
Chapter 4 Linear Wave Theory 

4.1 Introduction and Classification of Wave Types 

One of the most important dynamical properties of the atmosphere is 
its ability to support wave motions. These waves are of many different types, 
and in this chapter we shall concentrate on those that are of greatest 
importance for the large-scale behavior of the middle atmosphere. Thus we 
shall exclude discussion of acoustic waves, which have frequencies compar-
able to or larger than the buoyancy frequency and violate the hydrostatic 
relation of Eq. (3.1.3c); we shall also omit reference to waves modified by 
electrodynamic effects, which are important in the thermosphere. 

The restoring effects necessary for the existence of the waves to be 
considered here are provided by the stable density or entropy stratification 
of the atmosphere, as represented by positive values of N2 or θ0ζ, and by 
the rotation of the earth, as represented by the Coriolis parameter / = 
2Ω sin φ and its latitudinal derivative β = 2Ωα_1 cos φ (cf. Section 3.2). 

In this chapter we shall concentrate exclusively on linear waves, assumed 
to be of small enough amplitude for the equations of Section 3.4 to apply. 
Even in this linear case, it is difficult to formulate a precise definition of a 
"wave"—indeed, no one definition is likely to satisfy all meteorologists. 
However, some sort of quasi periodicity is usually implied by the term, as 
well as the ability to transfer "information" over large distances without 
the corresponding transport of fluid parcels: all the waves to be discussed 
here possess these two attributes.1 

Atmospheric waves can be classified in various ways, according to their 
physical or geometrical properties. In the first place, they can be categorized 

1 Incidentally, the departure from the zonal mean, defined by Eq. (3.3.1b), or any of its 
zonal Fourier components, is often called a "wave," despite the fact that it need not generally 
be "wave-like" in form. 
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according to their restoring mechanisms: thus buoyancy, or internal gravity, 
waves (often called "gravity waves" for short) owe their existence to 
stratification, while inertio-gravity waves result from a combination of 
stratification and Coriolis effects. Planetary, or Rossby, waves result from 
the beta-effect or, more generally, from the northward potential vorticity 
gradient [Eq. (3.4.8)]. 

A second type of classification is to distinguish forced waves, which must 
continually be maintained by an excitation mechanism of given phase speed 
and wave number, from free waves, which are not so maintained. Examples 
of forced waves include thermal tides, which are induced by the diurnal 
fluctuations in solar heating (see Section 4.3), while examples of free waves 
include global normal modes (Section 4.4). 

A further classification results from the fact that some waves can propa-
gate in all directions, while others may be trapped (or evanescent) in some 
directions. Thus under some circumstances horizontally propagating 
planetary waves can be trapped in the vertical (Section 4.5), while equatorial 
waves can propagate vertically and zonally but are evanescent with increas-
ing distance from the equator (Section 4.7). 

Waves can also be separated into stationary waves, whose surfaces of 
constant phase are fixed with respect to the earth, and traveling waves, 
whose phase surfaces move. Since information propagates with the group 
velocity (Section 4.5) and not with the phase speed, propagation can still 
occur in stationary waves. (We here use the adjective "steady" to denote 
waves whose amplitudes are independent of time, and "transient" for waves 
whose amplitudes are time-varying; see Section 3.6. Some authors use these 
terms as synonyms for our "stationary" and "traveling," while another 
definition of "transient" is mentioned in Section 5.1. What we have called 
stationary waves are sometimes also known as standing waves; however, 
the latter name is best reserved for waves with fixed nodal surfaces as 
typified, say, by a velocity disturbance u' oc cos kx cos ωί.) 

The final general form of classification that we shall mention distinguishes 
waves that do not lead to any mean-flow acceleration from those that do. 
The former category includes waves that are linear, steady, frictionless, and 
adiabatic (see Section 3.6), while the latter usually includes any wave that 
is transient or nonconservative; however, nonlinear waves can sometimes 
satisfy nonacceleration conditions if they are steady and conservative. 

4.2 Wave Disturbances to a Resting Spherical Atmosphere 

When a stratified spherical atmosphere, at rest with respect to the rotating 
planet, undergoes small disturbances, an important class of wave motions 
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results. The study of such a system originated with Laplace in the early 
nineteenth century, and has led to many insights into atmospheric behavior; 
in particular it underlies the theory of tides (Section 4.3) and global normal 
modes (Section 4.4). 

We start with the linearized equations [Eqs. (3.4.2)], and set the basic 
flow ü to zero; thus θφ also vanishes, by Eq. (3.4.1c). Moreover, we use 
Eq. (3.4.2c) to substitute for Θ' in Eq. (3.4.2e) and use the definition 
N\z) = H-lRÖze-KZ/H [cf. Eq. (3.2.13)] to replace 0Z in Eq. (3.4.2e). There 
result 

u\ -fv' + (a cos φ)~ιΦ'λ = X\ (4.2.1a) 
O't+fu' + a-l<t>'4,= r , (4.2.1b) 
{a cos φ)-\ΐΛ'λ + (υ' COS φ)φ] + poHpoW')Z = 0, (4.2.1c) 
φ ; , + J V V = KJ'/H, (4.2.1d) 

where the diabatic term KJ''/H also equals H~lRQ'e~KZ/H; see Section 
3.1.1. If the lower boundary is flat, and located at z* = 0, the linearized 
version of Eq. (3.1.6a) becomes 

Φ;+νν'Φζ = 0 at z = 0; 

using Eq. (3.4.1b) and the relation between temperature and potential 
temperature, this can be written 

^ , Rf(0)w' 
Φ', + ΤΓ—= 0 at z = 0. (4.2.2) 

H 
The upper boundary condition depends on the problem in hand: see Section 
4.3.3. 

In this section we consider the conservative or unforced case X' = Y' = 
J' = 0, and use the method of separation of variables to investigate the 
solutions of Eq. (4.2.1). A first step is to separate the vertical dependence 
from the horizontal and time dependence; it turns out that the natural way 
to do this is by setting 

(u\ ν', Φ') = ez/2HU(z)[u(\, φ, t), υ(λ, φ, t), Φ(λ, φ, t)] (4.2.3a) 
and 

w ' = ez/2HW(z)w(\, φ9 t). (4.2.3b) 

Substitution of Eq. (4.2.3a) into Eqs. (4.2.1a,b) (with X' = Yf = 0) and 
cancellation of the ez/2HU factor yields the following two equations, which 
involve only the (λ, φ, t) dependence: 

ut-fv + (a cos φ)_ 1Φλ = 0, (4.2.4a) 
£ f+/ ί ϊ + έΓ1Φφ = 0 , (4.2.4b) 
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while substitution of Eqs. (4.2.3a,b) into Eqs. (4.2.1c,d) (with J' = 0) yields 
the following pair of equations, involving z dependence as well: 

U(a cos φΓι[ΰλ + (5 cos φ)φ] + ( Wz - ^Λ w = 0, (4.2.5a) 

( 
ΙΛ + -77) Φ* + AT Wiv = 0. (4.2.5b) 

2H J 

Examination of the expressions of Eqs. (4.2.3) and the z-dependent terms 
of Eq. (4.2.5a) shows that we can choose 

dW W f 

t/ = - - - (4.2.6a) 

without loss of generality. Substitution of Eq. (4.2.6a) into Eq. (4.2.5b) yields 

" ( Wzz ~ 4^) / N 2 W = Ä / * ' = i 8 h ) i ( 4 - 2 ' 6 b ) 

say, where (gh)'1 is a separation constant and h has dimensions of length. 
Then Eqs. (4.2.6a,b) and Eq. (4.2.5a) give 

(a cos <A)_1[wA + (v cos φ)φ] + (gh)-1^, = 0, (4.2.4c) 

while the outer terms in Eq. (4.2.6b) yield 

d2W 

dz2 ( f - 4 ^ h = ° · (4-2-7a) 
The three equations [Eqs. (4.2.4a,b,c)] for the horizontal and time structure 
are called Laplace's tidal equations, and are identical to those for small 
disturbances to a thin layer of fluid on a sphere, where the fluid has mean 
depth h much less than the radius a of the sphere, ü and v are the velocity 
components, and g - 1 ^ is the departure of the fluid depth from its mean 
value. The separation constant h is called the equivalent depth. Equation 
(4.2.7a) is called the vertical structure equation; from Eqs. (4.2.2), (4.2.3), 
and (4.2.6), the lower boundary condition can be written 

/RT(0) l\W , 

{-^-2)Η = 0 3t Z = 0· (4'2-7b) 
dW /RT(0) 1 

It should be noted that h is not the vertical scale of W(z). For example, 
when N is constant and 0 < h < 4N2H2/g, Eq. (4.2.7a) has particular 
solutions that are sinusoidal in z with vertical wavelength λν = 
2n[(N2/gh) - 1/4Η2Γ1 /2; the variation of λν with h is shown in Fig. 4.1. 
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Fig. 4.1. The wavelength λν as a function of the equivalent depth h for 0 < h < 4N2H2/g 
in an isothermal atmosphere with f = 240 K. In this case H = 7 km and 4N2H2/g = 4κΗ = 
8 km by Eq. (3.2.13) and the definition H = RTJg, together with κ = 2/7. The inset gives an 
expanded view of the region near the origin. 

The standard procedure for finding solutions to Laplace's tidal equations 
[Eqs. (4.2.4)] is to pose the sinusoidal forms 

{«, 5, Φ} = Re{[w(<A), υ(φ), Φ(</>)] exp i(s\ - 2Ωσί)} (4.2.8) 

with zonal wavenumber s (an integer) and period Ιπ/ΙΟ,σ [or (2σ)_ 1 in 
days]. Solving Eqs. (4.2.4a,b) for ü and v and substituting in Eq. (4.2.4c), 
we obtain Laplace's tidal equation, 

£Φ + γΦ = 0. 

Here y = 4Ci2a2/gh is called Lamb's parameter and 

(4.2.9) 

άμ[(σ2-μ2)άμ\ σ2 - μ2 |_ σ(σ2 - μ2) 1 - μ2 \ (*'Z'W) 

is a second-order ordinary differential operator in the variable 

μ = sin φ ( -1 ^ μ ^ 1) (4.2.11) 

and depends on s and σ. The appropriate boundary conditions are that Φ 
is bounded at the poles, μ = ±1. 
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Given these boundary conditions, Eq. (4.2.9) is an eigenvalue problem 
and can be solved numerically. For example, if s and σ are specified, as 
in the theory of thermally forced tides to be treated in Section 4.3, a set of 
eigenvalues γ(

η
σ'5) [or equivalent depths Λ(

η
σχ)] and corresponding eigenfunc-

tions Θ(„σ'5) can be found, which are bounded at the poles and satisfy 

^ΘΐΓ5 ) + γ[Γ5)θ(,Γ'5) = 0 (4.2.12) 

for integer values of n. The Θ„ are called Hough functions and, together 
with yn, have been extensively tabulated (e.g., by Longuet-Higgins, 1968). 
It should be noted that for some choices of cr, s, and n, γ(

η
σ'5) and thus the 

equivalent "depth" h{^s) can be negative; moreover, the frequencies of the 
modes with y < 0 all satisfy 

\σ\ < 1. (4.2.13) 

Some examples of the variation of |γ | _ 1 / 2 with σ and n at fixed zonal 
wave number s are shown in Fig. 4.2, for both positive and negative y. The 
modes of eastward phase speed in Fig. 4.2a can all be regarded as (inertio-) 
gravity waves, except in the limit y~l/2 -* 0 (to the left of the diagram), 
when the lowest two curves represent the Kelvin wave and mixed planetary-
gravity (or Rossby-gravity) wave, respectively. The modes of westward 
phase speed in Fig. 4.2b fall into three classes: the central curve represents 
the mixed plmetary-gravity wave, those above it (of higher frequency) 
represent gravity waves, while those below (of lower frequency) represent 
planetary waves. 

Longuet-Higgins gives a more precise system of classification for these 
modes, and for those of negative equivalent depth in Figs. 4.2c,d. He also 
considers the limits of large and small |γ|~1/2 m detail: for example, as 
y~l/2 -> oo (i.e., large positive equivalent depths, on the right of the diagrams) 
the gravity waves, indexed by nG in that limit, obey the dispersion relation 

2Ωσ ~ ±[nG(nG + l)gh]l/2a\ (4.2.14a) 

(see Section 4.6.1), and the corresponding Hough functions reduce to the 
associated Legendre polynomials Ρ„(μ). It can be shown that these limiting 
modes are divergent but irrotational—that is, Φ # 0 but the relative vorticity 
(a cos φ)~ι[νλ - (ü cos φ)φ] = 0. On the other hand, the planetary waves 
and mixed mode, indexed by nR, become nondivergent (Φ = 0) but rota-
tional as y~l/2 -» oo, with relative vorticity proportional to Ps

n and dispersion 
relation 

2 Ω σ ~ 7 2 " ' : (4.2.14b) 
" R ( " R + 1) 

see the end of Section 4.5.2. 
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Fig. 4.2. Plots of | γ | _ 1 / 2 = (g\h\)l/2/2Cla versus frequency σ for zonal wave number s = 1. 
Positive equivalent depths (γ > 0): (a) eastward phase speed (cr > 0), (b) westward phase 
speed (σ < 0). Negative equivalent depths ( γ < 0 ) : (c) eastward phase speed (cr > 0), (d) 
westward phase speed (er < 0). In (b) and (d) some selected periods in days are given, and a 
horizontal line is drawn at the diurnal period (σ = —%). In (b) some equivalent depths are 
given (for g = 9.8 m s"1, Ω = 7.3 x 10~5 s_1, a = 6.4 x 106 m). The cross in (b) indicates the 
main propagating diurnal tidal mode (Section 4.3.3), and the circle indicates the "5-day wave" 
(Section 4.4). The indices nG and nR on the right-hand ends of some of the curves appear in 
Eqs. (4.2.14a,b). The indices nE on the left-hand ends correspond to the index n used in 
Section 4.7 for equatorially trapped modes. [Adapted from Longuet-Higgins (1968).] 
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As y~l/ -> 0 (small positive equivalent depths, on the left of the 
diagrams), all modes become trapped near the equator: these equatorial 
waves are more readily studied using beta-plane geometry, and will be 
considered in Section 4.7. Asymptotic forms are also available for y < 0; 
these include polar-trapped modes as ( - γ ) _ 1 / 2 - » 0 , and nondivergent 
planetary waves with dispersion relation Eq. (4.2.14b) as ( -γ)~ 1 / 2 -> oo. 

A different approach is used in the theory of free global normal modes, 
to be discussed in Section 4.4. Here h is sought as an eigenvalue of the 
vertical structure equation [Eq. (4.2.7a)], subject to the lower boundary 
condition of Eq. (4.2.7b) and an appropriate upper boundary condition. 
The corresponding y = 4fl2a2/gh, together with the zonal wave number s, 
is substituted into Laplace's tidal equation [Eq. (4.2.9)], which is now solved 
as an eigenvalue problem for σ, giving a set of eigenfrequencies (which can 
be read off from diagrams such as Figs. 4.2a,b) and corresponding Hough 
functions. 

4.3 Atmospheric Thermal Tides 

Atmospheric tides are global-scale daily oscillations, which are primarily 
forced by diurnal variations of the heating due to absorption of solar 
ultraviolet radiation by atmospheric water vapor and ozone. The solar and 
lunar gravitational forcing that produces ocean tides is much less important 
for the atmosphere, and we shall concentrate on thermally driven tides here. 
We shall further restrict attention to migrating tides, which move with the 
sun. Nonmigrating tides are associated, for example, with topography and 
geographically fixed tropospheric heat sources; they have received compara-
tively little theoretical attention. Migrating tides, on the other hand, have 
been studied extensively; they can sometimes propagate through great 
depths of the atmosphere, and can attain large amplitudes at some heights, 
especially in the thermosphere. Even in the mesosphere tidal temperature 
amplitudes can easily exceed 10 K, and can for example lead to problems 
in the interpretation of satellite data sampled once per day. 

