National Aeronautics and Space Administration

- R eRS I\T r
& k*(:"-.,_ o) Ov(\
& ,
H 18 56
@ L)
O SYA ~w
TRYLAS

4

Toward integrated seasonal predictions of
carbon flux: lessons learned from NASA'’s
subseasonal-to-seasonal predictions

Lesley Ott!, E. Lee'-2, F. Zeng'3, C. Rousseaux'?, G. Hurtt?,
J. Randerson®, A. Chatterjee'2, Y. Chen5, L. Chini4, S. Davis>,
L. Ma4, B. Poulter?, L. Sun4, D. Woodard?>:®

'NASA Goddard Space Flight Center

2USRA

3SSAI

“Department of Geography, University of Maryland
SUniversity of California, Irvine

°Now at JGCRI

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov



National Aeronautics and Space Administration

Outline

* Introduction to modeling at NASA
* Motivation for subseasonal to seasonal (S2S) forecasting
* Moving beyond meteorology — can we predict how the
carbon cycle will change on seasonal timescales?
« What would a seasonal carbon forecast look like?
Examples of predictions:
 Human emissions
* Fires
« Land-atmosphere flux
« Summary and conclusions

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Earth System Modeling at NASA

Global Modellng and ASS|m|Iat|on Offlce (GMAO)
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Retrospective analysis of satellite era
Seasonal-decadal prediction

High spatial resolution
Focus on data assimilation
https://svs.gsfc.nasa.gov/12772

Goddard Institute for Space Studies (GISS)

See for Yourself

Greenhouse gases warm the atmosphere.

Aerosols cool it a little bit. Ozone and land-use

changes add and subtract a little. Together they

match the observed temperature, Human
particularly since 1950. Factors

Paleoclimate simulation capability
Century-scale climate projections
Support IPCC modeling ensembles
New effort on comparative planetology
https://svs.gsfc.nasa.gov/30615

GMAO Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Themes of GMAO’s Research and Products

Weather Analysis Seasonal-to-

and Prediction Decadal Prediction el

Multi-Scale Observing System
Modeling Science

Central theme is to use, support, and plan for NASA's Earth Observations

Goddard Earth Observing System (GEOS) model and data assimilation system central to all components
Modular system is highly flexible, can be configured to increase complexity depending on application
Aerosol, carbon, and composition cut across, represented in each theme

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Sources of predictability

natural and anthropogenicforcing

extratropical oceans
PDV AMV

ENSO

soil moisture

stratosphere
SSW

Some sources of predictability

troposphere
weather MJO
-——————»
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Sources of predictability

> natural and anthropogenicforcing NWP and seasonal forecast models

= often share common components but
g extratropical oceans are configured differently:

— PDV AMV o

96,. —_— Seasonal prediction

k) Atmosphere, radiation balance
8 soil moisture

- AT 1
=

8 stratosphere

2

£ Sea Ice Land surface,
0N troposphere

weather  MJO Ocean circulation hydrology

-————_—*
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Applications supported by S2S meteorological predi

CUMATE
PROJECTIONS

SEASONAL
OQUTLOOK

GUIDANCE

THREAT
ASSESSMENTS

SHORT-TERM
FORECASTS

WATCHES

WARNINGS & ALERT
COORDINATION

Global Modeling and Assimilation Office

FORECAST LEAD TIME

Water Resources
* Infrastructure planning
* Plan for water allecation during

drought
Agriculture . r.lﬂoao 1:?5 ;ivscelr.vccr levels for
* Strategic business planning =
* Purchase seeds Y
: ears
* Schedule planting
* [rigate and apply nutrients
Maritime Planning m Cgm:«mﬂ
* Plan commercial shipping o] M
: : f
0 tho Arctic | 2 Weeks | ¢cOREC Energy
* Designate ship routing * Infrastructure and business
* Plan Navy ship sortie planning
(days) m * Manage hedging in futures markets
Aviation * Plan for spikes in energy demand
* Plan evacuations and sorties  * Anticipate availability of renewable
* lssue aviation weathor alerts energy
Days
Emergency Management
¢ Inform situational awareness
m * Pre-stage emergency supplies
* Plan FEMA evacuation (days)

