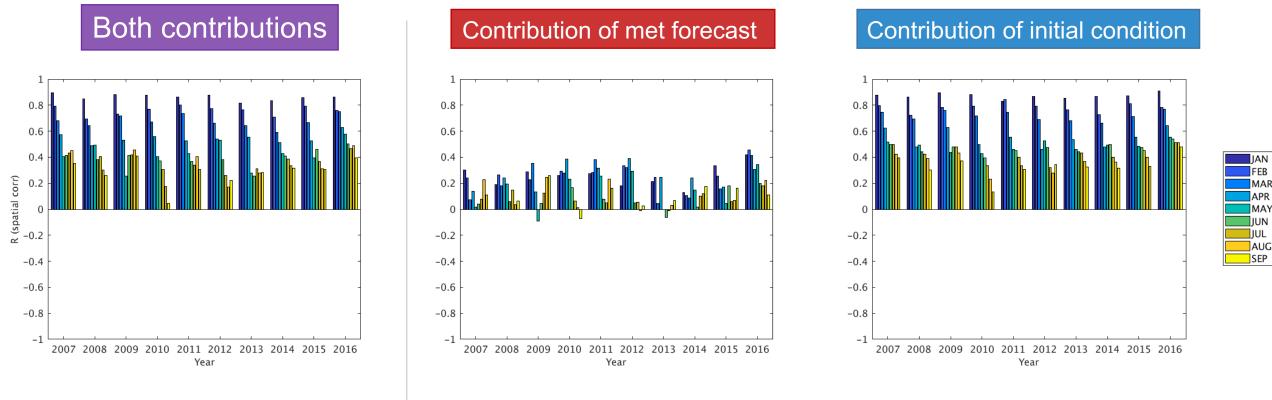
Two additional sets of experiments:

[Set 1] Apply 2016 Jan 1st Initial condition under different meteorology

[Set 2] Apply 2016 forecast meteorology for all ten years (2007-2016)

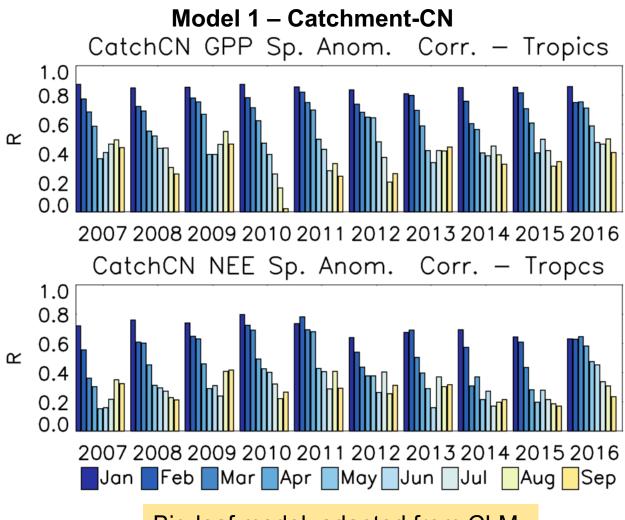
	2007 init	2008 init	2009 init	2010 init	2011 init	2012 init	2013 init	2014 init	2015 init	2016 init
2007 met (4 members)	X									Х
2008 met (4 members)		X								Х
2009 met (4 members)			X							Х
2010 met (4 members)				X						Х
2011 met (4 members)					Х					Х
2012 met (4 members)						Х				Х
2013 met (4 members)							X			Х
2014 met (4 members)								X		Х
2015 met (4 members)									X	Х
2016 met (4 members)	Х	Х	Х	Х	Х	Х	Х	Х	Х	X

Most of the predictability comes from initialization rather than skillful climate forecast



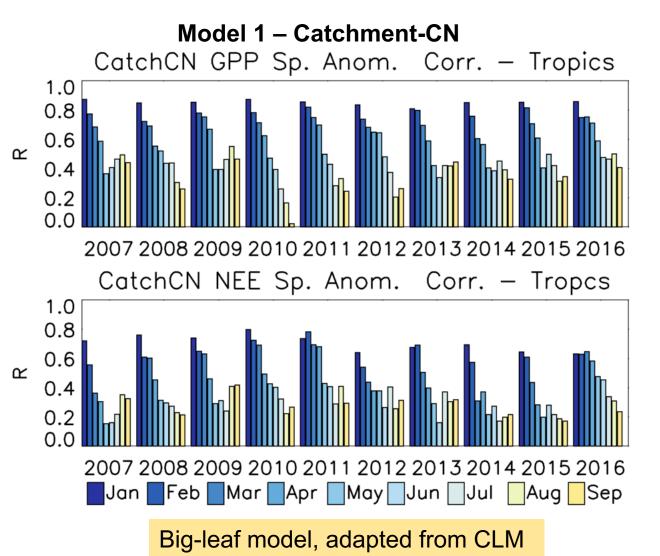
Contribution of land initial condition (mainly soil moisture) is larger than the contribution from predicted meteorology