4.3.1 Summary of the Main Results of Atmospheric Tidal Theory 

The basic ideas of tidal theory are quite simple, although some of the 
mathematical details are a little complicated. Thus, before going into the 
analysis in depth, we shall summarize the main results. 

The first point to notice is that the solar heating is only active during 
the day, with a time variation which might look something like that shown 
in Fig. 4.3 at a point in midlatitudes. A Fourier analysis of this curve will 
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Fig. 4.3. Schematic diagram of the typical daily variation of the solar heating isoiar (heavy 
curve) at a point in midlatitudes. The horizontal dashed line represents the diurnal or zonal 
average of / s o l a r , which is assumed to be balanced by a zonal-mean infrared cooling, so that 
the net 7 = 0. The term J' is represented by the departure of the heavy curve from the dashed 
curve. 

include a steady component, a diurnal component (with a 24-hr period), a 
somewhat smaller semidiurnal component (with a 12-hr period), and so on. 
The response of the atmosphere to this heating can likewise be decomposed 
into a steady part, and diurnal, semidiurnal and higher-frequency oscilla-
tions. An old puzzle, raised by Kelvin in 1882, was to explain why the 
semidiurnal surface pressure oscillation (about 1 mb in amplitude) is larger 
and more regular than the diurnal. The answer is best explained by describing 
the response of the whole middle and lower atmosphere to the diurnal and 
semidiurnal heating, as currently understood from theory and observation. 

It transpires that the forced semidiurnal tidal oscillation has a large 
vertical wavelength (greater than 100 km). This allows it to be excited 
rather efficiently by the deep ozone heating region, which is present around 
the stratopause. Moreover it can easily propagate to the ground and 
hence show up in surface pressure fluctuations. It is regular because the 
ozone heating is regular, and its latitudinal structure is fairly uniform. 

The diurnal tide, on the other hand, has a more complex behavior. 
Between 30°N and 30°S it can propagate vertically, with a wavelength of 
about 28 km. Polewards of 30°, however, it is trapped in the vertical, close 
to its forcing region. As a result, the vertically propagating modes forced 
by the deep ozone heating tend to interfere destructively, and thus have 
small amplitude at the ground, while the trapped modes forced by the ozone 
never reach the ground at all. However, the comparatively shallow water-
vapor heating region in the troposphere can excite this tide quite effectively, 
although this heating is somewhat intermittent in space and time. The 
resulting surface pressure oscillation is also intermittent. On the other hand, 
at the stratopause and above, the diurnal oscillation can be as strong as the 
semidiurnal. 
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4.3.2 Observations of Tides in the Middle Atmosphere 

The surface pressure record is by far the largest existing atmospheric 
tidal data set, and it was the predominance of the semidiurnal component 
in this record that prompted Kelvin's question of 1882 and some of the 
earlier theories of atmospheric tides; data on other tropospheric tidal 
parameters, such as surface temperature and wind, are also very extensive 
now. Observations of tides in the middle atmosphere, on the other hand, 
are sparser, although a number of measurement techniques are currently 
available; these techniques will be briefly discussed here. 

In the lower stratosphere, up to about 30 km altitude, wind observations 
from the tracking of meteorological balloons have provided data for large 
areas of the world and over many years. These data have been analyzed to 
provide estimates of the diurnal and semidiurnal tides, and show consider-
able vertical and horizontal structure and the presence of both migrating 
and nonmigrating components: see Fig. 4.4. 

Above 30 km, a number of measurement techniques based on rockets 
and radars can be used. Rocket observations are mainly confined to altitudes 
below about 60 km, although there are a few important observations between 
60 and 100 km. The radar techniques (summarized in Section 1.5) primarily 
provide wind measurements in the altitude range 70-110 km. The rocket 
and radar data have provided amplitudes and vertical wavelengths of both 
the diurnal and semidiurnal tides above selected locations on the globe and 
for selected periods of time: see Figs. 4.5 and 4.6. 

These rocket and radar observations are necessarily restricted in geo-
graphical, and sometimes temporal, coverage, and this can be a drawback 
when comparison with theoretical calculations of global tidal structures is 
attempted. A recent advance has been the employment of simultaneous 
measurements from two Stratospheric Sounding Units on different NOAA 
satellites to obtain near-global tidal observations over long periods of time 
at several levels in the upper stratosphere. Although these observations have 
limited vertical resolution, satellite techniques of this kind promise a great 
expansion of the observational basis of our knowledge of tides in the middle 
atmosphere, thus providing a more critical test of theory. Such comparisons 
between theory and observations as are available at present are mentioned 
briefly in Section 4.3.4. 

4.3.3 Classical Tidal Theory 

We shall now outline the "classical" theory of tides, as given for example 
by Chapman and Lindzen (1970), who consider linear disturbances to an 
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Fig. 4.5. Vertical variation of the amplitude and phase of the diurnal northerly wind 
component, as determined from rockets launched at Ascension Island (8°S). Also shown are 
theoretical calculations by Lindzen (1967), based on classical tidal theory (see Section 4.3.3). 
[After Reed et al (1969). American Meteorological Society.] 

atmosphere that is basically at rest. The set of Eqs. (4.2.1) is therefore used, 
together with suitable boundary conditions and a specified thermal forcing 
term KJ'/ H on the right of Eq. (4.2.1 d); the mechanical forcing or dissipation 
terms X' and Y' are set to zero. The restriction to migrating tides means 
that all variables are taken to depend only on local time, latitude, and 
height; thus, for example, / ' = /'(A + Ωί, φ, z), since t + Α/Ω is the local 
time at longitude A if t is Greenwich Mean Time. (In accordance with the 
notation of Section 3.3, / ' denotes the deviation of / from the zonal mean 
net heating J. As seen from Fig. 4.3, the zonal-mean solar heating is nonzero; 
however, it will be assumed to be balanced by a zonal-mean infrared cooling, 
so that J = 0.) 

Since / ' is periodic, it can be expanded in Fourier harmonics: thus 

J1 = Re Σ '(5)(<M)e Ι5(λ+Ωί) (4.3.1) 

where the coefficients J(s) are assumed known from a radiative-photo-
chemical calculation. (This may not be a very accurate assumption: for 
example, the ozone distribution, which partly determines the heating, will 
depend to some extent on the tidal response to the heating.) The 5 = 1 
component is the diurnal heating, and corresponds to σ = —\ in the notation 
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Fig. 4.6. Amplitude (ms_ 1) and phase (local time of maximum) of the semidiurnal tidal 
wind components in the upper mesosphere and lower thermosphere, as measured by a partial 
reflection radar technique at Saskatoon (52°N) during 1982. The shaded region indicates that 
the time-mean zonal wind is easterly, the unshaded region that it is westerly. [After Manson 
and Meek (1986).] 
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of Eq. (4.2.8); the s = 2 component is the semidiurnal heating and corre-
sponds to σ = — 1; higher terms are seldom considered. 

The next step is to expand each / ( 5 ) (φ, z) in the Hough functions 
introduced in Section 4.2. (This procedure is analogous to that adopted in 
the theory, say, of the forced vibration of a stretched string, in which the 
forcing is expanded in terms of the eigenmodes of the unforced string.) In 
particular, / ( 1 ) is expanded in diurnal Hough functions Θ(

η~1/21) which we 
shall call Θ(

η
1} for short, while J(2) is expanded in semidiurnal Hough 

functions Θ(
η

-1'2) = Θ(
η
2). Since modes of negative equivalent depth exist in 

the diurnal case (σ = — ̂ ), these must be included in the expansion of/(1). 
However, Eq. (4.2.13) shows that such modes are absent for semidiurnal 
and higher frequencies. Figures 4.2b,d for s = 1 include horizontal lines at 
the diurnal frequency, whose intersections with the plotted curves indicate 
the relevant modes and their equivalent depths. For positive equivalent 
depths (Fig. 4.2b) the relevant Hough functions all represent gravity modes, 
in the sense of Section 4.2, except for the gravest diurnal mode, which is 
of mixed type, has an infinite equivalent depth (γ"1 / 2 -» oo), and is antisym-
metric about the equator. 

As an example, we shall consider the diurnal forcing /(1)(</>, z)el{A+at) 

and the atmospheric response to it. We write 

/ ( 1 ) (Ψ,ζ)=ΣΛ"Μβ(. ΐν) (4-3.2) 
n 

where μ = sin φ as before; thus /(„1} is the projection of the diurnal heating 
onto the nth diurnal Hough function. We look for a response with a similar 
migrating form, say, w(1)(</>, z)el{K+at) for the vertical velocity, where 

>ν(1)(ψ, ζ)=Σ ε*/2Η\νϊ\ζ)Θ(
η
ι)(μ), (4.3.3) 

n 

by analogy with Eqs. (4.3.2) and (4.2.3b) (and with the vibrating string 
example, where the response to the forcing is also expanded in eigenmodes). 
We return to Eqs. (4.2.1), set X' = Y' = 0, and give all primed variables 
the diurnal e l ( A + m ) dependence. The diurnal velocity amplitudes w(1) and 
u(1) can be expressed in terms of Φ(1), using Eqs. (4.2.1a,b), and then 
expressed in terms of w(1) and 7(1) by means of Eq. (4.2.1d). On substitution 
into Eq. (4.2.1c) we obtain a complicated partial differential equation in z 
and μ for w(1) in terms of/(1); however, on using Eqs. (4.3.2) and (4.3.3), 
and Laplace's tidal equation [Eq. (4.2.12)] for Θ(„υ, the μ dependence 
separates out, leaving the inhomogeneous vertical structure equation [cf. 
Eq. (4.2.7a)] 

d2W^ \J^ _ _ L 1 Kj«\z)e-"2H 

dz2 ^[gh^ 4H2\Wn gHhi" W(
n

l) = ^ ^ T T T m , (4.3.4) 



164 4 Linear Wave Theory 

with homogeneous lower boundary condition [cf. Eq. (4.2.7b)] 

^ Γ + Ι _ ^ ~ 2 . | ^ Γ = 0 at z=0' ( 4 3 · 5 ) 

where /z(„1} is the nth diurnal equivalent depth. 
The upper boundary condition needs careful consideration, and we 

follow the approach outlined in Section 3.1.2.b. We suppose that above 
some height z2 the forcing /(„1} vanishes and the mean temperature T(z) 
becomes constant, Γ^ say, so that N2 = RKT^/H2 = gKT^/HTS = ΛΓ^ = 
constant there. Thus for z > z2, Eq. (4.3.4) becomes 

dz2 +[gh^ 4Η>Γ" °· 
with solutions that are exponential or sinusoidal in z according as the 
expression in square brackets is negative or positive. If it is negative, that 
is, if h(

n
l) < 0 or Η(

η
1] > 4H2N2Jg = AKHTJ TS9 then the decaying solution, 

with Wn proportional to 

exp"L^"^J z' 
is clearly the one to be selected, and this provides the required upper 
boundary condition. Using Eqs. (4.2.3a), (4.2.6a), and (4.2.7a) and the fact 
that£o_oc g~z/H, it can be shown that the mean wave energy per unit volume, 
\p0{u'2 + υ'2 + Φ,2/Ν2) [see Eq. (3.6.3)], decays with height for this solu-
tion. However, if 0 < /ι(„υ < 4H 2 N^/g , then propagating solutions exist, 
with W(

n
1] oc eimz for z> z2 where 

Γ N 2 1 11/2 

is the vertical wave number. The wave energy per unit volume is independent 
of z for either sign of m, and the appropriate choice has to be made by 
computing the vertical component of the group velocity, c(

g
z\ and demanding 

that it be positive. This is the "radiation condition," which states that 
information must be traveling upward, and not downward, at great heights: 
see Section 3.1.2. We have c(

g
z) = θω/dm, where ω = 2Ωσ is the frequency. 

Thus 

4Ζ ) = — = 2Ω — = 4Üm —~Ύ dm dm dm 

-«-©/(ϊ)-—0/(3) ^ 
by Eq. (4.3.6), where indices on h have been dropped for clarity. Referring 
to Fig. 4.2b, we see that for all the relevant modes of finite, positive h (which 
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are in fact gravity waves), d(-a)/dh > 0, so that cg
z' has the same sign as 

m, by Eq. (4.3.7). To satisfy the radiation condition, the positive sign must 
be chosen in Eq. (4.3.6), thus giving the upper boundary condition in the 
propagating-wave case. 

The numerical solution of the vertical structure equation [Eq. (4.3.4)] 
for W^iz), subject to the appropriate boundary conditions, is straight-
forward. The series of Eq. (4.3.3) is then summed to obtain w(1)(<£, z), and 
M(1), v(l\ and Φ(1) can be found from Eq. (4.2.1); a precisely similar 
procedure can be used for the semidiurnal response w(2), etc. Full details 
are given by Chapman and Lindzen (1970). 

Although the global forms of the tidal structure are quite complicated, 
some general features can be deduced from basic properties of the vertical 
structure equation and Laplace's tidal equation. First note from Eq. (4.3.4) 
that if 0 < h < 4N2H2/g a tidal mode is roughly sinusoidal in the vertical, 
with wavelength given locally by 

1-1/2 

(The modal index n has again been omitted.) In the diurnal case some 
modes have h < 0, and the mixed mode of Fig. 4.2b has h = oo; these modes 
are trapped in the vertical near to the forcing region. However, the diurnal 
gravity waves all propagate: the leading symmetric one, marked with a cross 
in Fig. 4.2b, has h ~ 690 m and λν ~ 28 km. Investigation of the horizontal 
Hough function structure (see Longuet-Higgins, 1968 and Chapman and 
Lindzen, 1970) shows that the propagating modes are confined equatorward 
of 30° latitude. (This is the latitude at which \f\ = 2Ω|σ| or |μ| = |σ| for the 
diurnal frequency σ = —\9 where Laplace's tidal equation [Eq. (4.2.9)] has 
apparent singularities: see also Section 4.6.3.) The mixed mode is global in 
extent with Θ oc sin φ cos </>, and the modes of negative equivalent depth 
are trapped poleward of 30°. Some calculations of the total diurnal response 
are given in Fig. 4.7; note the strong latitudinal variation, the fact that the 
amplitude of T(1) is several kelvins in the mesosphere, the vertical 
wavelength of about 28 km near the equator, and the weak phase variation 
at high latitudes. 

The equivalent depths for the semidiurnal tide are all positive, all modes 
are of the gravity-wave class, and the dominant mode has h ~ 7.85 km. For 
this value, N2/gh ~ 1/4H2, implying a very large vertical wavelength λν, 
as mentioned above (see also Fig. 4.1), the vertical structure equation [Eq. 
(4.3.4)] is replaced by an equation of the form 

^ « F(z) - KJ?\z)e-"2H/gHh™ (4.3.8) 
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Fig. 4.7. (a) Amplitude and (b) phase of solar diurnal component of V at various latitudes 
for equinox. [After Lindzen (1967).] 



4.3 Atmospheric Thermal Tides 167 

and the lower boundary condition [Eq. (4.3.5)] can be approximated by 

dW W , 
^ + ^ = 0, (4.3.9) 

since RT(0)/gh^ ~ 1. If the semidiurnal excitation were all concentrated 
at one level, ze say, we would have F(z) = Fe 8(z - ze) and the solution to 
Eqs. (4.3.8) and (4.3.9) bounded at great heights would take the form 
W = (2H — z)Fc for z < ze9 that is, below the excitation level. The corre-
sponding solution for U would be 

U = -(2-z/2H)Fe for z < ze 

by Eq. (4.2.6a), implying that U would change sign at z = AH ~ 28 km if 
the excitation level ze were above this height; thus the semidiurnal phases 
of u' and v' would shift by π at z ~ 4H, by Eq. (4.2.3a). Detailed calculations 
show that a similar behavior occurs in the more accurate theory when several 
semidiurnal Hough modes are included, when F(z) is distributed in the 
vertical but confined mostly to altitudes above 28 km, and when Eqs. (4.3.4) 
and (4.3.5) are used rather than Eqs. (4.3.8) and (4.3.9). Some results are 
given in Fig. 4.8; they show a phase shift in the southward wind at about 
28 km altitude, and quite large temperature amplitudes in the mesosphere. 
They also demonstrate the dominance of ozone in forcing this tide. 

