
Chapter 2 Radiative Processes 
and Remote Sounding 

2.1. Introduction 

In any planetary atmosphere, the character of the circulation depends 
strongly on the magnitude and distribution of the net diabatic heating rate. 
In the earth's troposphere, the net diabatic heating rate is dominated by 
the imbalance between two large terms: transfer of heat from the surface, 
and thermal emission of radiation to space. Latent heat is a major component 
of the flux from the surface to the atmosphere, and clouds play a major 
role in the emission of radiation to space. 

From the tropopause to the mesopause, the situation is much simpler. 
Net heating depends almost exclusively on the imbalance between local 
absorption of solar ultraviolet radiation and infrared radiative loss. In this 
region, ozone is the dominant absorber and carbon dioxide is the dominant 
emitter. Infrared emission by ozone and water vapor and solar absorption 
by water vapor, molecular oxygen, carbon dioxide, and nitrogen dioxide 
play secondary roles (Fig. 2.1). The distribution of the radiative sources 
and sinks due to these gases exerts a zero-order control on the large-scale 
seasonally varying mean temperature and zonal wind fields of the middle 
atmosphere. Infrared radiative emission also provides an important mecha-
nism for damping dynamically forced temperature variations. These radia-
tive processes will be described in this chapter. 

Satellite observations of emitted, transmitted, and scattered radiation 
can be used to diagnose the global distributions of temperature and con-
stituent concentrations throughout the middle atmosphere. Such observa-
tions have provided much of the basic data bearing on the dynamical state 
and transport processes in this region. Principles and applications of these 
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Fig. 2.1. Vertical distribution of heating due to absorption of solar radiation (right) and 
cooling due to emission of infrared radiation (left). [From London (1980), with permission.] 

techniques to the middle atmosphere are considered in the last section of 
this chapter. In the future, satellite measurements of emitted radiance should 
also be useful for the direct determination of wind velocities. 

2.2 Fundamentals 

Calculation of the distribution of radiative sources and sinks requires 
the solution of the radiative transfer problem. This is essentially a problem 
of careful bookkeeping. The physics enters with the consideration of the 
actual processes of interaction between radiation and matter. In this section, 
the concepts and basic formalism of radiative transfer theory are introduced. 

2.2.1 Radiative Transfer Quantities and the Equation of Transfer 

Figure 2.2 illustrates the geometry of electromagnetic radiation crossing 
a plane surface 5 whose unit normal vector is n. Radiant energy flux 
contained in a conical bundle of infinitesimal solid angle dfi in the direction 
of unit vector i l is shown. The flux of energy per unit area of S in the 
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Fig. 2.2. Geometry of radiation crossing a plane surface S with unit normal n. Radiance 
in the solid angle cone dii in the direction Ω is described in terms of the spherical coordinates 
Θ and φ. 

bundle is L ( ß ) c/Ω, where L(Cl), the radiance, is the fundamental radiative 
transfer quantity. Its units are Wm_ 2sr_ 1 . 

The contribution of the radiant flux in this bundle to the total flux across 
S in the direction of n is (n · fl)L(fl) du, and the total flux across S into 
the half-space above S (2π steradians) is the flux density F, given by 

F= (n · ä)L(fl) dil = L(0, Θ) cos θ ύη θ άθ άφ, 
J2TT JO JO 

(2.2.1) 

as expressed in terms of the azimuth and zenith angles φ and Θ (see Fig. 
2.2). Radiant energy impinging on S is called irradiance, while radiant 
energy emitted from S is called emittance. In this chapter this distinction 
will generally be avoided, and either quantity will be referred to as flux 
density. Units of F are W m~2. 

The net flux Fn is the difference between flux density crossing S in the 
direction n and that crossing in the opposite direction, -n . For example, if 
S is horizontal, 

Fn = FT - F4 (2.2.2) 

where FT and Fi are flux densities in the upward and downward directions. 
For a Cartesian coordinate system, three values of Fn correspond to net 
flux values across the three coordinate planes of that system. These are the 
components in those coordinates of a vector, the net flux vector Fn. 