* Issue hazardous weather watches
and warnings (minutes to hours)

= <— SUBSEASONAL TO SEASONAL —>»>

DECISION TINESCALES

National Academies of Sciences, 2016

EARTH SYSTEM PREDICTABILITY
RESEARCH AND DEVELOPMENT
STRATEGIC FRAMEWORK AND ROADMAP

A Report by the
FAST TRACK ACTION COMMITTEE ON EARTH SYSTEM
PREDICTABILITY RESEARCH AND DEVELOPMENT
of the
NATIONAL SCIENCE & TECHNOLOGY COUNCIL

October 2020

Recent focus of attention
from federal government
coordinated by OSTP
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Very quick overview of the global carbon cycle
GLOBAL CARBON BUDGET 2010-2019 clole
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GLOBAL CARBON BUDGET 2010-2019 ©O®O

ATMOSPHERIC CO,
TOTAL EMISSIONS

Ocean sink
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GMAQO | ;ioiiocsing and Assimilation Office Friedlingstein et al., ESSD, 2020
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Could you predict how the carbon cycle is changing o 2@
to interannual timescales?

Strong relationships between many components and known sources of predictability suggest yes:
« Connections between soil moisture and vegetation

» Relationship between ENSO phase and tropical ocean carbon flux

» Relationship between ENSO and atmospheric growth rate

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Could you predict how the carbon cycle is changing o
to interannual timescales?

Strong relationships between many components and known sources of predictability suggest yes:

Connections between soil moisture and vegetation
Relationship between ENSO phase and tropical ocean carbon flux
Relationship between ENSO and atmospheric growth rate

Why would you predict how the carbon cycle is changing on
S2S to interannual timescales?

Ability to test understanding of carbon cycle in real time

Support better measurement opportunities — field campaigns and adaptive remote sensing
Because of delays in running offline models and input datasets, a recent prediction might be
the best information we have about current conditions

Need to know how well S2S predictions support an array of applications — forestry, fire
management, fisheries, agriculture

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Increase for near real time information on changes in CO,

m EARTHDATA
&%) COVID-19 Dashboard

and other species since COVID-19

Welcome Indicators v Discoveries v About Feedback <

Explore v

EXPLORE

Areas
Global

Beijing
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D D
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)
>419 PPM
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R As communities around the world have changed their
behavior in response to the spread of novel coronavirus,

NASA satellites have observed associated changes in the
environment

INSIGHTS

Read more v

N

There is no area of interest defined.
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mapbox
Timeline X 30Nov'20 < >
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Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

]

https://earthdata.nasa.gov/covid19/ 12
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Overview of a seasonal forecast system for carbon "~

L Socioeconomic Observed ocean Observed land surface Observed atmos.
Initialization data state (SSTs, salinity) state (soil moisture) state (T, q, u, v, Ps)

D ——

National Aeronautics and Space Administration

\/ Socioeconomic Seasonal climate forecast
FolEEE data projection (Coupled AOGCM
Model simulations)
Carbon Fossil Fuel Yand U Ocean Forecast Land Flux Forecast Fire Forecast
component I‘__’”' "‘: F"" 5‘: (Ocean biology (Terrestrial (Statistical models,
forecast orecas orecas models) biosphere models) terrestrial models)

Integrated P Atmospheric cO,, 3
carbon P Growth Rate Forecast o
@ bl (AGCM) N
——— FAO statistics, Atmospheric €O, Flux tower data, Burned
Evaluation : ' Satellite observations satellite vegetation | | area, active
inventories . .
landcover Satellite observations fires

chlorophyll, buoys

GMAO Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Carbon cycle components

- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Predictions of human emissions

Roadmap to fossil fuel emission forecast Potential U.S. predictors
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Forecasting fossil fuel emissions (1)
Performance of 1-month forecasts
Performance of hindcast (future period) Predictors
(4-month historical period w/ incomplete data record) 2009 2010 included
4t 7 Tg 550 MAPE: 6.12 MAPE: 2.94
§450 W Emissions