4.3.4 More Detailed Theory 

In the last decade or so, various improvements on the "classical" theory 
have been made. Mean winds ϋ(φ, ζ) and latitudinally varying mean tem-
peratures Τ(φ, ζ), for equinox and solstice conditions, have been included, 
as have Newtonian cooling and (in the thermosphere) molecular viscosity, 
thermal conductivity, and ion drag. Better parameterizations of ozone and 
water-vapor heating have been used, and the effects of heating by molecular 
oxygen included. Such calculations have been performed for height ranges 
from the ground up to several hundred kilometers. 

The theory as it stands now generally agrees fairly well with observations, 
although, as mentioned in Section 4.3.2, the latter are fairly scanty in the 
stratosphere and mesosphere. The main discrepancies are between the 
calculated and observed semidiurnal tides; theory predicts a phase shift in 
the horizontal winds of 180° at about 28 km altitude (see Fig. 4.8) which is 
not observed, and the calculated surface pressure phase is 30-60 min later 
than observed. Recent studies suggest that these differences may be due to 
the omission of a semidiurnal contribution from latent heating in the tropics. 
There is also a discrepancy between calculated and observed diurnal tides 
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H 2 0 and 0 3 , (3) 0 3 only (Lindzen 1968), and (b) phase of semidiurnal component of (-ν') 
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in the high latitude mesosphere; the observations show a strong seasonal 
variation in wavelength and phase that is not predicted by theory. As yet, 
the satellite measurements mentioned in Section 4.3.2 have only been 
compared with radiance calculations based on classical tidal theory; fair 
qualitative agreement is found, but some quantitative discrepancies appear, 
and the reasons for these are at present unresolved. 

Another recent development has been the study of nonlinear processes 
associated with tides: possible implications of such processes for the mean 
circulation of the middle atmosphere are mentioned briefly in Section 7.3. 

4.4 Free Traveling Planetary Waves 

A well-documented group of atmospheric waves is a class of zonally 
traveling structures of global scale, which have periods of a few days. Such 
waves are thought to be examples of free traveling planetary (Rossby) waves 
or global normal modes and, unlike the thermally driven tides described 
in the previous section, they are apparently not maintained by traveling 
forcing effects. They appear for example in surface pressure data, in standard 
analyses of upper tropospheric radiosonde data, and in satellite data from 
the stratosphere. Space and time filtering can help to distinguish them from 
other atmospheric phenomena. 

The most prominent mode of this class is the 5-day wave, a westward-
traveling disturbance whose period is close to 5 days and that is approxi-
mately sinusoidal in the east-west direction with zonal wave number s = I. 
The geopotential disturbance Φ' or temperature disturbance V associated 
with this wave is symmetric about the equator, and peaks in midlatitudes. 
Examples of middle atmosphere observations are presented in Figs. 4.9 and 
4.10. The wave has little phase tilt in the vertical, and the observed tem-
perature disturbance grows with height. At the ground the observed pressure 
fluctuation is about 0.5 mb; in the upper stratosphere at about 40 km altitude 
(~2mb) the temperature fluctuation is approximately 0.5 K. Numerous 
other traveling modes of this type have also been observed, including a 
wave-number 1, 16-day wave and a wave-number 3, 2-day wave (Fig. 4.11). 
More details are given in Section 5.4. 

The simplest theory of free modes of this type involves unforced, global-
scale, linearized disturbances to an atmosphere that is basically at rest. 
Equations (4.2.1) are used, with X' = Y' = J' = 0; then solutions are sought 
in the form 

w' = ez/2H Re[ W(z)w(<l>) exp i(s\ - 2Ωσί)], (4.4.1) 

for example [cf. Eqs. (4.2.3b) and (4.2.8)], where s is specified and σ is to 
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Fig. 4.9. Solid curve: brightness temperature amplitude of the 5-day wave as a function 
of latitude at about 42 km altitude for November 1973, as measured by the Selective Chopper 
Radiometer on the Nimbus 5 satellite. [After Rodgers (1976).] Broken curve: latitudinal 
structure of the Hough function corresponding to the 5-day wave (s = 1, σ ~ -0 .1 , h ~ 104 m). 
(Courtesy of P. J. Valdes.) 

be determined. The method for calculating σ proceeds in two stages: first 
the vertical structure equation [Eq. (4.2.7a)] is solved as an eigenvalue 
problem for the equivalent depth h, subject to the lower boundary condition 
[Eq. (4.2.7b)] and the requirement that W -» 0 (and hence the wave energy 
per unit volume tends to zero) as z -> oo. [Note that the radiation condition 
of Section 4.3 is not needed here, since the required modes must be 
evanescent at great heights. If they were to propagate upward at great 
heights, a continual forcing mechanism would be needed to maintain their 
amplitudes at low levels. Thus an eigenvalue h must be such that N2/gh < 
(\/4H2) above some altitude z,, say.] 

The second stage of the calculation of σ takes the value or values of h 
found in this way, substitutes them into Laplace's tidal equation for the 
horizontal structure, 

S£w + (4Ci2a2/gh)w = 0 (4.4.2) 

[cf. Eq. (4.2.9)], and solves the latter as an eigenvalue equation for σ. 
[Recall that S£ depends on s and σ: see Eq. (4.2.10).] The eigenfunctions 
w are given by Hough functions. (Note how this procedure differs from 
that used in Section 4.3: see also the end of Section 4.2.) 

As a simple example, consider an isothermal basic atmosphere, with 
T=TS = constant; then N2 = RKTSH~2 = gKH'1 by Eq. (3.2.13) and the 
definition H = RTJg. In this case a solution W(z) of Eq. (4.2.7a) can only 

T I I I Γ 
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Fig. 4.10. The 5-day wave at 1 mb as observed by the Stratospheric Sounding Unit on the 
TIROS-N satellite, for 6 successive days in August-September 1980. The wave-number 1 
Fourier component of the geopotential height anomaly has been bandpass-filtered to select 
periods of 5-6 days (eastward and westward). Note the clear westward-traveling pattern except 
south of 50°S. Shaded regions denote negative anomalies; the contour interval is 20 m. [After 
Hirota and Hirooka (1984). American Meteorological Society.] 
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Fig. 4.11. The 2-day wave (zonal wave number 3) as observed by the Selective Chopper 
Radiometer on the Nimbus 5 satellite: brightness temperature contours at about 42 km altitude 
on January 16, 1973. [After Rodgers and Prata (1981).] 

satisfy the lower boundary condition of Eq. (4.2.7b) and the upper boundary 
condition W -» 0 as z -» oo if 

h = (l-Ky1H, 

where (1 - κ)"1 = cp/cv ~ | , and cv is the specific heat at constant volume. 
Then W(z) oc exp[(* - %)z/H] and hence 

w'oce
Kz/H (4.4.3) 

by Eq. (4.4.1). Using Eqs. (4.2.6) and (3.1.3c') it can be shown that Φ', uf, v', 
and V have a similar z dependence. The wave thus has no phase tilt in the 



4.4 Free Traveling Planetary Waves 173 

vertical, and although the velocity and temperature fields grow with height, 
the corresponding energy density !p 0 (V 2 + v'2 + Φ'2Ν~2) [cf. Eq. (3.6.3)] 
decays with height since p0°c e~z/H. This is an example of an "external" 
or "edge" wave, being trapped against the lower boundary. It can be verified 
that the geometric vertical velocity Dz*/ Dt, as opposed to the "log-pressure" 
velocity w = Dz/ Dt, vanishes everywhere. Such a vertical structure is also 
exhibited by an acoustic wave known as the Lamb wave. [Incidentally, no 
such wave exists in a model with either of the artificial lower boundary 
conditions Φ' = 0 or w' = 0 at z = 0: cf. Eqs. (3.1.6b,c).] 

The planetary-wave dynamics of this wave enter through the horizontal 
structure equation [Eq. (4.4.2)]. Taking Ts = 240 K, so that H = 7 km, we 
obtain h ~ 10 km, and on consulting Fig. 4.2b for s = 1 we find that the 
gravest symmetric westward-traveling planetary mode with this equivalent 
depth (indicated by a circle) has a period of about 5 days. The corresponding 
latitudinal structure of w (and Φ') is given in Fig. 4.9. This theoretical 
solution is close in period and in horizontal and vertical structure to the 
observed 5-day wave. 

This simple type of theory can be extended in several ways. Allowance 
for a nonisothermal basic temperature T(z) does not appear to permit 
vertical structures significantly different from the external mode form [Eq. 
(4.4.3)], except possibly for a "ducted" mode peaking near the stratopause. 
However, the latter is highly susceptible to dissipative processes and is 
therefore unlikely to have any analogue in the real atmosphere. Inclusion 
also of horizontally varying mean winds ΰ(φ) still gives a mathematically 
separable problem, with a modified horizontal structure equation, which 
can be solved numerically. If the mean wind w, and thus the mean tem-
perature Γ, depends on latitude and height, the problem is no longer 
separable in φ and z, but numerical methods are still available for solving 
the linear equations of Eqs. (3.4.2), assuming all disturbance variables to 
have the exp i(s\ - ΙΩσί) form of Eq. (4.4.1) and given appropriate bound-
ary conditions. Such a method has been used for example to show that 
the "5-day" wave period is relatively insensitive to the background wind 
structure and thus to partially explain why it is such a ubiquitous feature 
of observations. Details of this approach and further applications to models 
of the 16-day wave and the 2-day wave are given in Section 5.4. 

Observations have suggested the existence of many other global free 
traveling waves of various periods. Not all of these modes may be even 
approximately sinusoidal in the zonal direction. For example, a sequence 
of synoptic maps (Fig. 4.12) shows that a feature that has been identified 
as a "4-day wave" by Fourier analysis of time series is in reality a localized 
warm pool that circles the Southern Hemisphere stratosphere in about 4 
days. 
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Although the waves discussed in this section are not sustained by traveling 
forcing effects, some mechanism must still excite them initially, and perhaps 
repeatedly, so as to overcome dissipation and vertical leakage. Possibilities 
include stochastic forcing by latent heating, random disturbances in the 
atmosphere, or fluctuations of the mean winds. The waves may also be 
coupled to barotropic or baroclinic instabilities of matching phase speeds 
(see Section 5.5.2), although this coupling process has not yet been studied 
in detail. 

4.5 Forced Planetary Waves 

Some of the most important large-scale wave disturbances to be observed 
in the middle atmosphere are examples of forced planetary waves. The 
behavior of these waves is significantly different from that of the free 
planetary waves described in Section 4.4 and the propagating solar-forced 
tidal gravity waves of Section 4.3. In this section we present the basic theory 
of these forced planetary waves; observational details and interpretation 
are given in Chapter 5. 

For simplicity we use beta-plane, rather than spherical, geometry and 
work with quasi-geostrophic theory, which is obeyed by these waves to a 
good approximation. We suppose the waves to be propagating on a basic 
zonal flow [ü(y, z), 0, 0]; the linearized potential vorticity equation is then 

( - + Ü-) q' + v'qy = Z', (4.5.1) 
\dt dx/ y 

where Z ' here denotes the nonconservative terms on the right of Eq. (3.4.5), 

q' = Ψ'χχ + Ψ'„ + Ρ01(Ροεψ'ζ)ζ (4.5.2) 
is the disturbance quasi-geostrophic potential vorticity [cf. Eq. (3.4.7)], 

υ' = φ'χ (4.5.3) 

is the northward geostrophic wind, and 

qy = ß-üyy- pö\p0eüz)z (4.5.4) 

is the basic northward quasi-geostrophic potential vorticity gradient [which 
by Eq. (3.8.10) can also be related to the basic northward isentropic gradient 
of Ertel's potential vorticity]. 

Most planetary (or Rossby) waves in the stratosphere and mesosphere 
appear to propagate upward from forcing regions in the troposphere, and 
a useful way to model their middle atmosphere behavior is to consider 
quasi-geostrophic disturbances forced from below by fluctuations in the 
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height of some isobaric surface, p = p0 say, which could be located in the 
upper troposphere or lower stratosphere (e.g., p = 100 mb). For simplicity, 
we take ps = p0 in this section (rather than ps = 1000 mb: see Section 1.1.1), 
so that z0= -H \n(p0/ps) = 0. The relevant lower boundary condition is 
the disturbance part of Eq. (3.1.6b), which can be written in terms of 
φ' =/0'

]φ' äS 

ψ'^ΦΜχ,γ,ί) at z = 0, (4.5.5) 

where the forcing function ψ'0 is prescribed. For simplicity we for the moment 
consider a "channel" between vertical walls at y - 0, L, with lateral bound-
ary conditions: 

υ' = ψ'χ = 0 at y = 0, L (4.5.6) 

As in Section 4.3.3, the upper boundary condition is examined case by case. 

4.5.1 ü Depends on z Alone 

A natural case to study first is that in which ü = ü(z) and thus qv = 
ß - Po\po£Üz)z = qv(z). We take the nonconservative term Z ' = 0, and 
suppose that the forcing is given by 

ψ'ο= Re $0e
ik{x-ct) sin ly. (4.5.7) 

This has the form of a wavy pattern of zonal wavelength 2irkx and 
meridional wavelength 2πΓ\ moving zonally with phase speed c (eastward 
if c > 0, westward if c < 0). Note that k is related to the spherical integer 
zonal wavenumber s by s = ka cos φ\ moreover, ω = ck = 2Ωσ [cf. Eq. 
(4.2.8)]. For consistency with the forcing, we look for solutions to Eq. (4.5.1) 
of the form 

ψ' = Re $(z)eikix-cn sin ly, (4.5.8) 

which satisfies the lower boundary condition of Eq. (4.5.5) if ψ(0) = ψ0 and 
the lateral boundary condition of Eq. (4.5.6) if lLn~l is an integer. [Alterna-
tively, we can replace sin ly by 1 in Eqs. (4.5.7) and (4.5.8).] Substitution 
of Eq. (4.5.8) into Eq. (4.5.1) and use of Eqs. (4.5.2,3) lead to the following 
second-order ordinary differential equation for ψ(ζ): 

Ρο1(ροεψζ)ζ + * * ( 2 ) . - ( * * + />)' ψ = 0 (4.5.9) 
ü(z) 

with lower boundary condition 

ψ = Ψο at z = 0 (4.5.10) 

and an upper boundary condition to be determined. 
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If ü(z) = c at some level z = zc—the critical level—the coefficient of φ 
in Eq. (4.5.9) is infinite there if qy(zc) Φ 0. In such a case it is known from 
the theory of differential equations that φ is generally logarithmically infinite 
at zc if üz(zc) Φ 0; extra physics, such as transience, dissipation, or non-
linearity, must be included in the theory if this infinity is to be avoided. 
Critical levels are the subject of much current research, and are mentioned 
again in Section 4.5.4 and also in Section 5.6. 