Because of the spectral dependences of radiation and its interaction with 
matter, it is necessary to consider monochromatic radiance and flux density. 
Spectral dependence is expressed in terms of frequency v, wavelength λ, 
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or wave number λ_1. Spectral dependence in the microwave is usually 
expressed in terms of frequency (Hz), while at infrared, visible, and ultravio-
let wavelengths it is usually expressed in terms of wavelength (cm or nm) 
or wave number (cm-1). In the following development we shall use frequency 
exclusively, but monochromatic quantities can be easily expressed in terms 
of any of the spectral variables with the aid of the speed of light c, where 

c= v\ = 3 x 108ms- 1 . (2.2.3) 

Monochromatic radiance Lv and monochromatic flux density Fv are given 
by 

U = ^ , Fv = ^f. (2.2.4) 
av av 

Units of Lv are Wm"2 sr"1 ( s - 1 ) - 1 and units of Fv are Wm~2 (s-1)"1. 
The rate of decrease (extinction) or increase of monochromatic radiance 

along a length element ds in the direction ft is linear in the amount of 
absorbing matter. Extinction is also linear in the monochromatic radiance. 
These facts are expressed in the radiative transfer equation 

^ ^ = -kvPlLv{il) - Λ(Α)] . (2.2.5) 
ds 

The density of the radiatively active gas pa and two quantities kv and Jv 

appear in this equation. These quantities characterize the interaction 
between radiation and matter. They depend on the local properties of the 
medium. The extinction coefficient kv, whose units are m2 kg-1, describes the 
extinction of Lv along ds, while the source function Jv describes the rate of 
increase. 

Energy removed from Lu by extinction can either increase the internal 
energy of matter at the point of extinction or can be immediately scattered 
at some angle to the incident beam, thereby providing an input to monochro-
matic radiance at the same frequency in a different direction. Thus kv can 
be expressed as the sum of an absorption coefficient av and a scattering 
coefficient sv, 

kv = av + sv. (2.2.6) 

The ratio of scattered energy to total energy lost by extinction at a point 
in the medium is the single scattering albedo ών, 

ü>v^svlkv, ( 1 - ώ „ ) = ajkv. (2.2.7) 

Scattering contributes to emission of radiation in the direction of the 
scattered photons, and thereby contributes to the source function. The total 
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scattering contribution to the source function from a volume element in the 
direction ft, /^s(ft), is an integral over all incident angles ft' filling 4π 
steradians, 

_ <»v f 
4π J47r 

^s(ft) = ~r ^ ( f t ' ) ^ ( f t , ft') dft'. (2.2.8) 
477" J47r 

The function P„(ft, ft') describes the angular distribution of the scattered 
radiation and also depends on the local properties of matter as well as the 
frequency; P„(ft, ft') is the phase function, and according to Eq. (2.2.8), it 
is normalized such that 

*π J4 f l 
P„(ft , f t ' )<m'=l . (2.2.9) 

By itself, scattering does not change the internal energy of matter, but 
emission of radiation can also take place at the expense of the internal 
energy of the matter in a volume element. In order to describe this thermal 
emission it is necessary to distinguish between local thermodynamic equilib-
rium (LTE), the condition under which Kirchhofes Law applies, and the 
condition under which Kirchhofes Law fails (non-LTE). For the most 
important radiatively active gases, LTE holds for pressures greater than 
about 0.1 mb but begins to fail at lower pressures. 