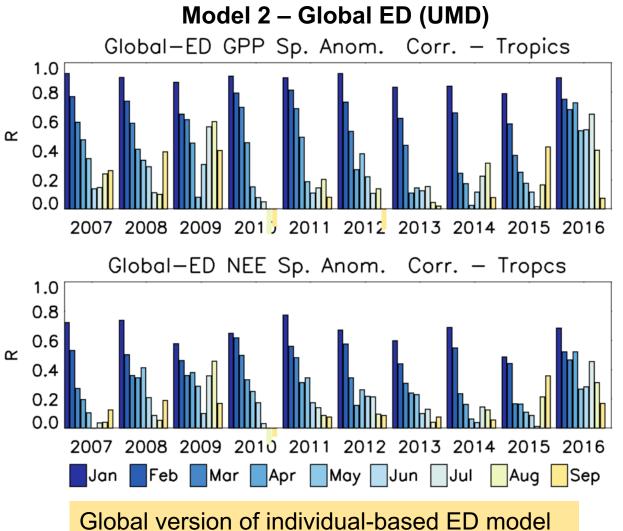
Results seem to hold up across multiple models



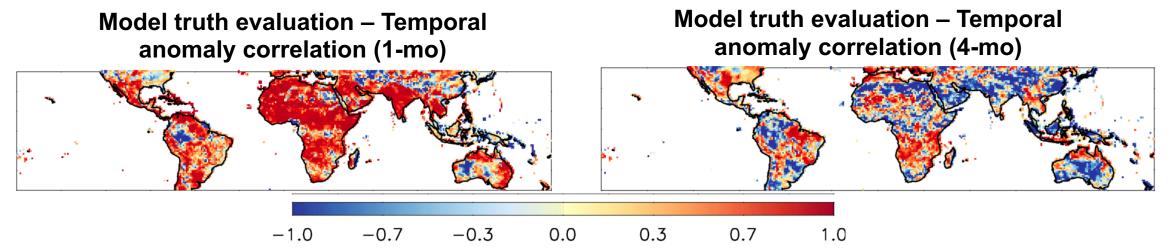
Big-leaf model, adapted from CLM

Results seem to hold up across multiple models





But how well do the forecasts compare with observations?

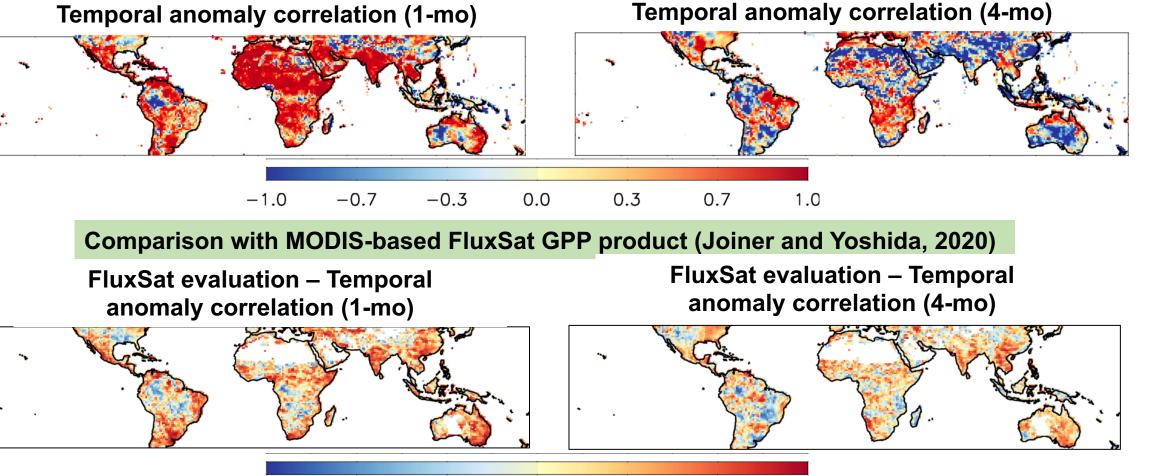


'Model truth' experiments show that seasonal land carbon forecasts are capable of reproducing reanalysis driven results at 1-2 month lead times - seasonal forecast meteorology is able to support this type of application