MAPE: 7.40 /’ MAPE: 1.68 Emissions
EIsoo + non-COz
S )
8450 Fraction
= 400

pd

. %90 MAPE: 5.93 W

£ 500 Emissions

gas0 + oil price
P —

Fossil Fuel Emissions Annual Growth (% - yr1)
|
N

— == This Model =400 ~
| | | | - ' ' . : : Emissions
o 0 o o e o o - 5 MAPE: 2.21 MAPE: 2.37 . .
’ ’ ’ Tim’te (months’)L v * 500 § /I + industrial
Qas0 TN N production
Research model performs better than US EIA 400 T ), ' index
model (mean error of 0.74% vs 0.569% £ @0 BT P PR ETE PP @D PR S

R Woodard et al., in prep.
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Forecasting fossil fuel emissions (2)
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S e e Woodard et al., in prep.
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Land use predictions using economic models e

Global cropland economic return (2000)

« Simulation of major crop production using Agro-
Ecological Zones model and cropland economic
return calculation

« Development of Logistic Share Model of Land Use
for Land Use prediction studies

o I e  Applications in countries with reasonably good
and accessible agricultural statistics (e.g. United

Cropland LUH 2011 Cropland prediction 2011 States and Brazil)
J :
» Because year-to-year changes are relatively

small, greatest applications are on 2-5 year time
horizon

000
MMMMM

Absolute error RMSE: 0.033

R L. Sun and G. Hurtt, UMD
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Carbon cycle components

Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Statistical fire model

(b) Mean fire emissions

Model development Prediction/evaluation &

. . 100 >\

period period 2

1997 2014 2015 --- 2018 EQ 9
Emission anomalies g

|| == = = == == 30°S "',\ Z

OCls 5

|| = = == = —p

VPD anomalies

=i - b 120°W  60°W 0° 60°E  120°E

./.
./‘

|+ Establish ‘fire cohesive regions’ with
4 1 o g | similar fire behavior and enough fires
ARIMAX model [ Future | to establish statistical relationships
predictions '
| (top)
I
|

./‘

Hyper- :
parameters N — T | Opt. . Analyze relationships between
v - OCllag | predictors which include emissions
D Emission anomalies = [+ fo#tn (target date) anomalies, ocean climate indices
Optlmal p’ d' q —I 0’:7'9 o o o ’ .
Optimal OCI + lag ,|  Optimal OCl time series ___— 4= (large scale forcing), vapor pressure
Optimal VPD lag UPD anomalies % t(date of prediction) deficit (local scale forcing).
> i 8 i i . . .
PN <y olez asdlcaditing « Customized prediction model for
< Opt. VPD lag | each fire region

Global Modeling and Assimilation Office Chen et al., JAMES, 2020
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How well can we predict fires?

Global Scale Prediction of Emissions (a) Correlation of predicted and observed anomalies
(b) Sensitivity to forecast lead time -
600 60°N G & ey wA . N\ N -1.0
» ' 30°N £ ‘{7 . “he ﬁ\ " : N -0.5
& ‘ RS ‘-?5*'#2;;;.; - N
2 = ¥ s i? t-‘vfu"l'.!' B | -0.0
= \ G : £ .'\';5‘. s ‘
L 30°S LN W '-i,

A L : ~=0.5
N .

> 100  120°WE0°W 0°  60°E 120°E
=
% é 150
©5 04 o Regional performance is
[0 0o
§ = 2 100 better_— positive
£ 2 correlation between
LL] _100_ T rrrrord T 17 1T 17 1 1T 17T 17 1T 11 11 1717 17 17T 17T 17 10 T rrrror -8 1
L T o P - T - Tl E 50 predicted (1-mo)_anc_l
2015 2016 2017 2018 < observed anomalies in
Short lead (1-2 month) forecasts show some skill in O 05 00 05 10 most regions
predicting global emissions anomalies, but are unable to Correlation of anomalies

reproduce magnitude of observed anomalies

Global Modeling and Assimilation Office Chen et al., JAMES, 2020 =
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Value of simple lagged predictors provides value in many
regions