Under LTE conditions with no scattering (ών = 0), Kirchhofes Law states 
that the source function is equal to the Planck function Bv, 

Jv = B„( T) = lh£(eh"k»T - 1)-', (2.2.10) 
c 

where h and kb are the Planck and Boltzmann constants. Note that Bv is 
independent of direction; that is, it is isotropic. The integral of Bv over all 
frequencies is the blackbody radiance B(T), 

Too 

B(T)= Bv{T)dv = -T\ (2.2.11) 
Jo π 

where σ = 5.67 x 10"8Wm-2 K"4, the Stefan-Boltzmann constant. 
When LTE holds but scattering occurs {ών Φ 0), Kirchhoff s Law takes 

the more general form 

/„(ft) = (1 - ών)Βν + ^ I L„(A')P*(A, ft') dW. (2.2.12) 4ττ J47r 

The source function for non-LTE conditions will be discussed in Section 2.6. 
There is a useful integral form of the radiative transfer equation. As 

illustrated in Fig. 2.3, radiance at a position s along a path in the direction 
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f extinction on 0—-s = 1 / . /^(ext inct ion on s'—s= j 

lexp(-/0
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Fig. 2.3. Contributions to radiance at s from the path 0 to s. 

of i l is given by 

L„(ft, 5) = L„(n, 0) e x p [ - j K(s')p*(s') ds'J 

+ J' Μ*')ρ«(*')Λ(ά, *') e x p [ - J ' M*")Pa(*") &"] &'. 

(2.2.13) 

The quantity J*, kv(s")pa(s") ds" is called the optical path between s' and s. 
Equation (2.2.13) is the formal solution of the radiative transfer equation, 
Eq. (2.2.5). In accordance with the linear character of the problem, it 
expresses the fact that radiance Lv(Ci9 s) is composed of contributions from 
boundary radiance Lv(£t90) exponentially attenuated by the optical path 
length between 0 and 5 plus infinitesimal radiance contributions from 
volume elements at positions s' along the path, given by 

K(s')p*(s')J,(a, s') ds'. 

Each such contribution is attenuated exponentially by the matter contribut-
ing to the optical path between s' and s, and these contributions are 
integrated along the path. 

2.2.2 Plane-Parallel Atmosphere Approximation 

In atmospheric radiative transfer theory, two approximations are usually 
made. (1) The curvature of level surfaces due to the sphericity of the planet 
is negligible. (2) Properties of the medium and the radiation field depend 
only on the vertical coordinate. Together, these conditions comprise the 
plane-parallel atmosphere approximation. 

When the plane-parallel atmosphere approximation holds, the net flux 
vector is vertical and it is appropriate to express the angular dependence 
of the radiation field in terms of polar coordinates (0, φ) referenced to the 
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local vertical so that 0 is the zenith angle (measured from the vertical). 
Moreover, radiance is independent of azimuth φ. It follows from Eq. (2.2.1) 
that flux density in the upward direction is given by 

Γττ/2 Λ1 

F T (Z*) = 2T7- L ( 0 , Z * ) COS 0 sin 0</0 = 2ΤΓ L(/A, ζ*)μ άμ, 
Jo Jo 

(2.2.14a) 
where μ = cos 0. 

Flux density in the downward direction is given by 

Fl(z*) = 2*r L(0,z*)cos0sin0i /0 = 27T L(-/x, ζ*)μ άμ. 
J 7Γ JO 

(2.2.14b) 

Note the use of the argument -μ to indicate downward radiance. 
For plane-parallel atmosphere problems involving monochromatic radi-

ation, the vertical coordinate z* can be replaced by the optical depth τν{ζ*). 
This is the optical path along the vertical between height z* and the top of 
the atmosphere, 

τΛζ*) = J ^ K(z*')pAz*') dz*'. (2.2.15a) 

The notation rv with subscript v explicitly denotes the frequency dependence 
of the optical depth, which arises from the frequency dependence of kv. 
Optical depth can also be expressed in terms of the log-pressure vertical 
coordinate z: 

=1 τ„(ζ) = J h(z')pa0(z') dz' (2.2.15b) 

where pa0(z) = pa(z)[T(z)/Ts] = pa(z)[p0(z)/p(z)] is the basic absorber 
density scaled to the reference temperature Ts used to define the reference 
scale height H [see Eq. (1.1.8)]. Note that pa0(z) = ma(z)p0(z), where ma 
is the mass mixing ratio of the absorbing gas and p0(z) = pse~z/H is the 
basic density in the log-pressure coordinate system, as defined in Section 
3.1.1. 