Model truth evaluation – Catchment-CN

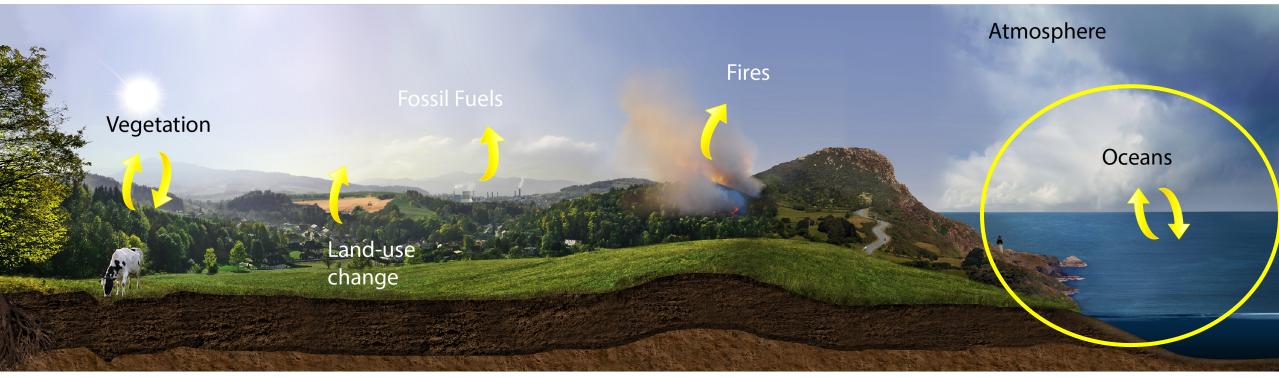
But how well do the forecasts compare with observations?

Model truth evaluation – Catchment-CN



-1.0 -0.7 -0.3 0.0 0.3 0.7 1.0

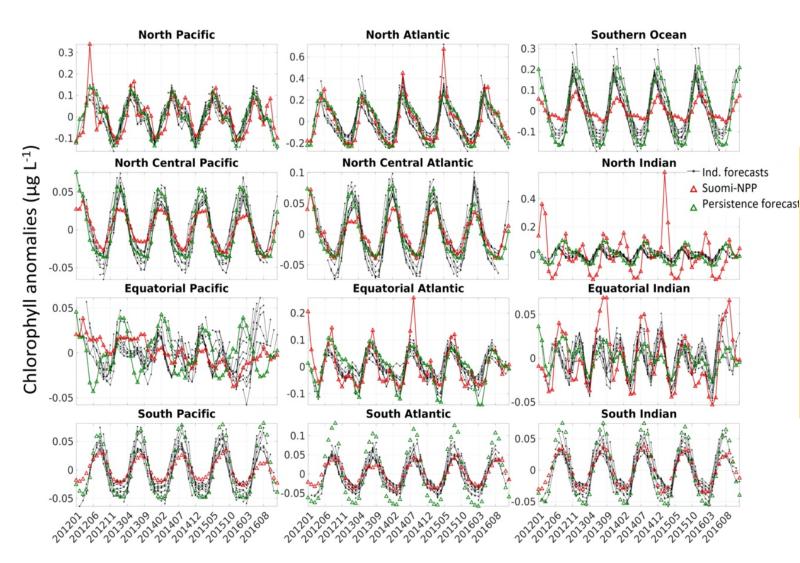
Carbon cycle components



Credit: NASA/Jenny Mottar and Abhishek Chatterjee

GMA

What about ocean predictions?



Still work in progress. Comparisons suggest that seasonal predictions can reproduce a model simulation driven with reanalysis meteorology, but still fall short when compared with observations.

Similar findings from NCAR's CESM (e.g. Lovenduski et al., 2019)

Summary and conclusions

NASA has supported research into seasonal carbon cycle predictions and we find some level of predictability for all major carbon cycle processes - land use change, atmospheric growth, fires, NEE, as well as ocean and fossil fuel (not shown). Some other lessons learned

- Timescales (months-years) and methods (statistical vs dynamic models) vary
- Certain things (e.g. volcanoes, recessions) are not predictable
- Bias correction is critically important, especially for terrestrial biosphere models
- Most skill within first 3 months for fossil fuel, fire, and land flux predictions
- Good initial conditions can often triumph over moderate or poor forecasts
- Model predictions are only as good at representing reality as the underlying simulations

Points that need more discussion:

- Who are the users of carbon cycle forecasts? What priority should modeling centers place on these aspects of Earth system prediction?
- What metrics can we use to evaluate forecasts and benchmark improvements over time
- How do we characterize forecast uncertainty (e.g. ensemble simulations, multi-model methods)?