4.5.2 Constant u and N 

To gain some insight into the nature of solutions of Eq. (4.5.9), we 
specialize still further, by taking ü constant, so that qy = ß = constant and 
N constant, so that ε is constant. Then Eq. (4.5.9) can be written 

ψ„-Η-ιφζ + Βφ = 0 

where 

B = ε »]■ ( r + n , (4.5.11) 

since p0 = p„e . Looking for solutions ψ <x e \ we find 

& - ) " 

1 ' ' ^'/2 

Two possibilities arise, according as the term inside the square root is 
positive or negative: 

1. (1/4H2) -B = v2 >0 

In this case Λ - (2Η)~ι ± v where v = +[(1/4H2) - B]u\ and φ = φ0 

exp[(z/2fQ ± vz\ or ρ]
0
/2φ = ρΙ/2ψ0β

±νζ. The wave activity density A = 
2poq'2/qy, noted in Section 3.6 as a natural measure of wave amplitude 
when qv > 0 will then vary with height as e±2vz\ the wave energy per unit 
volume, as given by the term \p0(u'2 + v'2 + Φ'2/N2) in Eq. (3.6.3), will do 
likewise. Clearly the appropriate upper boundary condition is that quantities 
like these should be bounded as z -> oo, and the lower sign must be selected. 
(In fact A and the wave-energy density then vanish as z -> oo.) Thus 

Φ' = ΨΌ(Χ^, Oexp (ά-")ζ; 
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this is an example of a trapped, or edge, wave, and has no phase tilt with 
height. Note that ψ', u\ v', etc., actually grow with height if v < 1/2//, that 
is, if B > 0; however, the decreasing basic density p0 more than compensates 
for this in the wave-activity or wave-energy density. 

2. (1/4H2)-B = -m2 <0 

In this case we can put Λ = (2 / / ) _ 1 + im, where 

1 \ 1 / 2 

B-—2) (4.5,2) 

and 

ψ' = Re ψ0 exp —— + i(kx + mz - kct) sin ly. (4.5.13) 

The presence of imz in the exponential here indicates vertical wave propaga-
tion, and phase lines tilt with height. The solution, Eq. (4.5.13), represents 
a Rossby wave propagating vertically and zonally. Eliminating B from Eqs. 
(4.5.11,12), we obtain the equation 

Ü - c = ß[k2 + I2 + e{m2 + 1/4//2)]-1; (4.5.14) 

in this case where 0 < m2 < oo and ß, k2, /2, ε, and H2 are all positive, we 
obtain the criterion 

0<ü-c<üc = ß(k2 + l2 + ε /4 / / 2 ) - 1 (4.5.15) 

(Charney and Drazin, 1961). For waves whose phase is stationary with 
respect to the ground, with c = 0, we have 

0 < ü < üc (4.5.16) 

for vertical propagation; thus for this case of constant ü and N, "stationary" 
vertically propagating Rossby waves can only exist in winds that are westerly 
(eastward) and not too strong. 

It should be noted that the limiting speed üc depends on the zonal and 
meridional wave numbers of the mode in question. For a typical stratospheric 
static stability (N2 = 5 x 10"4 s~2), and choosing / = π/( 10,000 km), we find 
at 60°N 

üc * 110/(52 + 3) m s ' 1 

where the integer s = ka cos φ is the spherical zonal wave number, as above. 
Thus on the basis of this very simple model, wave number 1 (5 = 1) 
propagates in westerlies weaker than about 28 ms"1, wave number 2 in 
westerlies weaker than about 16 m s 1 , and so on. Of course this model 

m 
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cannot hope to represent very faithfully the propagation of such global-scale 
modes in realistic mean zonal shear flows, but it does illustrate the fact that 
the "window" for propagation given by Eq. (4.5.16) becomes smaller as 
the zonal wave number s increases. This is in broad agreement with observa-
tions, which show that stationary disturbances tend to be composed only 
of the "ultralong" Fourier components s = 1,2, 3 in the winter westerlies 
and tend to be absent in the stratospheric easterlies (see Chapter 5). More 
sophisticated theories, involving more general basic states and forms of 
disturbance, will be mentioned in Sections 4.5.4 and 5.3. 

It remains to determine the sign of m in Eq. (4.5.12); here the radiation 
condition must be used, as in Section 4.3.3, since the wave-activity density 
and wave-energy density are both constant with height, irrespective of the 
sign of m. We again compute the vertical group velocity cg

z) and choose it 
to be positive, in accordance with the general belief that planetary waves 
normally propagate upward from the troposphere into the stratosphere, 
rather than downwards. 

To calculate cg
z) we rearrange Eq. (4.5.14) so as to obtain the Rossby 

wave dispersion relation in the form 

ω = ck = kü- ßk[k2 + I2 + e(m2 + 1/4//2)]"1 (4.5.17) 

so that 

,z) 3 = 2sßkm[k2 + I2 + e{m2 + 1/4//2)]"2. (4.5.18) 
dm 

Taking k > 0 by convention we see that cg
z) is positive if m > 0, and so the 

upper sign must be chosen in Eq. (4.5.12). The phase surfaces, kx + mz -
kct = constant, thus tilt westward with height, as observed for planetary 
waves in the stratosphere.2 For stationary waves, we put c = ω = 0 after 
calculating dw/dm\ although the phase surfaces for such waves are fixed 
in space, the waves still transfer information vertically. 

An alternative method of motivating the choice of m is to include small 
dissipative terms. A simple model uses Newtonian cooling and Rayleigh 
friction with equal, constant, rate coefficients 8 > 0, so that (X\ Y\ Q') = 
8(u\ u', 0'); it can then be shown that Z ' = -8q' in Eq. (4.5.1). In the 
stationary-wave case, for example, it follows that ü d/dx is replaced by 
ü d/dx + 8, and we find ψ oc ex\ where 

1 / 1 ίδβ\1'2 

A^JJj±WT2~B~Jk^2) 

2 Note that if /c»is chosen negative then the group velocity condition implies that m must 
also be negative, and the phase tilt is still westward with height. All other physical properties 
of the wave solution are likewise unaltered. 
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if 8 « \ku\ and B is as defined before. In case (2) above, this yields 

2H 2eku2m 

where m is given by Eq. (4.5.12) and 

Γ z δβζ 1 
ι// = Re ψ0 exp — - _2 + i(/cx + mz) sin (y. 

L2ff leku m J 

Thus small dissipation produces an extra factor exp(—8ßz/2skü2m), which 
implies that the wave-activity or wave-energy density decreases with z if 
m > 0, given the convention k > 0 as before. Letting 8 -* 0 we obtain the 
same choice of sign of m for the conservative case as given by the group 
velocity argument presented above. 

We note finally that when N is constant, the vertical wave number m 
used here is given in terms of the equivalent depth h used in Sections 4.2 
and 4.3 by 

m2 = (N2/gh) - 1/4H2 (4.5.19) 

[cf. Eq. (4.3.6)]; thus m2 equals the coefficient of W in the vertical structure 
equation [Eq. (4.2.7a)]. When ü = 0, Eq. (4.5.17) can be written 

j = -ß(k2+i2+fi/ghri 

k 

using Eqs. (4.5.19) and (3.2.16), and as h -> oo this approaches the spherical 
version of Eq. (4.2.14b) for the same limit, if the definitions β = 2Ωα~ι cos φ 
and s = ka cos φ are used and k2 + I2 replaced by its spherical analog 
" R ( " R + \)a'2. 

4.5.3 Fluid Parcel Orbits and the Stokes Drift for Rossby Waves 

As well as being a useful idealized model of a propagating planetary 
wave in the winter stratosphere, the solution of Eq. (4.5.13) is also convenient 
for didactic purposes. We use it here to illustrate some of the Lagrangian 
concepts mentioned in Section 3.7. 

For simplicity we consider stationary waves (c = 0), so that the uniform 
basic flow ü is westerly and satisfies Eq. (4.5.16); we also choose the width 
of the channel L to equal πΓ 1 , so that sin ly has a single peak in midchannel. 
If i//0 is taken to be real, Eq. (4.5.13) becomes 

ψ' = φ0β
ζ/2Η cos(kx + mz) sin ly. (4.5.20) 
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The geostrophic velocities are 

u' = -\fj'y = -Ιψ0β
ζ/2Η cos(kx + mz) cos ly, (4.5.21a) 

ν' = ψ'χ = -kuQez/2H sin(fcx + mz) sin ly (4.5.21b) 

[cf. Eq. (3.5.9)]. Using Eqs. (3.2.11) and (3.2.12) with Q = 0 we obtain the 
adiabatic quasi-geostrophic relationship 

= - < # 

which on linearization in the present case gives 

w = j^-9 (4.5.22) 

since the waves are stationary (d/dt = 0) and since ψζγ = —üz = 0. We drop 
the subscript a on w' for convenience. 

The definitions in Eqs. (3.7.1) of parcel displacements (£', η\ ζ') reduce 
to 

ü^-(?,v\n = (u\v\w') (4.5.23a,b,c) 
dX 

here, and so 

ξ = —— ψ0β
ζ/2Η sin(fcx + mz) cos ly, (4.5.24a) 

ku 

V, = - Ψοεζ/2Η cos(kx + mz) sin ly. (4.5.24b) 
u 

From Eqs. (4.5.22), (4.5.23c), and (4.5.20), we obtain 

r, _ ΙοΦζ 
έ " N2 

= —~rh ψοβζ/2Η ——cos(kx + mz) — m sin(kx + mz) sin ly. 
N |_2x7 J 

(4.5.24c) 

The "constants" of x integration have been set to zero, in accordance with 
Eq. (3.7.2). Trajectories or orbits of parcels correct to the linear approxima-
tion, as viewed moving with the basic zonal flow w, are shown in Fig. 4.13; 
their projections in the xy and yz planes are ellipses. 

Knowledge of the parcel displacements of Eqs. (4.5.24) allows us to 
calculate quantities like the Stokes drift velocities (MS, t?s, ws). From Eq. 
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(a) 

b) 

- y 

Fig. 4.13. Orbits of fluid parcels disturbed by a Rossby wave, correct to first order in wave 
amplitude, as viewed moving with the mean flow, (a) Projection of orbits in the xy plane, (b) 
Projection of orbits in the yz plane. [Adapted from Matsuno (1980), Birkhäusen Verlag AG, 
Basle, Switzerland.] 

(3.7.7) we have ws = ξ' · Vw' + 0 (a 3 ) , since ü is constant to O(a0); thus, 
using Eq. (3.7.4) and the fact that zonal averages are independent of x, we 
obtain 

u Po_1V · ( p 0 f V ) = (V'u')y + Pö\poi'u')z 

In a rather similar manner we have 

£S = ( V Ä W ( P O £ V ) Z , 

(4.5.25a) 

(4.5.25b) 

(4.5.25c) 

Using Eqs. (4.5.21), (4.5.22), and (4.5.24), we then obtain for the present case 

~2ü 

foklm 

üs = φζ
0β

ζ/Η cos2/y, üs = 0, 

ws=- 2 ψ2
0β

ζ/Η s'mUy, 
2N 

after a short calculation, which is expedited by using results like η'υ' = 
ΰη'η'χ = ü{\r)'2)x = 0, from Eq. (4.5.23b). Thus the zonal Stokes drift MS 

is directed eastward in midchannel (L/4 < y < 3L/4) and westward 
elsewhere, while the vertical Stokes drift ws is upward in the southern 
half of the channel (0 < y < L/2) and downward in the northern half 
(L/2<y<L). 
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It must be recalled, however, that the Stokes drift represents the difference 
between the Lagrangian-mean flow and the Eulerian-mean flow. Under the 
present "nonacceleration conditions," we can use the Charney-Drazin 
theorem of Section 3.6 to infer that ϋ* = w* = 0 under appropriate boundary 
conditions, and hence to show that v = 0 and w = -ws by Eq. (3.5.1) and 
manipulations similar to those used above. Thus €L = wL = 0 here, con-
sistent with the GLM nonacceleration theorem mentioned in Section 3.7.1. 
However, the computation of wL to second order in the wave amplitude a 
involves consideration of how the flow is initially set up, and requires a 
much more detailed analysis than the calculations based on the steady linear 
solutions that have been presented here. 

4.5.4 Steady Planetary Waves in More General Basic States 

For detailed comparison of linear theory with the observed middle 
atmosphere, the restriction to mean zonal flows ü that are constant, or 
depend on z alone, is rather unsatisfactory. We therefore now consider 
basic flows ü that depend on y and z, although we shall still take N, and 
thus ε, to be constant. The latter restriction can easily be relaxed, at the 
expense of a little extra algebra. 

Returning to Eqs. (4.5.1)-(4.5.3), setting Z' = 0 and substituting the 
steady-wave form 

φ' = e
z/2H Re [9(y, z)eik{x~ct)] (4.5.26) 

we obtain 

Vyy + ε^ζζ + η\Ψ = 0, (4.5.27) 
where 

n2
k(y, z) = (Ü - c)~lqy - k2 - ε /4Η2 , (4.5.28) 

(Dickinson, 1968). The quantity n\ is the square of the refractive index, for 
zonal wave number k and phase speed c. In "stretched" coordinates (y9 z) = 
(y, ε~ι/2ζ), Eq. (4.5.27) is identical to the equation for two-dimensional 
sound, or light, waves in a medium of varying refractive index, and we can 
use insights from the theory of acoustics or optics. In particular, we expect 
waves to propagate in regions where n\ > 0 and to avoid regions where 
n\ < 0. Note that n\ depends on the two-dimensional structure of (ü — 
c)~lqy, as well as on k2, so that propagation generally depends on more 
complex criteria than the simple Charney-Drazin condition [Eq. (4.5.15)] 
that applies when ü and qy (and thus n2

k) are constant. Note also that n\ 
generally becomes infinite at a critical line (or critical surface) where 
ü(y, z) = c; as for the critical level, mentioned above for the case ü = ü(z), 
such surfaces need special attention. 
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Given suitable boundary conditions, Eq. (4.5.27) or its spherical-
geometry equivalent is readily amenable to numerical solution for realistic 
flows ü(y, z), and a number of studies of this sort have been carried out, 
following Matsuno (1970). Some examples of calculations, and comparison 
with observed planetary waves, will be mentioned in Section 5.3; we shall 
here just discuss some semianalytical methods that can be used to solve 
special cases of Eq. (4.5.27). 

The first of these is applicable when ü = ü(y), so that n\ depends on y 
alone; separable solutions Ψ(1\γ, z) = *,(>>)e,m'z to Eq. (4.5.27) can be 
sought, where 

^ T T + [nl(y) - em?]*, = 0, / = 1,2,. . . 
ay 

is solved as an eigenvalue problem, subject to suitable lateral boundary 
conditions, say Ψ, = 0 at y = 0, L. The eigenvalues m2 give the vertical 
structure—propagating if m2 > 0, trapped if m2 < 0. The analysis is similar 
to that of Section 4.5.2, and the response to a given lower boundary forcing 
can be found in terms of a sum of modes Ψ(/). 

The assumption ü = ü(y) and the imposition of vertical walls at y = 0, L 
are, however, rather unrealistic, since they tend to confine wave propagation 
to the vertical, and thus inhibit latitudinal propagation. Observations of 
middle atmosphere planetary waves, on the other hand, suggest that 
latitudinal propagation is very significant in many cases: see Section 5.3. A 
popular approach for analyzing such cases, with n\ varying with y and z, 
is to use an approximate theory, analogous to "geometric optics," to investi-
gate Eq. (4.5.27). It is called the WKBJ or Liouville-Green method; a brief 
outline of the theory is given in Appendix 4A. In the present case one 
supposes that 

Ψ = Φ(>>, ζ) exp ix(y9 z) 

where the phase χ is real, and varies much more rapidly with y and z 
than do the basic-flow quantities w, qy, or n2

k, the amplitude Ψ, or the 
derivatives of χ. This is equivalent to looking for locally sinusoidal solutions 
whose y and z wavelengths are much less than typical y and z scales of 
the basic flow. The theory can be formalized, if desired, in terms of a small 
"WKBJ parameter," say μ^, characterizing the ratio of these wavelengths 
to the meridional scales of the basic flow; it requires that n2

kL
2

0 ^ 0(μ~2) , 
where L0 is a typical horizontal mean-flow scale or ε~1/2 times a typical 
vertical mean-flow scale. 