Solar radiation in a plane-parallel atmosphere is conveniently separated 
into radiation in the solar beam, direct solar radiation, and radiation scattered 
by the atmosphere, diffuse solar radiation. Direct solar radiation consists of 
a very large radiance in a very small solid angle. Outside the atmosphere 
on a surface normal to the direction of the solar radiation stream ilo, direct 
solar radiation contains a monochromatic flux density S0u. The spectral 
integral of S0u is usually referred to as the solar constant S0, although this 
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term is inappropriate since S0 is known to exhibit some variability in time. 
At level z within the atmosphere, the monochromatic flux of direct solar 
radiation across a level surface and incident at zenith angle θ0 = cos -1 μ0 is 

Su(z) = ß0S0ue-T»{z)/»o. (2.2.16) 

The source function given by Eq. (2.2.12) can be rewritten to explicitly 
display the contributions to scattered radiance by the direct solar radiation 
and the diffuse radiation. The angular dependence of the direct solar 
radiation can be approximated by a delta function, and it follows from Eq. 
(2.2.16) that 

Λ ( « ) = (1 - ών)Βν + ^ f L„(A')P„(«, A') dil' 

+ !^Ρν(ά, ή ο ) * " ^ . (2.2.17) 
477" 

Ιη Eq. (2.2.17), Lv(£i') corresponds to diffuse radiance alone, and 
Λ,(Ω) contributes only to diffuse radiance. In most applications, spectral 
overlap between solar and thermal radiation can be neglected so the first 
term on the right side of Eq. (2.2.17) can be ignored at wavelengths shorter 
than about 4/ im while the last term can be neglected at longer wavelengths. 

The formal solution to the problem of determining the diffuse monochro-
matic radiance in a plane parallel atmosphere can now be stated with the 
aid of the integral form of the radiative transfer equation [Eq. (2.2.13)] and 
suitable boundary conditions at the bottom and top of the atmosphere. In 
terms of optical depth, radiance in the upward direction is 

U M , T„(Z)] = L„[/x, τ„(0)] ^ν{-μ~\τΜ ~ τΛζ)]} 

+ μ-ιΙν[μ9 τ„(ζ')] β χ ρ ί - μ - ^ τ Λ ζ ' ) - τν(ζ)]} άτν{ζ'). 
JTU(Z) 

(2.2.18) 

The radiance at the lower boundary U / A , 7V(0)] depends on the monochro-
matic emissivity εν of the surface, which is the ratio of the radiance emitted 
at the expense of the internal energy of the boundary to that of a blackbody 
at the same temperature. According to Kirchhofes Law, the monochromatic 
reflectivity of an opaque surface is (1 - εν). For an isotropically reflecting 
surface it follows that the boundary radiance L„[/x, T„(0)] required for Eq. 
(2.2.18) is the isotropic radiance 

LV[TM] = e A M O ) ] + (1 - εν)£„[-μ9 τ„(0)] 

+ ( l - e „ ) / ioSo^"^ l T " ( 0 ) , (2.2.19) 
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where £„[-μ,, τ\,(0)] = 2 J0 L ^ - μ , τν(0)]μ άμ is the angular mean of L„. 
For thick clouds and most surface materials, ev ~ 1 at thermal infrared 
wavelengths (λ ^ 4 /im), and the reflected contributions can often be ne-
glected. Moreover, as in Eq. (2.2.17), Bv can be neglected for λ ^ 4μ,πι 
while S0v can be neglected for λ ^ 4 μ,ηι. At visible as well as infrared 
wavelengths it is often assumed that εν is isotropic, but this assumption 
can lead to serious errors for near-infrared and visible wavelengths over 
some surfaces, particularly at low sun angles. 