Correlation between early, late fire season

1.00
The strength of the early fire
season provides information 075
about activity in the late 050
season, though the correlation '
can be positive or negative -025
—0.00
—-0.25
-0.50
-0.75‘
-1.00

Global Modeling and Assimilation Office Chen et al., JAMES, 2020 2
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Carbon cycle components

- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Forecasts of NEE using two terrestrial biosphere models
Global ED (UMD)

C atc h m e nt-C N ) ] ED-global annual GPP (KgC/m2/yr) 2001-2916 ]
k Land Model
Output to
LAI, canopy Compute Compute atmosphere
conductance energy > water P —
balances balances (updatedT, g;
surface flux
diagnostics,
|
carbon
Input from Dynamic vegetation uptake)
atmosphere module: update
carbon prognostic aE
(CTO Pra,u, states g
2-) (with C/N model & W \/ \7/
—— GCB_DGVMs —— CAMS v17r1
types) Koster et al., 2014 — NOAACTZ017  — ED-giobal
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

LiDAR - Light Detection and Ranging

Development of global Ecosystem

» Can be run offline or within GEOS modeling
Demography model (ED)

system — strong connection to met data
assimilation and SMAP
« Merger of CLM C-N dynamics and GEOS water, sensing (LIDAR, Landsat)
energy balances ° Appllcatlons IN CMS, GEDI, IDS
Global Modeling and Assimilation Office E. Lee, F_ Zeng, G_ Hurtt, and L_ Ma o4

gmao.gsfc.nasa.gov
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But first, a few notes about seasonal climate forecasts "«
Temperature Anomaly Correlation GEOS Temperature
(GEOS December start dates) Bias (K)
90N Ie1 90N
NMME scaled Nino3.4, 1C=202103 soN | . SN 145
2 g T T T T T T T T T T T ] 30N ’ 30N o2 6.0
C T % 0.8 EQ{Y. 2/ . )
F . 305 0.7 3051 4.5
1F _ 7 = 605 1 0.6 605 !
e e X 90S 82 905 3.0
s 90N ' 90N '
OF 6ON 5" - 1 H 82 60N { <R 1 1.5
S 3N TR s, AH 0.1 30N Fosien
. CanCM4i EQ{%d/ 1H 0.0 EQ{Y ¢ — 0.0
-1 305 —-0.1 3054 \ |
E ‘ ¥SPEAR . AN 60S _-0.2 60S - '1 5
. NCAR_CCSM4 ™ o 90s -0.3 905 30
g X -0.4 -3.
=0 3 90N Py 90N :
: 60N . ) ' 60N A 45
30N {5 _8? 30N 1 .
-3t 1 1 1 1 1 1 1 ! 1 ! 1 EQ{ g -08 Qe 60
Oct Dec Feb Apr Jun Aug Oct 305 305
60S A . 60S 1 .
Different models can disagree 90S 60E 120E 180 120W 60W 905 60E 120E 180 120W GOW
substantially _ _ _
Seasonal forecast are built to But typically contain
predict anomalies... substantial biases

amacgstenasager oo O ptne: [lwww.cpc.ncep.noaa.gov/products/NMME/, https://gmao.gsfc.nasa.gov/seasonal/ 2



National Aeronautics and Space Administration

Example: Predicted 2016 temperature anomalies
(lead months 1-4)

n T Anomaly (K) Raw Seasonal Forecast T Anomaly

7N o i , e T

Observation-drive

- e

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Example: Predicted 2016 temperature anomalies
(lead months 1-4)

Observation-driven T Anomaly (K) Ra
A e R e, | T N\

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Example: Predicted 2016 temperature anomalies

including bias correction relative to MERRA-2
Observation-driven T Anomaly (K) Bias-corrected Seas
o T T P

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Example: Predicted 2016 temperature anomalies

including bias correction relative to MERRA-2
Observation-driven T Anomaly (K)
ri . - = —

\ ) .

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Catchment-CN Flux Anomalies (model truth)
Jan 2016(1-mon) Feb 2016(2 mon) Mar. 2016 (3-mon)

GPP .
Fcst.
Anom.

GPP
MERRA-2|
Anom.