Under these assumptions, one can define local meridional wave numbers 

/ = θχ/dy, m = dx/dz, 
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and to leading order in /AW it is found that Ψγγ ~ -12Ψ, Ψζζ ~ -τη2Ψ. Thus 
Eqs. (4.5.27) and (4.5.28) yield an approximate dispersion relation for 
ω = ck, analogous to Eq. (4.5.17): 

ω = Δ(£, /, m; y, z) = kü(y, z) - kqy(y, z)[k2 + I2 + e(m2 + 1/4H2)]"1 

(4.5.29) 
and local group velocity components 

c(
g
y) s dk/dl, 4Z ) = dA/dm, (4.5.30) 

giving the local paths of propagation of information—the rays—in the yz 
plane. Standard ray-tracing equations can then be used to compute how the 
local wave numbers vary along a ray; for example, it can be shown that 
the variation of the vertical wavenumber along a ray is given by 

U ' ) A + 4 Z ) A 1 ™ = - - (4.5.31) 
L 8 dy 8 dz\ dz 

[where the z derivative on the right acts only on the terms ü and qy in Eq. 
(4.5.29) where z appears explicitly]. Using numerical methods, and given 
suitable "initial" conditions, the ray-tracing equations can be solved to find 
the paths of propagation through realistic stratospheric and mesospheric 
wind structures ü(y, z). An extension of the approach also allows the 
calculation of amplitude variations along the rays: further details are men-
tioned in Appendix 4A. Because of the large latitudinal excursion of many 
of the rays, such calculations are best carried out with full allowance for 
the spherical geometry of the earth, rather than on a beta-plane. A typical 
example of a ray-tracing calculation is shown in Fig. 4.14a and the corre-
sponding ü and n2

k(y, z) are contoured in Figs. 4.14b,c. The most prominent 
feature of the rays is their tendency to be deflected up the gradient of n\, 
and thus equatorward. This gradient depends partly on the variation of 
β = 2Ωα~λ cos φ with latitude φ, and is present even when ü (or, rather, 
the angular velocity, on the sphere) is constant; however, it is greatly 
enhanced by variations in (w - c)~l when the latter becomes large near a 
critical line, such as that present in low latitudes in Figs. 4.14b,c. Whether 
rays are absorbed or reflected at these critical lines in still a matter for 
investigation: see Section 5.6. 

Despite the approximations involved, this WKBJ theory has provided 
useful insights into the propagation of planetary waves in the observed 
middle atmosphere and in more complex models such as the detailed linear 
numerical models described in Sections 5.3 and 6.3 and the general circula-
tion models outlined in Chapter 11. It is also possible that an extension of 
the method might be of value for the investigation of disturbances to basic 
states that are not zonally symmetric. 
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60 80 
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Fig. 4.14. Calculations of the propagation of stationary Rossby waves in an idealized 
northern hemisphere winter basic state, (a) Rays for zonal wave number 1, starting at 45°N 
and z ~ 3 km, with crosses marked at daily time intervals, (b) Basic zonal wind ΰ(φ, z) in 
m s_1. (c) Spherical analog of a2n2

k cos2 φ for the wind field given in (b), where k corresponds 
to zonal wave number 5 = 1. Region of negative n\ is shaded, and solid contours are spaced 
at unit intervals in the quantity {a2n\ cos2 φ + 1)1/2. The closely packed contours at low 
latitudes indicate the presence of a critical line. [Adapted from Karoly and Hoskins (1982).] 
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Fig. 4.14 (continued) 

4.5.5 The Eliassen-Palm Flux for Forced Rossby Waves 

The Eliassen-Palm (EP) flux was introduced in Sections 3.5 and 3.6, 
where its importance in the theory of wave, mean-flow interaction was 
described. It is of interest to calculate this quantity for the planetary waves 
discussed above; to this end it is convenient to rewrite the quasi-geostrophic 
beta-plane version of F, 

F = (0,-ρο7α~\ρο/ον
Τθ,/θΟζ) 

[cf. Eq. (3.5.6)], in the form 

F = (0, ροφ^/y, ροεψ^ψΐ), (4.5.32) 

using Eqs. (3.2.3), (3.2.12), and (3.2.16). 
We first consider the simple solutions of Section 4.5.2, where ü and N 

are constant, and the stream function has "modal" latitudinal structure, 
proportional to sin ly. In the absence of dissipation it is easy to verify that 
in the "trapped" case (1) F = 0, while in the "vertically propagating" case 
(2) F = (0, 0, \psemk\ty0\

2 sin2 ly) and points vertically upward. In each case 
V · F = dF(z)/dz = 0, as is to be expected from the Eliassen-Palm theorem 
[Eq. (3.6.1)], since these waves are steady, conservative, and linear; they 
thus induce no mean-flow acceleration (see Sections 3.6 and 4.1). On the 
other hand, if dissipation is included, such as the weak Rayleigh friction 
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and Newtonian cooling considered in Section 4.5.2, V · F is found to be 
negative in general, and "nonacceleration conditions" are violated. 

It is also straightforward to calculate F for the approximate WKBJ 
solutions of Section 4.5.4; we find 

F - ip , / c | ^ | 2 ( 0 , / , em) , (4.5.33) 

while the wave-activity density A = \poq'2/qy [cf. Eq. (3.6.6)] is given by 

A « \Ps{k2 + I2 + em2)2\M2/qy, (4.5.34) 

since q' « -(k2 + I2 + ετη2)φ' under WKBJ conditions, from Eq. (4.5.2). It 
can further be verified that 

F = (0, c(
g
y\ 4Ζ))Λ (4.5.35) 

to leading order in /xw for these waves, using Eqs. (4.5.29), (4.5.30), (4.5.33), 
and (4.5.34). Thus F is parallel or antiparallel to the group velocity at each 
point under these conditions—and therefore to the rays defined in Section 
4.5.4—according as A > 0 or A < 0. Note that in the present quasi-
geostrophic case A has the same sign as qy9 by Eqs. (3.6.6) or (4.5.34)— 
this is usually positive in the midlatitude stratosphere and mesosphere. 

Following standard practice, the group velocity and the concept of a ray 
have been defined above only in the context of a WKBJ theory of almost-
sinusoidal waves. However, Eq. (4.5.35) suggests that, in more general 
situations where the WKBJ approximations fail, one possible extended 
definition of the group velocity is 

C s F/A, (4.5.36) 

where F and A are given by Eqs. (3.5.6) and (3.6.6), respectively, or their 
primitive-equation equivalents. Generalized "rays" can then be defined as 
curves parallel to C at every point. These ideas will be used in Chapters 5 
and 6 for interpreting the behavior of planetary waves in the atmosphere 
and in models. 

4.6 Gravity Waves 

It was mentioned in Section 4.1 that pure internal gravity waves owe their 
existence to buoyancy restoring forces, while inertio-gravity waves are due 
to the combined effects of buoyancy and Coriolis forces. The "gravity 
modes" identified in Figs. 4.2a,b, which include the main propagating tidally 
forced modes of Section 4.3, are, strictly speaking, examples of inertio-
gravity waves, since they are generally affected to some extent by the rotation 
of the earth. In the present section we consider some rather simpler gravity 



4.6 Gravity Waves 189 

waves, restricting attention to waves of comparatively small scale (tens to 
hundreds of kilometers in horizontal wavelength), so that the complications 
of spherical geometry can be avoided. 

Gravity waves of this scale appear to be common in the upper mesosphere, 
where they have been detected by radars and other instruments; for example, 
Fig. 4.15 shows some radar observations of internal gravity waves in this 
region. The periods of waves of this type are typically a few minutes to an 
hour or so, and vertical wavelengths range from 5 to 15 km. Although direct 
measurements are difficult, the waves are thought to have horizontal 
wavelengths of up to about 100-200 km, and horizontal phase speeds of up 
to 80 m s_1. Inertio-gravity waves, with periods approaching the local "iner-
tial period" 2π/~λ and vertical wavelengths on the order of 10 km, have 
been detected in the upper mesosphere and also in the lower stratosphere, 
and these can have horizontal wavelengths of over a thousand kilometers: 
some observations are shown in Fig. 4.16. Internal gravity waves are also 
likely to be common in the lower mesosphere and the stratosphere, but 
observations at these levels are sparse at present. 

4.6.1 Pure Internal Gravity Waves 

We start by considering small wave disturbances about a basic state of 
rest, whose frequencies are large compared to the local inertial frequency 
/ = 2Ω sin φ. We therefore neglect the effects of the earth's rotation by 
putting / = 0 in Eq. (4.2.1), set X' = V = J' = 0, and employ Cartesian 
coordinates x and y. We obtain 

ii ί + Φ; = 0, v\ + Φ; = O, (4.6.1a,b) 

u'x+v'y + pöl(Pow')z = 0, Φ'ζί + J V V = 0. (4.6.1c,d) 

For simplicity we take N to be constant; we then substitute 

(ιι', ν', νν', Φ') = ez/2H Re[(w, v, w, Φ) exp i(kx + ly + mz - ωί)] (4.6.2) 

into Eq. (4.6.1), where ü etc. are constant, and obtain the following 
equations: 

u = — Φ, v = — Φ, 
ω ω 

and the dispersion relation 

2 
ω 

w = - ^ ( m -

N\k2+l2) 
m2+l/4H2' 

2H/ ' 
(4.6.3a,b,c) 

(4.6.4) 
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Fig. 4.15. High-frequency radar measurements of line-of-sight velocities at heights between 
78 and 94 km in the upper mesosphere measured in two directions, equally inclined at small 
angles to the vertical. Top panels show data filtered to include only periods longer than 8 hr 
and bottom panels show data filtered to include only periods from 8 min to 8 hr. The data 
were collected during May 11-14, 1981. [After Vincent and Reid (1983).] 
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Fig. 4.16. Time sequence of northward and eastward velocity components as measured by 
very-high-frequency (VHF) radar during an unusually quasi-sinusoidal inertio-gravity wave 
event in the mesosphere, measured October 11, 1981, in Poker Flat, Alaska (1-hr average 
values). Velocity scale is shown in the lower left corner of the upper panel. Dashed lines 
indicate approximate height of velocity extrema and show downward phase propagation. Note 
that the left-to-right profile placements are not precisely uniform in time. [After Balsley et al 
(1983). American Meteorological Society.] 

Note that in terms of the equivalent depth h this can be written ω2 = 
gh(k2+ I2), using Eq. (4.5.19); this is consistent with the "nonrotating" 
limit y~l/2 -> oo for gravity waves given by Eq. (4.2.14a) if k2 + I2 is replaced 
by its spherical equivalent nG(nG+ \)a~2. 

Using methods analogous to those of Section 4.5.3, it can be shown that 
particles move in elliptical orbits (with tilted axes) in vertical planes perpen-
dicular to the horizontal vector (-/, k, 0). 

It should be noted from Eqs. (4.6.2) and (4.6.3) that 

p0u'w' = \Po Re(ez/Huw*) = \ps Re [£♦&)(-+ΠΪΗ 
1 Wie. A | (? 

where an asterisk denotes the complex conjugate. Thus p0u'w' is indepen-
dent of z, so that 

Pol(p0u'w')2 = 0, 

which is the Eliassen-Palm theorem [Eq. (3.6.1)] for the present steady, 
conservative, linear case, since F = (0, -p0v'u\ -p0w'u') here [cf. Eq. 
(3.5.3)], and depends only on z. 
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As mentioned above, the small-scale gravity waves observed in the middle 
atmosphere tend to have vertical wavelengths less than about 15 km, so that 
4H2m2 ^ 34 if H = 7 km, and thus m2 » 1/4H2. It is therefore reasonable 
to neglect 1/4H2 compared with m2 in Eq. (4.6.4); this is equivalent to 
making the "Boussinesq approximation," and gives ω2 = N2(k2 + l2)/m2. 
The solution with positive vertical group velocity c(

g
z) = day/dm is 

a, = -N(fc 2 +/ 2 ) 1 / 2 /m. (4.6.5) 

Numerous other properties of internal gravity waves are given in standard 
texts. In particular, the frequency ω is always smaller in magnitude than 
the buoyancy frequency N ; indeed, under the hydrostatic approximation 
of Eq. (3.1.3c), |ω| « N, as shown for example by Gill (1982, Section 6.14), 
and thus the period is much greater than 277-N_1(~5 min in the middle 
atmosphere). The same inequality implies that the horizontal wavelength 
27r(fc2 + /2)~1 / 2 must be much larger than the vertical wavelength 27r|ra|_1, 
by Eq. (4.6.5). Another interesting property is that if i/2H is neglected in 
Eq. (4.6.3c)—a fair approximation for waves of vertical wavelength less 
than 15 km, for which 2H\m\ ^ 5.8—then Eqs. (4.6.3) and (4.6.5) give 
(w, ΰ, w) - (/c, /, m) ~ 0, so that the velocity («', v\ w') is perpendicular to 
the wave vector k = (/c, /, m) and thus lies in planes of constant phase, 
kx + ly + mz = constant. In this case parcel orbits are straight lines, also 
perpendicular to the wave vector. 

It is often convenient to choose the horizontal axes so that k = (k, 0, m) 
and / = 0: this is possible since no preferred horizontal direction is imposed 
by the motionless basic state considered here. Then ΰ = 0 by Eq. (4.6.3b), 
and Eq. (4.6.5) becomes 

ω = -Nk/m, (4.6.5') 

given the convention k > 0, as before. The vector group velocity is then 

( do) dco\ N 
ΤΓ,Ο,— = — (~m,0,k), (4.6.6) 
dk dm/ m 

and the tangent of the angle it makes with the horizontal has magnitude 

I4Z)/4X)| = \k/m\ = \ω/Ν\. 

The foregoing theory can be extended to allow for a basic flow 
[M(Z), u(z),0] and buoyancy frequency N(z) that vary with height 
(although in this case one cannot generally chooose axes such that / = 0). 
When these quantities vary only on height scales much greater than a vertical 
wavelength, WKBJ methods analogous to those of Appendix 4 A and Section 
4.5.4 can be used, and ray-tracing can be carried out. Once again critical 
levels, at which ω = kü + W9 need special attention. 
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4.6.2 A Simple Model of Breaking Gravity Waves 

Owing to the presence of the ez/2H factor, proportional to pö1/2, in Eq. 
(4.6.2), the linear, nondissipative theory of Section 4.6.1 predicts velocity 
and geopotential disturbances that grow with altitude; at some height the 
nonlinear terms that have been neglected will become important, and the 
linear theory will break down. 

A physical picture of this breakdown can be obtained by considering a 
set of material surfaces at various levels, which are undulating as an internal 
gravity wave propagates vertically through them; Fig. 4.17 is a schematic 
diagram of this situation. In the lower mesosphere, say, the material surface 
(a) has a gentle sinusoidal variation, as predicted by linear theory. For 
gravity waves of period much less than a day the effects of radiative 
relaxation are small, and in the absence of other diabatic processes we can 
use an isentrope (a surface of constant Θ) as the material surface (a). In 
the middle mesosphere the material surface (b) is also sinusoidal, but of 
larger amplitude than (a); linear theory still holds, and (b) can also be 
taken as an isentrope. In the upper mesosphere, however, nonlinear effects 
become important, leading to the rapid and irreversible deformation of 
material contours such as (c), followed by turbulence, small-scale mixing, 

Fig. 4.17. Schematic diagram illustrating the breaking of vertically propagating internal 
gravity waves in the mesosphere. The curves labeled (a), (b), and (c) denote material surfaces. 
At the level of (a) and (b) the linear nondissipative theory of Section 4.6.1 is approximately 
valid. At the level of (c) nonlinear effects are important, with irreversible deformation of 
previously wavy material surfaces, and turbulence near the wave crests, presumably followed 
by small-scale mixing and dissipation. 
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and dissipation. Isentropes are no longer material surfaces, owing to the 
excitation of diabatic effects. 

The process described here is known as gravity-wave breaking, by analogy 
with the overturning and breaking of oceanic surface waves on a shelving 
beach. It also has points in common with the phenomenon of planetary-wave 
breaking, described in Section 5.2.3. It will tend to limit the ez/2H growth 
of gravity wave amplitudes with height, and this has important consequences 
for the large-scale flow in the middle atmosphere, as will be seen below. 