The upper boundary condition for diffuse radiation is 

LA-μ, τν = 0) = 0, (2.2.20) 

so that the radiative equation for downward radiance is simply 

LÄ-μ, rv(z)] = μ _ 1 Λ [ - μ , τ„(ζ')] 
Jo 
x βχρ{-μ_ 1[τ ν(ζ) - τ„(ζ')]} drv{z'). 

(2.2.21) 

2.23. Effect of Atmospheric Sphericity 

In contrast to the troposphere, where horizontal inhomogeneities are 
often very large, the conditions for validity of the plane-parallel atmosphere 
approximation are generally well satisfied in the middle atmosphere except 
for direct solar radiation at large zenith angles (0 ^ 80°). At these large 
solar zenith angles, a correction must be applied to the expression for the 
direct solar radiation [Eq. (2.2.16)] to account for the sphericity of level 
surfaces. 

Because the atmosphere is spherical, μ0 varies along the path. The 
geometry is depicted in Fig. 2.4 for paths for which 0(z*) < π/2 and 
0(z*) > 7Γ/2. In the former case, rv in Eq. (2.2.15a) should be replaced by 
^,cor* 

T„,cor(z*) = Mo(z*) J " Mz*')Pa(z*') άζ*'/μ0(ζ*'), (2.2.22) 

where μ0(ζ*') varies along the path as indicated in Fig. 2.4. Because of the 
sphericity, solar radiation can reach the upper atmosphere when 0(z*) > 
π/2 provided that 0(z*) < 0cutoff(z*)> and a straightforward modification 
of Eq. (2.2.22) is required in this case. Closed-form expressions employing 
tabulated functions known as Chapman functions can be used to evaluate 
the integrals in Eq. (2.2.22) in the special case of a constituent with a 
constant absorption coefficient whose density varies exponentially with 
height. 
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Fig. 2.4. Effect of spherical planetary shape on the geometry of direct solar radiation, 
shown with greatly exaggerated atmospheric thickness. Path OP corresponds to θ < π /2 ; path 
O'P corresponds to θ > π/2. In the latter case an observer at P sees the sun below the horizontal. 
The angle 0cutoff(z*) is the zenith angle at which O'P just intersects the horizon. 

2.3 Gaseous Absorption Spectra 

Solar photons are absorbed in the stratosphere and mesosphere primarily 
at ultraviolet wavelengths (0.1-0.4/xm) and to a lesser extent at visible 
(0.4-0.7 μηι), near-infrared (0.7-4 /xm), and X-ray wavelengths. The ab-
sorbed energy produces electronic, vibrational and rotational excitation, 
molecular dissociation, and ionization, but the energy used for ionization 
is of only minor importance for the total energy budget of the middle 
atmosphere. At altitudes below about 60 km, these processes are closely 
balanced by local recombination and collisional deexcitation so that most 
of the absorbed energy is thermalized—that is, it is realized locally as heat. 
In contrast, molecular collisions in the thermosphere and to some extent 
in the upper mesosphere are too infrequent to insure local thermalization 
of all absorbed energy (see Section 2.6). Dissociation and ionization occur 
primarily in continuous spectra, but excitation of electronic, vibrational, 
and rotational energy takes place in spectrally complex bands composed 
of large numbers of lines. In some cases, dissociation or ionization can also 
arise from absorption in complex spectral bands provided these are at 
wavelengths shorter than the threshold wavelength for dissociation or ioniza-
tion. 

Molecular absorption of thermal infrared radiation at wavelengths 
between 4 and 17 /xm excites vibrational and rotational energy, producing 
vibration-rotation bands, which invariably have a complex structure. Posi-
tions of some important vibration-rotation bands are shown in Fig. 2.5. At 
wavelengths longer than 17 /xm, absorption arises predominantly from 
transitions in molecular rotational energy, producing rotational lines and 
bands. In order to calculate diabatic heating rates, it is necessary to know 
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Fig. 2.5. Schematic spectra depicting the most important gaseous absorption features for 
infrared radiative transfer in the middle atmosphere. Absorptions correspond approximately 
to a normal incidence path through the atmosphere. [From Handbook of Geophysics and 
Space Environment, Air Force Cambridge Research Laboratory (1965), with permission.] 

the strength, shape, and positions of the spectral lines responsible for 
absorption. The processes controlling these spectral characteristics are 
described here. 