1.0 -075 -05 -025 00 025 05 075 1.0(gCm?2day")

Next steps:
« Use bias-corrected seasonal forecast meteorology to drive

biosphere models
« Compare to simulation driven by reanalysis (observed)

meteorology
 GPP = Gross Primary Production, amount of carbon fixed by

biomass during photosynthesis

S e e Lee et al., in prep., 2021 =
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Catchment-CN Flux Anomalies (model truth)

« With bias-corrected seasonal forecast meteorology, the model

is largely able to reproduce the spatial pattern of GPP
estimated using reanalysis data

 NBE = Net Biome Production, net exchange of carbon
between ecosystem and atmosphere

 NBE = Ecosystem respiration + fire emissions — GPP

NBE
Fcst.
Anom.

NBE
MERRA-2|
Anom.

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

Lee et al., in prep., 2021
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Assessing the potential predictability of land flux
forecasts (model truth experiments)

* 10 years of biosphere model hindcasts (2007-2016) starting in
December

« Anomalies in GPP and NBE calculated for seasonal hindcasts
and reanalysis driven simulation

« Spatial anomaly correlation coefficient assesses ability of
forecast to reproduce the anomaly pattern - for example, where
should we look for an interesting event?

« Temporal anomaly correlation coefficient assesses ability of
forecast to predict unusual event at a given location

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Tropical spatial anomaly correlations

AN
0.5 1 |EEEFEB
I MAR
[ APR
R MAY
)uN
Cu
I 1 AUG
Temperature sep

R (spatial corr)
o

I AN

0.5 | |EEEEFEB
I MAR

I APR

M‘M—hﬂm—w‘h‘m—hﬂlhﬂ' EEEMAY
uN

o

- .. . 1 [CJAuG
Precipitation Csep

R (spatial corr)
o

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

« Temperature predictions perform best in first few
months though this can vary substantially by year
« Temperature is easier to predict than precipitation

S e e Lee et al., in prep., 2021 =
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Tropical spatial anomaly correlations

R (spatial corr)

I AN

J | FEB

R MAR
N APR
I MAY
JuN
CjuL

1 |[EEAuc

[ ISEp

R (spatial corr)

-0.5

Precipitation

I AN

4 [IFEB

N VAR
I APR
EEE MAY
)uN
oo

1 [EJAuG

C__1sep

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

« Temperature predictions perform best in first few
months though this can vary substantially by year
« Temperature is easier to predict than precipitation

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

R (spatial corr)

R (spatial corr)

NBE

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Predictions of carbon flux (GPP, NBE)
anomalies are better than the
forecasts of the underlying
meteorological variables

Lee et al., in prep., 2021

KZ)
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Assessing contributions to land carbon predictabf

Two additional sets of experiments:
[Set 1] Apply 2016 Jan 1st Initial condition under different meteorology
[Set 2] Apply 2016 forecast meteorology for all ten years (2007-2016)

2007 init | 2008 init | 2009 init | 2010 init | 2011 init | 2012 init | 2013 init | 2014 init | 2015 init | 2016 init

2007 met (4 members) X

>

2008 met (4 members) X

2009 met (4 members) X

2010 met (4 members) X

2011 met (4 members) X

2012 met (4 members) X

2013 met (4 members) X

2014 met (4 members) X

2015 met (4 members) X

X X X X X X X X X

2016 met (4 members) X X X X X X X X X

S e e Lee et al., in prep., 2021 =
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Most of the predictability comes from initialization rather
than skillful climate forecast

Both contributions Contribution of met forecast Contribution of initial condition

1
0.8} 1 0.8
0.6 | 1 0.6
0.4 1 0.4 AN
- Ires
5 0.2 1 0.2 B MAR
> IR APR
= 0 0 EEEMAY
< N
Z 0.2} 1 -0.2 1 1 -0.2 1 1 oL
[C_JAUG
-0.4 . -0.4f 1 -0.4f 1 C_Isep
-0.6 | . -0.6 } 1 -0.6 }
-0.8 1 -0.8} 1 -0.8}
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year Year Year

Contribution of land initial condition (mainly soil moisture) is
larger than the contribution from predicted meteorology