A simple model of this breaking process was suggested by Lindzen (1981), 
who considered linearized disturbances to a basic zonal flow ü(z), and used 
a WKBJ method to generalize the solutions of Eq. (4.6.2). He then defined 
the breaking level, zb, to be that altitude at which the isentropes first become 
vertical, with θθ/dz = 0, thus implying a loss of static stability and the onset 
of turbulence and mixing. From Eqs. (3.2.13) and (3.4.2c) 

Sz = θζ + θ'ζ = HR~leKz/H[N2 + Φ'ζζ + κΗιΦζ], (4.6.7) 

and since Φ', as calculated by linear theory, grows exponentially with z [cf. 
Eq. (4.6.2)], we expect that - (Φ^ ζ + κΗ~λΦ'ζ) will at a sufficient altitude 
become large enough to cancel N2 at some values of x, y, and t, at the 
"crests" of the waves. At such points θζ = 0, and breaking occurs, in 
Lindzen's sense. This approach is not strictly self-consistent, since the linear 
solutions will break down before such a height is reached; nevertheless it 
should give a qualitative feel for the fully nonlinear behavior. 

In the special case where ü = 0 we can use the linear theory of Section 
4.6.1 to illustrate Lindzen's approach. We choose axes such that / = 0 and 
thus v' = 0, and suppose that Φ' = Φ0 cos k(x - ct) at some lower level, 
which can be taken as z = 0 by suitable choice of ps. Thus the solutions of 
Eq. (4.6.2) apply, subject to Eq. (4.6.3) with / = 0, Φ = Φ0 (real), and 
ω = ck; in particular, 

Φ' = Φ0<?Ζ/2Η cos[k(x - ct) + mz\ (4.6.8) 

Assuming once more that vertical wavelengths are small enough to ensure 
that \m\» 1/2H, we have 

Φ'ζζ + κΗ-χΦ'ζ - - m V = -τη2Φ0β
ζ/2Η cos[k(x - ct) 4- mz\ 

The breaking level zb is defined by { m a x ^ z + κΗ~ιΦ'ζ\}ζ=^ = N2, and so 

= 2H ΙηΙ^Φο1! (4.6.9) zb ~ 2H In 
N2 

τη2Φ0 

by Eqs. (4.6.8) and (4.6.5') with c = ω/k. Note that zb depends on the phase 
speed c and the initial geopotential amplitude Φ0 of the wave; it increases 
as Φ0 decreases because waves of small amplitude need to penetrate to 
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greater heights before they have grown enough to break than do waves of 
larger amplitude. 

The next step is to describe what happens above the breaking level. The 
turbulence that presumably sets in leads to diffusion of heat and momentum, 
and a crude way of parameterizing this diffusion is to modify Eqs. (4.6.1a,d) 
thus: 

u't + <S>'x = Ku'zz, 0 ; , + JVV = ΚΦ'ΖΖΖ, z>zb, (4.6.10a,b) 

where K is a constant diffusion coefficient; above zb the continuity equation, 
Eq. (4.6.1c), still holds. On seeking solutions of the form 

Φ' = ez/2H Re[Oj exp i(kx + mxz - kct)] 

above zb, chosen to match Eq. (4.6.8) at zb, we find 

ω + im\K = -Nk/ml (4.6.11) 

by analogy with (4.6.5'), where the convention k > 0 is retained. Thus if K 
is chosen so small that 

m2K « |ω|, (4.6.12) 

it follows that 

Nk iKN3k3 iKN3 

ml « + -A—= m + - ^ — 
ω ω c k 

and so 

z KN3 

Φ' = Φ0 exp | - ^ - ^ ^ (z - zb) I cos[k(x - ct) + mz], z> zb, 

(4.6.13) 

to satisfy continuity with Eq. (4.6.8) at zb. The extra exponential factor 
involving K results from the postulated diffusive damping of the waves due 
to breaking. Lindzen hypothesizes that above zb the waves are saturated, 
or just on the verge of breaking; thus maxlO^H- κΗ~1Φζ\ = N2 for all 
z ^ zb. Hence the diffusive decay must be such as to exactly balance the 
ez/2H growth, and K must be chosen such that the coefficient of z in the 
exponential term in Eq. (4.6.13) vanishes, that is, 

K = c4k/2HN3. (4.6.14) 

Note that this implies 
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by Eq. (4.6.5'), and thus Eq. (4.6.12) is consistent with our previous assump-
tion that \m\ » 1/2H. Substitution of Eq. (4.6.14) into Eq. (4.6.13) gives 

Φ' = Φ0β^/2Η cos[fc(x - ct) + mz] for z^zb, (4.6.15a) 

while Eqs. (4.6.10a,b) yield 

(Μ', W') = (1, -k/m)c~l<&0e
z»/2H cos[A:(x - ct) + mz] for z ^ zh 

(4.6.15b,c) 

at leading order in the small parameter τη2Κ/ω. Thus Lindzen's saturation 
hypothesis implies no further growth of wave amplitude above zb: this is 
roughly consistent with observed gravity-wave amplitudes in the meso-
sphere. Note, incidentally, that max|n'| = \c\ for z ^ zb, from Eqs. (4.6.15b) 
and (4.6.9). 

We now calculate the quantity 

X i s - P o _ 1 ( P o « V ) 2 ; (4.6.16) 

using Eqs. (4.6.15b,c), (4.6.9), (4.6.5'), and (4.6.14) it follows that 

Xl = c3k/2NH = ^-^ for z>zh, (4.6.17) 
c 

which is a nonzero constant in general. Thus if c > 0 there is a zonal-mean 
vertical wave momentum flux convergence or Eliassen-Palm flux divergence 
above the breaking level (and vice versa if c < 0), and this implies a 
contribution to the wave-induced forcing of the zonal-mean flow. Lindzen 
also postulates that the momentum and heat diffusion represented by K 
acts on the zonal-mean flow, as well as on the gravity waves. 

As mentioned above, Lindzen's method is more general than that given 
here, in that it includes a slowly varying mean flow [M(Z), 0,0] and nonzero 
meridional wave number /. The generalization of Eq. (4.6.17) is 

χ, = ^ ü)3k\ 1 Idü/dz] N2K , _ n , λ 
7f— 77 + — = ~- (4.6.18a,b) 
V \_H c - u J c - u 

27V 

when / = 0 but ü Φ 0. On substituting typical wave parameters, such as 
those given at the beginning of Section 4.6, into these formulas, it is found 
that Lindzen's parameterization of the possible frictional effects due to 
breaking gravity waves implies a strong forcing of the zonal-mean circulation 
of the upper mesosphere, in accordance with observations that indicate that 
Xx may be on the order of several tens of meters per second per day (see 
Fig. 4.18). This topic will be discussed further in Sections 7.3 and 8.5. 

It is also possible to allow for the radiative damping of gravity waves in 
the above theory. Since damping tends to decrease the amplitude of the 
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Fig. 4.18. Height profiles of u'w' and Xu in the upper mesosphere, derived from double-
beam radar measurements in May 1981. [After Vincent and Reid (1983).] 

upward-propagating waves, the breaking level tends to be raised; indeed, 
waves of sufficiently small intrinsic phase speed may not break at all. 
However, if they do break, the radiative damping has little effect on the 
resulting values of Xx. 

It has been emphasized that Lindzen's model is highly simplified, being 
essentially based on a linear theory of monochromatic gravity waves. Much 
more observational and theoretical work needs to be done to investigate 
the validity of the model and to understand the detailed nonlinear dynamics 
of a complex spectrum of breaking gravity waves (for which a "breaking 
amplitude" is more appropriate than a "breaking level") and their effects 
on the mean flow. 

4.6.3 Inertio-Gravity Waves 

On somewhat larger space and time scales (horizontal wavelengths 
— 1000 km and periods of several hours) than those considered in Section 
4.6.1, gravity waves will be influenced by the rotation of the earth, and the 
theory given there will need modification. As a simple example that avoids 
the complexity of the spherical geometry used in Section 4.2, we consider 
small disturbances to a state of rest on an "/-plane," in which the Coriolis 
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parameter/ is taken as constant. Then Eqs. (4.6.1) are replaced by 

ι ι ί - / ϋ ' + Φί = 0, (4.6.19a) 

Ι / , + / Μ ' + Φ ; = 0, (4.6.19b) 

u'x + O'y + pö\pow')z = 09 (4.6.19c) 

Φ'ζί+ N2w' = 0. (4.6.19d) 

Taking JV constant again, and substituting 

(Μ', I/, w', Φ') = ez/2H Re[(u, υ, w, Φ) exp i(kx + ly + mz - cot)] (4.6.20) 

once more, we obtain the equations 

Ü = (ω2 -f2y\(ok + ι//)Φ, (4.6.21a) 

β = (ω
2 -f2Y\o)l - * / )Φ , (4.6.21b) 

™ = -^\m-^)®> (4.6.21c) N2] 

and the dispersion relation 

2 . N\k2+l2) 
ω =f+ 2\,/AJ2· (4.6.22) 

m + 1/4H 
These clearly reduce to Eqs. (4.6.3) and (4.6.4) w h e n / = 0. 

Some important properties of inertio-gravity waves follow from these 
results. Note first from Eq. (4.6.22) that the existence of propagating waves, 
with k, /, m all real, requires that 

1/1 ^ |ω| « N, (4.6.23) 

where the right-hand inequality results from the hydrostatic approximation, 
as in Section 4.6.1. The left-hand inequality shows that the frequency of 
inertio-gravity waves is greater than the Coriolis parameter; this is a qualita-
tive explanation of the confinement of propagating diurnal tides (|ω| = Ω) 
to the region where | / | = 20|sin φ\ ^ Ω, that is, equatorward of 30° latitude 
(see Section 4.3.3). On the other hand, since the present analysis does not 
take account of the global variation of / a detailed comparison of Eq. 
(4.6.22) with the dispersion curves plotted in Figs. 4.2a,b is difficult, except 
in the "nonrotating" limit y~1/2 -> oo mentioned in Section 4.6.1. (A better 
comparison between the full spherical-geometry theory and a simpler analy-
sis occurs as γ~1/2 -> 0 and the modes become equatorially trapped: see 
Section 4.7.) 
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From Eq. (4.6.22) we can obtain the group velocity; we choose axes such 
that / = 0 as before, and use the approximation m2 » 1/4H2. Then 

ω = ±(f + N2k2/m2)l/2 (4.6.24) 

and 

c = ^ - ( m , 0 , - / c ) ; (4.6.25) 
* m ω 

moreover, 

l4*V4i = lfc/™l = (^2 -/2)1/2/Ν, (4.6.26) 
and this is generally smaller than for pure internal gravity waves [cf. Eq. 
(4.6.6)] since k is smaller, while m is about the same. Thus inertio-gravity 
waves will tend to propagate more horizontally than do pure internal waves, 
other things being equal. 

One way of identifying the sign of c(
g

z) from measurements of an inertio-
gravity wave is to determine the sense of rotation of the horizontal velocity 
vector («', v', 0) with height. Taking / = 0 in Eqs. (4.6.21a,b) and setting ü 
real (by a suitable choice of the time origin, say) we obtain 

tan ξ = υ'/u' = fco'1 tan(fcx + mz - ωί), 

where ξ is the angle between (u\ v', 0) and the positive x axis. Then, 
differentiating with respect to z, 

sec2 ξ— = fco~1m sec2(/cx + mz - ωί) 
dz 

so that θξ/θζ has the same sign as f<u~xm\ by Eq. (4.6.25) it follows that 

sgn^/dz) = - sgn( /4 z ) ) . 

Thus the horizontal velocity vector rotates anticyclonically with height 
(clockwise in the northern hemisphere, anticlockwise in the southern hemi-
sphere) for upward-propagating waves (c(

g
z) > 0), and cyclonically for down-

ward-propagating waves (CgZ) < 0). [The same result can be proved when 
/ τ̂  0 by defining ξ as the angle between (Μ', ν', 0) and the horizontal wave 
vector (/c, /, 0).] In practice, this method is usually applied to measurements 
of inertio-gravity-wave spectra, rather than single waves. 

The orbits of fluid parcels in inertio-gravity waves can be calculated by 
the methods of Section 4.5.3. In particular, when \m\ » 1/2H parcels move 
anticyclonically in ellipses in planes perpendicular to the wave vector 
(k, /, m): see Fig. 4.19. 
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HORIZONTAL DISTANCE -

Fig. 4.19. Vertical section in a plane containing the wave vector k showing the phase 
relationships between velocity, geopotential, and temperature (oc<$^) fluctuations in an 
upward-propagating inertio-gravity wave, with \m\» 1/2H, m < 0, ω > 0 in the northern 
hemisphere ( / > 0). The thin sloping lines denote the surfaces of constant phase (perpendicular 
to the wave vector) and thick arrows show the direction of phase propagation. The wave vector 
and group velocity are also shown. The same diagram applies to the pure internal gravity 
waves of Section 4.6.1 and the Kelvin waves of Section 4.7.1 if the arrows indicating velocity 
components into and out of the page are omitted, and if "horizontal" is taken to mean 
"eastward" in the Kelvin wave case. 

4.7 Equatorial Waves 

It has been known for many years that large-scale, equatorially confined 
wave motions propagate vertically and zonally through the middle atmo-
sphere. These waves have periods of a few days and are of planetary scale 
in the zonal direction, but are trapped within about 15° north and south of 
the equator. The earliest observations of such waves were from radiosondes 
in the lower stratosphere, and more recently rocketsondes and satellites 
have detected them in the upper stratosphere and mesosphere as well; these 
observations will be discussed in Section 4.7.5. Waves of this kind are 
particularly significant for the dynamics of the middle atmosphere, since 
they are believed to play a central role in forcing the equatorial quasi-
biennial oscillation (QBO) and semiannual oscillation (SAO): see 
Chapter 8. 

A natural starting point for a theory of these equatorial waves is the fact, 
mentioned in Section 4.2, that as γ~1/2 = {gh)l/2/2ila -> 0, all the Hough 
modes become confined near the equator; this is evident for example in 
Figs. 7-13 of Longuet-Higgins (1968). The latitudinal confinement suggests 
that a beta-plane approximation may be satisfactory for studying these 
modes, and we shall adopt such an approach in this section, so as to avoid 
the complexities of spherical geometry. The beta-plane will be centered at 
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the equator so that f0 = 0 and / = ßy, where ß = 2üa~l [cf. Eq. (3.2.1f)] 
and y is distance north of the equator. The vanishing of / at the equator 
suggests that the quasi-geostrophic equations will not generally be valid: 
for example, the condition of Eq. (3.2.8a) on the Rossby number will usually 
be violated. We therefore work with the primitive equations, which, when 
linearized about a basic zonal flow ü(y, z), become 

Du' + (üy - ßy)v' + üzw' + Φ; = Χ', (4.7.1a) 

Dv' + ßyu' + Φ; = r , (4.7.1b) 

Φ ; - HlRe'eKZ/H, (4.7.1c) 

u'x+v'y + po
1(pow')z = 0, (4.7.1d) 

m + Öyv' + Özw' = <?', (4.7.1e) 

where D = 3/dt + ü d/dx. These equations follow from Eqs. (3.4.2) on 
setting/ = ßy, cos φ = 1, tan φ = 0, and using Cartesian coordinates (x, y), 
where the x axis points eastward along the equator. The thermal wind 
equation for the basic flow, 

ßyüz = -HlReye
KZ/H, (4.7.2) 

follows similarly from Eq. (3.4.1c). 
Aspects of the roles of the frictional and diabatic terms X\ Y\ and Q' 

in forcing and dissipating equatorial waves will be discussed in Sections 
4.7.3 and 4.7.4. However, the simplest way of deriving the basic theoretical 
equatorial wave structures is to ignore such nonconservative processes for 
the moment by setting X' = V = Q' = 0, and also to neglect the complicat-
ing effects of the basic wind shear by setting ü = 0 and thus Öy = 0, by Eq. 
(4.7.2). (The effects of a constant nonzero ü will be mentioned later.) The 
disturbances then satisfy 

u't- βγν' + Φ'χ = 0, (4.7.3a) 

v\ + ßyu' + Φ; = 0, (4.7.3b) 
W; + Ü; + PO'1(POW')Z = 0, (4.7.3C) 

φ ; , + J V V = 0, (4.7.3d) 

where Eqs. (4.7.1c,e) have been combined to give Eq. (4.7.3d), as in Eq. 
(4.2.1), and N2(z ) = H~lReze~KZ/H as before. For simplicity we set N = 
constant, and then seek solutions in the form 

(w', i/, w', Φ') = ez/2H Rc{[u(y), v(y)9 w(y), 4>(y)]exp i(kx + mz - cot)}. 

(4.7.4) 
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We obtain 

w=-Am-™r ( 4 · 7 · 5 ) 

from Eq. (4.7.3d) and 
-ίωύ - ßyü + i7ci> = 0, (4.7.6a) 

-ιων + ßyü + Φ^ = 0, (4.7.6b) 

ikü + vy- ίωτη2Ν~2Φ = 0, (4.7.6c) 

from Eqs. (4.6.3a,b,c) and (4.7.5). In Eq. (4.7.6c) a factor m2 + ( l /4H 2 ) 
[which by Eq. (4.5.19) equals the N2/gh of classical tidal theory] has been 
replaced by m2. This "Boussinesq" approximation is a reasonable one for 
many of the observed equatorial waves that, like the gravity waves of Section 
4.6, have vertical wavelengths less than about 15 km, so that 4H2m2 ^ 34. 
The approximation is more doubtful for the "fast" Kelvin waves observed 
in the upper stratosphere, which may have vertical wavelengths of about 
40 km; however, the theory is easily reworked with the inclusion of the 
\/4H2 term. 

It will be observed that two y derivatives appear in Eqs. (4.7.6): calcula-
tion of the latitudinal wave structures therefore generally involves the 
solution of a second-order ordinary differential equation in y. This equation, 
Eq. (4.7.11), is discussed in Section 4.7.2; we first consider a special case 
in which only a first-order ordinary differential equation need be solved. 

4.7.1 The Kelvin Wave 

Among the equatorially trapped waves that are observed in the strato-
sphere and mesosphere (see Section 4.7.5) is a class of modes with small 
meridional wind component v'. As a first attempt to model these waves we 
look for solutions to Eqs. (4.7.6) in which v is identically zero; thus ü and 
Φ must satisfy 

-ωύ + Α:Φ = 0, ßyü + Φ^ = 0, kü - ωιη2Ν~2Φ = 0. (4.7.7a,b,c) 

If ü and Φ do not vanish, Eqs. (4.7.7a,c) immediately give ω = ±Nkm~~\ 
with vertical group velocity c(

g
z) = θω/dm = TNkm'2. Anticipating that the 

root with positive CgZ) will be the relevant one for the middle atmosphere, 
corresponding to a wave that propagates upward from the troposphere, we 
therefore have 

(o = -Nk/m (4.7.8a) 
and 

4Z ) = Nk/m2 = w2/Nk (4.7.8b) 
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if k is chosen positive, by our usual convention. The dispersion relation, 
Eq. (4.7.8a), is identical to that for pure internal gravity waves with / = 0; 
see Eq. (4.6.5')· 

The meridional structure of this wave solution can be found by eliminat-
ing u from Eqs. (4.7.7a,b) to obtain the first-order ordinary differential 
equation (ODE) 

Φ,, + kßa)~xy<& = 0, 
which has the solution 

My) = Φο txp(-ßky2/2co), (4.7.9) 

where Φ0 is a constant. If Φ and u are to be bounded far from the equator, 
where \y\ becomes large, it is necessary that the coefficient of y2 in the 
exponent in Eq. (4.7.9) be negative, and thus that c = ω/k be positive: this 
mode therefore has an eastward zonal phase speed and, by Eq. (4.7.8a), a 
negative value of m. The surfaces of constant phase (kx + mz — ωί) thus 
tilt eastward with height and move downward with time, as indicated in 
Fig. 4.19; a plan view of the meridional structure is shown in Fig. 4.20. The 
wave solution is called an equatorial Kelvin wave; its structure in the xz 
plane is analogous to that of an internal gravity wave, and the y variation 
given by Eq. (4.7.9) allows geostrophic balance to hold (exceptionally) right 
up to the equator. 

A similar analysis can be performed in the case when ü is constant and 
nonzero: the same formulas hold except that the absolute frequency ω is 
replaced by the intrinsic, or Doppler-shifted, frequency 

ω+ = ω - kü. (4.7.10) 

Use of this crude allowance for a basic zonal wind gives quite good 
agreement between theory and observation, as will be mentioned in Section 
4.7.5. In particular ω+/k > 0, so that the absolute phase speed ω/k must 
be eastward with respect to the basic flow, and this is in accord with 
observations of Kelvin waves. 

Fig. 4.20. Schematic illustration of geopotential and horizontal wind fluctuations for the 
Kelvin wave. [Adapted from Matsuno (1966).] 
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4.7.2 Modes with Nonzero Meridional Velocity 

We now consider the case v ^ 0, and return to Eq. (4.7.6). On eliminating 
ü and Φ from Eqs. (4.7.6a,c) and substituting in Eq. (4.7.6b), we obtain 

\ d2 (m2w2
 f 2 kß\ ß2m2

 21 A , 

provided that 

m2(o2 * N2k2. (4.7.12) 

The substitutions 

(4.7.13a,b) 

where \m\ is assumed nonzero, allow Eq. (4.7.11) to be reduced to the 
dimensionless form 

l—-1+Μ-η2)ν = 0, (4.7.13c) 

which also arises in the theory of the quantum harmonic oscillator and has 
the solutions 

v = v0e-W2)*2Hn(v) 

if M = In + 1, where n is a nonnegative integer, the Hn are the Hermite 
polynomials (H0 = 1, Hl = 2η, H2 = 4η2 - 2, etc.) and v0 is constant. Thus 
Eq. (4.7.11) has solutions 

ΰ = v0exp(-ß\m\y2/2N)Hn[(ß\m\N-iy/2yl (4.7.14a) 

provided that 

m2w2 - ßk , xj8|m| 
— - - k2 - ?- = (2n + 1) ̂ - ί . (4.7.15) 

N ω Ν 
Using Eqs. (4.7.6a,c) and the identities dHn/άη = 2nHn_x, Hn+l = 
2ηHn - 2nHn_x, it can be shown that 

. A / 0 I | x r \ l / 2 l ^ π + Λν) , n^n-l(v) | -(1/2)τ,2 / . ^ ^ 

M = iü0(jÖ m N) ' — Γ^ + ΓΊ—ΓΤ7Γ * > (4.7.14b) 

\ |m| / l\m\(u - Nk \m\a) + Nkj 
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and w follows from Eqs. (4.7.5) and (4.7.14c). These solutions are trapped 
near the equator, with a latitudinal decay scale of order (2N//3 |m|)1/2; for 
a vertical wavelength of 10 km, this is approximately 1660 km or 15 degrees 
of latitude. [The same scale (2N//3|m|)1 /2 applies for Kelvin waves, as can 
be seen from Eqs. (4.7.9) and (4.7.8a) and the fact that m < 0 in this case.] 
The "turning point," at which ΰ changes from oscillatory behavior to 
exponential decay, is seen from Eq. (4.7.13c) to occur at η = ±M 1 / 2 , that 
is, y = ±[(2n + l ) N / 0 | m | ] 1 / 2 . Note that the solutions, Eqs. (4.7.9) and 
(4.7.14c), are the equatorial beta-plane analogs of the Hough functions of 
Section 4.2 in the limit y~1/2 -> 0. 

The gravest of the modes with nonzero ΰ is of particularly simple form: 
setting n = 0 in Eq. (4.7.15) we obtain 

(\m\a>- Nk)(\m\(o + Nk) = βω-χΝ{\τη\ω + Nk)\ 

but by Eq. (4.7.12), \τη\ω + Nik ^ 0, so this factor can be canceled to give 

N 
H =-i(ß + (*)k) (4.7.16) 

ω 

as the dispersion relation for the n = 0 mode; since \m\ is positive it follows 
that 

c = w/k> -ß/k2. (4.7.17) 

Equation (4.7.16) can be written m = ±Νω~2(β + wk), so that 

c(z) 
_ θω _ (dm\ l _ =Fa>3 

= ~dm = \dZj = N(2j3 + ü>k)* (4.7.18) 

The denominator of the last term in Eq. (4.7.18) is positive, by Eq. (4.7.17), 
and thus the choice of sign for upward group velocity c(

g
z) depends on the 

sign of ω. If —ß/k < ω < 0 the upper sign applies, while if ω > 0 the lower 
sign applies; the dispersion relation [Eq. (4.7.16)] therefore becomes 

N 
m = -sgn(w) - 2 (β + wfc). (4.7.16') 

ω 

Since H0 = 1, the solution is found to be 

A A - A {ι\™\ωγ \ (-ß\m\y2\ 
Ü, v, Φ) = " ο ( ^ - Λ 1, UoyJ exP( 2N h ( 

this solution is called the Rossby-gravity wave-, its structures in the xz and 
xy planes are illustrated in Figs. 4.21 and 4.22. It approximately corresponds 
to an observed stratospheric wave disturbance if allowance is again made 
for a basic flow ü by replacing ω by ω+ — ω — kü. The observed wave has 
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Fig. 4.21. Longitude-height section at a latitude north of the equator, showing geopotential, 
temperature, and wind fluctuations in the Rossby-gravity wave of westward phase speed 
(-ß/k < ω < 0) when \m\ » 1/2//. Northward winds are indicated by arrows into the page 
and southward winds by arrows out of the page. Thick arrows indicate direction of phase 
propagation. [After Holton (1975). American Meteorological Society.] 

a westward phase speed with respect to the mean flow, so that ω+ /k < 0: 
see Section 4.7.5. 

The equatorial modes for n ^ 1 have more complex meridional structure 
than the Kelvin and Rossby-gravity modes. Their dispersion relation, Eq. 
(4.7.15), is a quadratic in \m\ if /c(>0), ω and n are given, and the solutions 
fall into two categories. First, there is a set of high-frequency equatorial 
inertio-gravity waves, with dispersion relations 

m = -sgn(w)Νβω~2{(η + £) + [(n + \)2 + <okß~\\ + ω/c/r1)]172}, (4.7.20) 

Fig. 4.22. Schematic illustration of geopotential and horizonal wind fluctuations for the 
Rossby-gravity wave of westward phase speed. [Adapted from Matsuno (1966).] 
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Fig. 4.23. Dispersion curves for upward-propagating equatorial waves. See text for details. 

which occur for all values of ω. Second, there is a set of low-frequency 
equatorial Rossby waves, with dispersion relations 

m = Νβω~2{(η + \) ~ [ (" + \)2 + (ukß~\\ + cofc/T1)]172}, (4.7.21) 

which only occur for —ßk~2 < c = ω/k < 0. (This condition on the phase 
speed also happens to be a corollary of the Charney-Drazin condition [Eq. 
(4.5.15)] for midlatitude Rossby waves when ü = 0, since üc< ßk~2.) In 
Eqs. (4.7.20) and (4.7.21) we have given only the solutions corresponding 
to an upward group velocity. Dispersion curves are presented in Fig. 4.23 
in terms of the dimensionless parameters rh = mß/ Nk2 and ώ = cok/β, for 
several values of n ^ 1. Also plotted are the dispersion curves for the 
upward-propagating Rossby-gravity wave (n = 0) with the dispersion rela-
tion of Eq. (4.7.16') and Kelvin wave (often designated by the index n = -1) 
with the dispersion relation of Eq. (4.7.8a).3 Other ways of plotting the 

3 The index «, which has been used here to distinguish the various equatorial wave modes, 
corresponds to nE appearing at the left-hand end of the curves in Figs. 4.2a,b. 
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equatorial-wave dispersion relations are given for example by Gill (1982), 
Figs. 11.1 (ω versus k at fixed m) and 11.8 (m versus k at fixed ω). 

4.7.3 The Forcing of Equatorial Waves 

The upward-propagating equatorial waves that are observed in the middle 
atmosphere are generally thought to be forced by geographically confined 
time variations in the large-scale cumulus convective heating in the 
equatorial troposphere. A simple way of modeling this forcing is to include 
a heating term / '(x, y, z, t) in a lower region 0 ^ z < ζλ representing the 
troposphere, but to retain J' = 0 for z ^ ζλ. The theory given above relates 
to the latter region, provided N is still assumed to be constant there and 
the approximation m2 » 1/4H2 still holds. 

The temporal variability in / ' is approximated by a single standing 
oscillation of the form 

/ ' = 2F(y)G(z) cos kx cos cot (4.7.22a) 

= F(y)G(z)[cos(kx - ωί) + cos(foc + a>t)]9 (4.7.22b) 

where F(y) is confined near to the equator and G(z), the vertical distribution 
of heating, is specified to fit the mean profile observed for tropical cloud 
clusters (Fig. 4.24); it vanishes for z ^ ζλ. Equation (4.7.22b) shows that 
the standing oscillation can be represented as a superposition of eastward 
and westward moving forcing terms. If KJ'/H is now included on the right 
of Eq. (4.7.3d), Eqs. (4.7.3) are analogous to Eqs. (4.2.1) of classical tidal 
theory, except that the equatorial beta-plane is used, rather than spherical 
geometry. By linearity, the responses to the eastward and westward traveling 
forcing in Eq. (4.7.22b) can be found separately, and then summed. The 
method is similar to that of tidal theory: for the specified k and ω, the 

12 

o 
UJ 4 

0 4 """8 12 16 20 24 28~ 
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Fig. 4.24. Observed vertical profile of total large-scale diabatic heating by mature cloud 
clusters in the tropical troposphere (solid curve). Heating by convective towers alone (dashed 
curve) is shown for comparison. [After Houze (1982).] 
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relevant modes and their vertical wave numbers m can be read off from a 
diagram like Fig. 4.23. The function F(y) is then expanded in the geopoten-
tial eigenfunctions associated with these modes; since the latter are limiting 
cases of the Hough functions, they form a complete set. The response, say 
in w, is similarly summed, and the z-dependent amplitudes of the eigenfunc-
tions found by solving a vertical structure equation like Eq. (4.3.4), but 
with N2/ghn - (1/4H2) replaced by m2 for the relevant mode. In detailed 
calculations, the non-Boussinesq version of the theory might be needed if 
values of m2 arise that are not much larger than 1/4H2. 

A simple model of this form has been used by Chang (1976) to explain 
the observed distribution of Kelvin waves. In general, however, a more 
detailed calculation is probably needed, to examine the mechanism of the 
excitation of equatorial waves. For example, Holton (1972) used a model 
involving a longitudinally localized heat source and a basic zonal shear 
flow w(z) to account for the observed Rossby-gravity waves. Further details 
of these studies are given in Section 4.7.5. Strong support for the hypothesis 
that both Kelvin and Rossby-gravity waves are indeed forced by tropical 
convective heating has been provided by Hayashi and Golder (1978) by 
means of controlled experiments with a sophisticated nonlinear general 
circulation model. 

4.7.4 WKBJ Theory of Dissipating Equatorial Waves in a Shear Flow 

As mentioned above, the theory given in Sections 4.7.1 and 4.7.2 immedi-
ately extends to the case in which a constant basic zonal flow is present 
but dissipation is neglected. However, the influence of basic shear, par-
ticularly vertical shear dü/dz, is believed to account for several important 
features of the observed Kelvin and Rossby-gravity waves. Together with 
thermal and perhaps mechanical dissipation, it is also an essential com-
ponent of the models of the quasi-biennial oscillation mentioned in 
Chapter 8. 