S e e Lee et al., in prep., 2021 =
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Results seem to hold up across multiple models

Model 1 — Catchment-CN
CatchCN GPP Sp. Anom. Corr. — Tropics

2007 2008 200920102011 201220132014 20152016
CatchCN NEE Sp. Anom. Corr. — Tropcs

2007 2008 200920102011 201220132014 20152016

BJaon lFeb [Mar [JApr [IMay[ JJun [ JJul [ ]JAug [ |Sep
Big-leaf model, adapted from CLM

o gsleraea gy esimilation Office E. Lee, F. Zeng, G. Hurtt, and L. Ma &
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Results seem to hold up across multiple models

Model 1 — Catchment-CN Model 2 — Global ED (UMD)
CatchCN GPP Sp. Anom. Corr. — Tropics Global—ED GPP Sp. Anom. Corr. — Tropics

L

2007 2008 2009 20102011 201220132014 20152016 2007 2008 2009 201, 2011 2012z 2013 2014 2015 2016
CatchCN NEE Sp. Anom. Corr. — Tropcs Global—ED NEE Sp. Anom. Corr. — Tropcs

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

BJan liFeb [Mar [JApr [JMay[ [Jun [ [Jul [ JAug [ |Sep Buan [lFeb [Mar [Japr [IMay [ Joun [ Juul [ JAug [ ]Sep

Big-leaf model, adapted from CLM Global version of individual-based ED model
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But how well do the forecasts compare with observations?
Model truth evaluation — Temporal Model truth evaluation — Temporal

anomaly correlatlon (1-mo) anomaly correlatlon (4 mo)

‘Model truth’ experiments show that seasonal land carbon forecasts are capable of
reproducing reanalysis driven results at 1-2 month lead times - seasonal forecast

meteorology is able to support this type of application

Global Modeling and Assimilation Office -
gmao.gsfc.nasa.gov Lee et al uy ’n pl'ep. 39
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But how well do the forecasts compare with observations”
Model truth evaluation — Catchment-CN Model truth evaluation — Catchment-CN

Temporal anomaly correlatlon (1-mo) Temporal anomaly correlatlon (4 mo)

1.0  -0.7  -0.3 0.0 0.3 0.7 1.0

Comparison with MODIS-based FluxSat GPP product (Joiner and Yoshida, 2020)

FluxSat evaluation — Temporal FluxSat evaluation — Temporal
anomaly correlation (1-mo) anomaly correlatlon (4- mo)

Global Modeling and Assimilation Office -
gmao.gsfc.nasa.gov Lee et al uy ’n pl'ep. 40
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Carbon cycle components

- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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What about ocean predictions?

North Pacific North Atlantic Southern Ocean

North Indin

~ Ind. forecasts Still work in progress. Comparisons
S e SUGGeEst that seasonal predictions
can reproduce a model simulation
driven with reanalysis meteorology,
but still fall short when compared
with observations.

Similar findings from NCAR’s CESM
(e.g. Lovenduski et al., 2019)

Chlorophyll anomalies (ug L?)
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Global Modeling and Assimilation Office
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Summary and conclusions

NASA has supported research into seasonal carbon cycle predictions and we find some level
of predictability for all major carbon cycle processes - land use change, atmospheric growth,
fires, NEE, as well as ocean and fossil fuel (not shown). Some other lessons learned

« Timescales (months-years) and methods (statistical vs dynamic models) vary

« Certain things (e.g. volcanoes, recessions) are not predictable

« Bias correction is critically important, especially for terrestrial biosphere models

» Most skill within first 3 months for fossil fuel, fire, and land flux predictions

» Good initial conditions can often triumph over moderate or poor forecasts

* Model predictions are only as good at representing reality as the underlying simulations

Points that need more discussion:

« Who are the users of carbon cycle forecasts? What priority should modeling centers place
on these aspects of Earth system prediction?

« What metrics can we use to evaluate forecasts and benchmark improvements over time

« How do we characterize forecast uncertainty (e.g. ensemble simulations, multi-model
methods)?

Global Modeling and Assimilation Office

gmao.gsfc.nasa.gov