The most detailed treatments of the effects of a basic shear flow ü{y, z) 
on the propagation of equatorial waves in the presence of dissipation 
necessarily involve numerical solution of Eqs. (4.7.1). For many purposes, 
though, a WKBJ approach (cf. Appendix 4A) is sufficient for gaining 
physical insight into the effects of shear. This theory is still quite complicated, 
and we shall only quote some basic results here. 

For simplicity we consider the case where ü depends on z alone. The 
WKBJ assumption then requires that the basic shear is weak, in the sense 
that the height scale on which ü varies is much greater than the vertical 
wavelength 2πηι~λ of the waves under consideration. It also requires that 
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dissipative effects are small. These conditions can be formalized by introduc-
ing a small WKBJ parameter μ„, as in Section 4.5.4 and Appendix 4A. 

At leading order in /AW, some of the results given above still hold locally, 
at each z. For example, upward-propagating Kelvin waves of absolute 
frequency ω and zonal wave number fc have a local vertical wavenumber 
m(z) given by 

ω - kü(z) = -Nk/m(z) > 0, (4.7.23) 

[cf. Eqs. (4.7.8a) and (4.7.10)] and a local vertical group velocity Cgz)(z) 
given by 

4z)(z) = Nk[m(z)T2 = [ω- kü(z)f/Nk. (4.7.24) 

(The same formulas also hold when N varies slowly with z.) In terms of 
the absolute zonal phase speed c = ω/fc, these imply that Kelvin waves 
only exist in regions where ü(z) < c, since fc > 0 by convention, and that 
the vertical wavelength 2πτη~λ and cg

z) both become small as ü(z) 
approaches c, that is, as a wave approaches a critical level. Intuitively one 
expects the waves to become more and more susceptible to dissipation as 
the vertical group velocity decreases, and this can be confirmed theoretically, 
as mentioned below. 

Similar results hold for Rossby-gravity waves: in particular, for the modes 
with westward phase speed with respect to the mean flow (—ß/k2 < ω — 
kü < 0), we have 

m(z) = Ν[ω - kü{z)Y2{ß + [ω - kü(z)]k} (4.7.25) 

and 

4z)(z) = - [ ω - kü(z)]3N~l{2ß + [ω - kü(z)]k}~\ (4.7.26) 
Once again the vertical wavelength and group velocity decrease as a critical 
level is approached, and the waves are expected to be strongly dissipated 
there. 

At the next order in ^ w , the effects of the weak shear and dissipation 
on the variation of wave amplitude appear. The amplitude factors Φ0 
and v0 of Eqs. (4.7.9) and (4.7.19) now vary slowly with height and time. 
The simplest way of determining this variation is to substitute the lowest-
order solutions [e.g., Eqs. (4.7.9) or (4.7.19)] into the full form of the 
generalized Eliassen-Palm theorem (cf. Section 3.6) and integrate in y: see 
Appendix 4A for a general outline of this approach. This calculation 
confirms that the waves become strongly dissipated as cg

z) -» 0. It also gives 
the slow height dependence of the latitudinally integrated vertical com-
ponent of the Eliassen-Palm flux J ^ F ( z ) dy, associated with the waves in 
question. This quantity depends, among other things, on the form and 
magnitude of the dissipation that is present in the middle atmosphere, and 
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is an essential ingredient for some of the models of the QBO to be presented 
in Chapter 8. 

As with the WKBJ theory for midlatitude planetary waves, described in 
Section 4.5.4, the conditions for the strict validity of the results given in 
this section are frequently not satisfied. Nevertheless, the theory still pro-
vides a valuable qualitative, and often quantitative, model of the behavior 
of the observed equatorial waves in the middle atmosphere. 

4.7.5 Observed Equatorial Waves 

The existence of Kelvin and Rossby-gravity waves in the equatorial lower 
stratosphere has been verified by a number of time-series analyses based 
on radiosonde data. The Kelvin waves are primarily of zonal wave number 
1 and 2 with periods in the range 10-20 days. The Rossby-gravity waves 
are primarily of wave number 4, with westward phase propagation and with 
periods of 4-5 days. The observed characteristics of these modes are sum-
marized in Table 4.1. In both cases the structures are in approximate 

Table 4.1 

Characteristics of the Dominant Observed Planetary-Scale Waves in the Equatorial Lower 
Stratosphere 

Theoretical description 

Discovered by 

Period (ground-based) 2πω~ι 

Zonal wave number s = ka cos φ 
Vertical wavelength 2irm~x 

Average phase speed relative to 
ground 

Observed when mean zonal flow is 

Average phase speed relative to 
maximum zonal flow 

Approximate observed amplitudes 
u' 
v' 

r 
Approximate inferred amplitudes 

φ ' /g 
w' 

Approximate meridional scales 
/ 2 N \ l / 2 

L·^ 

Kelvin wave 

Wallace and Kousky 
(1968) 

15 days 
1-2 
6-10 km 

+25 ms" 1 

Easterly 
(max. ~ -25 

+50 ms" 1 

8 m s - 1 

0 
2-3 K 

30 m 
1.5 x 10 - 3 ms" 

1300-1700 km 

ms"1) 

1 

Rossby-gravity wave 

Yanai and Maruyama 
(1966) 

4-5 days 
4 
4-8 km 

-23 m s - 1 

Westerly 
(max. ~ +7 m s_1) 

-30 ms" 1 

2-3 ms" 1 

2-3 rns"1 

1 K 

4m 
1.5 x 10" 3 ms _ 1 

1000-1500 km 
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agreement with theoretical expectations when doppler shifting by mean 
winds is considered. 

As will be shown in Chapter 8, these waves are primarily responsible 
for driving the so-called quasi-biennial oscillation of the zonal mean winds 
in the lower stratosphere. The Kelvin waves appear in the data most 
prominently during periods when mean easterly winds exist at the base of 
the equatorial stratosphere. The zonal wind and temperature oscillations 

10 20 31 10 20 31 10 20 30 10 20 31 
JUL AUG SEP OCT 

1963 
( b ) 

Fig. 4.25. Time-height sections for the equatorial lower stratosphere, showing evidence of 
Kelvin-wave activity, (a) Zonal wind and (b) temperature at Canton Island (3°S). Note the 
westerly phase of the QBO encroaching from upper levels in (a): see Chapter 8. [From Giu 
(1982).] 
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associated with the Kelvin wave can be quite dramatic, as indicated by the 
time-height sections of Fig. 4.25. The figure clearly indicates that the 
temperature fluctuations lag velocity fluctuations by one-fourth cycle and 
that phase propagates downward, consistent with Kelvin wave dynamics. 
Cross correlation with stations at other longitudes has confirmed the east-
ward propagation and long zonal wavelength. 

It was noted in Section 4.7.3 that both the Kelvin and Rossby-gravity 
modes are thought to be generated by heating occurring in large-scale 
convective complexes (cloud clusters) in the equatorial zone. The model of 
Chang (1976) showed that randomly distributed sources most efficiently 
excite the longest zonal-scale Kelvin waves, and that the preferred vertical 
wavelength of the excited waves is about twice the vertical scale of the heat 
source, which from Fig. 4.24 is about 6 km for mature cloud clusters. This 
theory appears to account satisfactorily for the observed spectral distribution 
of Kelvin waves in the lower stratosphere. 

A similar mechanism for frequency selection does not seem to operate 
for the Rossby-gravity mode. However, there is a rather distinct period of 

Fig. 4.26. Longitudinal-height section at the equator, showing the meridional wind distur-
bance excited by an antisymmetric heat source, at the time of maximum heating north of the 
equator. The mean zonal flow w(z) is westerly between 12 and 25 km altitude and easterly 
elsewhere. The heavy line encloses the region where the amplitude of the diabatic heating 
exceeds 4 K day - 1 at the latitude where it is a maximum. Isopleths are at 2-m s_1 intervals, 
with shading indicating southerly winds. [After Holton (1972). American Meteorological 
Society.] 
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4-5 days in equatorial tropospheric convection. The model of Holton (1972, 
1973) showed that a localized tropical heat source antisymmetric about the 
equator with a 5-day period can generate a Rossby-gravity response that is 
dominated by wave number 4 in the lower stratosphere. Figure 4.26, which 
shows the response to a standing heat source, also illustrates the eastward 
group velocity of the Rossby-gravity wave. 

The relatively slow-moving Kelvin and Rossby-gravity modes observed 
in the lower stratosphere are effectively damped out by thermal dissipation 
by about the 10-mb level. Above that level the wave spectrum is dominated 
by more rapidly propagating Kelvin waves that were first reported in an 
analysis of rocketsonde data by Hirota (1978). Kelvin waves of several 
distinct frequency bands have been detected in the LIMS satellite data 

Fig. 4.27. Equatorial time-height sections of LIMS zonal wave 2 temperature at 0° longitude 
for the periods (a) October 25 to December 7, 1978, and (b) January 15 to February 27, 1979. 
Contour interval of 1 K. [After Coy and Hitchman (1984).] 
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(Salby et al., 1984). These waves appear to be excited by isolated "events" 
in the troposphere and propagate into the middle atmosphere as distinct 
wave packets, as shown by the example of Fig. 4.27. Such waves are believed 
to provide the westerly accelerations necessary to maintain the semiannual 
mean zonal wind oscillation (see Section 8.5). 

Appendix 4A Ray-Tracing Theory and Wave Action in a Slowly Varying 
Medium 

We present here a brief account of the application of "WKBJ" or 
"Liouville-Green" methods to problems involving the propagation of linear-
ized waves in slowly-varying background states. We start by supposing that 
each disturbance quantity, such as the disturbance zonal velocity u\ can 
be written in the form 

u' = Re w(x, t) exp i*(x, t) (4A.1) 
where x = (x, y, z) and the phase χ is real. We define a local wave number 
vector k = (/c, /, m) and frequency ω in terms of derivatives of χ: 

k^—, / s — , m = —, ω Ξ " Τ 7 · (4 Α·2) 
dX dy dz dt 

We now make the crucial assumption that w, k, /, m, and ω, as well as the 
background medium, all vary much more slowly in time and space than 
does the phase. This can be formalized by requiring that their time and 
space scales are 0(2πω~ιμ~ι) and 0[2n(k2 + I2 + ?η2)~ι/2μ~ι], respec-
tively, where /xw is a small "WKBJ parameter," and thus are large 
compared with the wave period and wavelength, respectively. We also 
assume that a dispersion relation holds at each point in time and space: 

ω = A(k; x, t). (4A.3) 
This relation follows, at leading order in ^tw, from substitution into the 
linearized equations of motion [e.g., Eqs. (3.4.2)] of Eq. (4A.1) and similar 
expressions for the other disturbance variables; it thus contains dynamical 
information. Note that ω can depend on x both through the dependence 
of k on x and through the "explicit" x dependence of Δ due to x variations 
of the background state. (For example, if the background flow velocity 
depends on z, then Δ will contain explicit z dependence.) 

We define the group velocity cg by 

c,(k;*,,) = < c « 4 ' > , 4 - > ) ^ , ^ ) , (4A.4, 

and introduce the time rate-of-change as measured by an observer moving 
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with the local group velocity: 

(4A.6) 

using the chain rule, and so Eqs. (4A.7) and (4A.8) imply 

(4A.5) 

An important set of identities follows from the definitions of Eq. (4A.2) 
using relations like d2\/dx dt = d2x/dt dx: for example, 

Thus 

(4A.8) 

(4A.7) 

using Eqs. (4A.5), (4A.6), and (4A.4); but from Eq. (4A.3), 

In a similar manner it can be shown that 

(4A.9a) 

(4A.9b,c,d) 

Thus the rate-of-change, following the group velocity, of the local wave 
number or frequency depends on the "explicit" space or time variation of 
Δ due to inhomogeneities of the background state. 

We now define a ray as the trajectory \(t) of appoint moving with the 
local group velocity, that is, 

(4A.10) 

Equations (4A.9) and (4A.10) are called the ray-tracing equations: given 
the dispersion relation [Eq. (4A.3)] and appropriate initial conditions on 
x and k, they can in principle be solved for the ray paths and the variation 
of local wave number and frequency along the rays. Physically, Eq. (4A.10) 
can be regarded as giving the trajectory of a "wave packet" whose wave 
number k and frequency ω vary according to Eq. (4A.9). 
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Examples of the use of ray-tracing theory are discussed in Section 4.5.4 
for planetary waves in a zonal shear flow ü(y, z) and mentioned in Section 
4.6.2 for internal gravity waves in a zonal shear flow u(z); the latter case 
is particularly amenable to analytical treatment (e.g., Bretherton, 1966b). 
Further details of the technique are given, for example, by Lighthill (1978) 
and Gill (1982). 

The ray-tracing equations give no information about the amplitude vari-
ation of wave packets; for this purpose a more complex theory is required, 
and we shall only quote the main results here. For simplicity, we specialize 
to the case of waves of slowly varying amplitude in a basic unforced flow 
[ü(y, z), 0, 0] that is zonal, independent of x (so that θΔ/θχ = 0) and t9 and 
slowly varying in y and z. Since this flow is zonal, unforced, and x-
independent, the generalized Eliassen-Palm theorem [Eq. (3.6.2)] holds; 
using the slowly varying properties of the waves and mean flow it can be 
shown [using methods analogous to those of Andrews and Mclntyre 
(1976a,b, 1978c)] that 

F = cgA (4A.11) 

to leading order in μ„. (A special case of this result, for planetary waves, 
is mentioned in Section 4.5.5.) It can also be shown that 

\ ω — ku) 
(4A.12) 

to leading order in /*w, where E is the wave-energy density \po(u'2 + v'2 + 
Φ'2/'N2) [cf. Eq. (3.6.3)]. The expression Ε/(ω - kü) is called the wave-
action density, using Eqs. (3.6.2), (4A.11), (4A.12), and (4A.9a), together 
with the fact that θΔ/dx = 0 here, one obtains the wave-action equation 

^ ί E \ ^ / cgE \ . a ^ , 
— I — I + v · I —*—— I = nonconservative effects + U(a ) 
dt \ω — ku) \ω — kuj 

(4A.13) 

for slowly varying waves (Bretherton and Garrett, 1968; Andrews and 
Mclntyre, 1978c). (Here a « 1 is a dimensionless wave amplitude, as in 
Chapter 3.) Equation (4A.13) can be rewritten 

dj E \ ( E \ . Λ / . 
-r I — + — )v · ce = nonconservative effects + Oia ) 
dt \ω - kü) \ω - kü) 8 

and, if the nonconservative terms are known, this can be used to find the 
variation of wave action (and thence of wave energy and other measures 
of wave amplitude) along a ray, to 0(a2). Note that, in general, information 
on a bundle of adjacent rays is required for calculation of V · cg here. 
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For equatorial waves (Sections 4.7 and 8.3) the assumption of slow 
variation of wave amplitude in y is no longer valid; however, in the case 
where ü depends on z alone it can be shown that 

F(z)dy = c(
B

z) Ady9 (4A.14) 

where the integrals are taken from -co to co. From Eq. (3.6.2) it then follows 
that 

Ady + — (cg
z) A d y j =-2y(z) Ady (4A.15) d_ 

dt, 

to 0(a2), where 2y(z) = -\ D dy/\ A dy and D is the nonconservative term 
in Eq. (3.6.2). If X\ Y\ Q' [see Eq. (3.4.2)] represent dissipative effects, it 
can be shown that γ(ζ) is a positive inverse relaxation time. [For example, 
if X' = -yxu\ Y' = -y2v\ Q' = - y 3 0 ' , then y is a weighted mean of 
7i, 72, 73 at each z whose precise form generally depends on the detailed 
equatorial wave solutions: cf. Andrews and Mclntyre (1976b); however, if 
7i = 72 = 73, then y = yx.] For steady waves, Eqs. (4A.14) and (4A.15) give 

[cf. Eqs. (8.3.1) and (8.3.6)]. Note that the exponential decay factor in Eq. 
(4A.16) tends to be enhanced by small values of the vertical group velocity 
CgZ), implying strong attenuation of the waves: see Sections 4.7.4 and 8.3.2 
for some possible consequences of this result. 
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