2.3.1 Molecular Energy Levels and Transitions: The Spectrum of 02 

Although many of the molecules of interest are polyatomic, the most 
important characteristics of molecular spectra can be illustrated by consider-
ing the simpler properties of diatomic molecules. Figure 2.6 is a schematic 
potential energy diagram of a diatomic molecule, AB. The potential energy 
versus internuclear distance is shown for the ground electronic state (X) 
and the first electronically excited state (A). For each of these states, 
potential energy first decreases and then increases with internuclear distance, 
corresponding to electrical forces that are repulsive at close range and 
attractive at longer range on either side of a stable equilibrium point. 
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INTERNUCLEAR DISTANCE 
Fig. 2.6. Schematic potential energy diagram for a diatomic molecule showing four types 

of transitions. 

At large separations, potential energy becomes independent of distance. 
The dissociation threshold for the X state corresponds to dissociation into 
two ground-state atoms, while the threshold for the A state corresponds to 
dissociation into one or more electronically excited atoms. The horizontal 
lines represent the vibrational energy levels or substates of each electronic 
state. As these energy levels increase, the vibrational oscillation energies 
increase until the dissociation threshold is reached. 

The transitions indicated by the slanting arrows in Fig. 2.6 represent (1) 
absorption of a photon to produce a transition from the second to the third 
vibrational energy level of the X state,1 (2) absorption producing a transition 
from the second vibrational energy level of the X state to the first level of 
the A state, (3) absorption producing photodissociation to two ground-state 
atoms, and (4) dissociation producing one excited state and one ground 
state atom. Note that the energy changes associated with the dissociations 
are continuous; in contrast, the discrete energy changes associated with 
transitions between vibrational energy levels produce discrete spectral 
bands. 

The vibrational energy levels in turn contain further internal structure: 
each is divided into a number of rotational energy levels whose spacing is 
too small to be shown in Fig. 2.6. Hence, transitions such as (1) or (2) are 
multiple and are associated with a series of spectral lines. 

These relationships between the energy levels and spectra are illustrated 
in Fig. 2.7, which shows the potential energy diagram and the ultraviolet 
absorption spectrum of 0 2 . These 0 2 spectral features are important for 
the energetics of the mesosphere and for photochemistry in both stratosphere 
and mesosphere. The ordinate in Fig. 2.7b is the cross section σν, which is 

1 For molecules with identical nuclei, like 0 2 and N2 , photon absorption does not occur 
for this type of transition. 
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related to the absorption coefficient by 

σν = ΜΆαν (2.3.1) 

where Ma is the mass of the absorbing molecule. In Fig. 2.7a the potential-
energy curves for the electronic energy levels of 0 2 are shown, together 
with their term symbols. Vibrational as well as rotational levels are omitted 
for clarity. The term symbol specifies the electronic configuration and 
indicates the ordinal number of the level or term in a series of terms having 
the same multiplicity (series X, A, B , . . . , or series X, a, b , . . . ) . The multi-
plicity, indicated by the superscript preceding the Greek letter, is determined 
by the net electronic spin with integer quantum number S. It is (25 +1) , 
the number of substates distinguished by different spin orientations. 

The Greek letter in the term symbol corresponds to the net orbital angular 
momentum quantum number in the sequence Σ, Π, Δ , . . . , analogous to 
atomic orbital angular momentum quantum number symbols S, P, D, 
The subscripts and superscripts that follow indicate terms whose wave 
functions are symmetric or antisymmetric upon reflection (4-, - ) , or have 
even parity (g) or odd parity (w). 

Term symbols provide more than convenient shorthand labels for the 
terms: they also display information on allowed ana forbidden transitions. 
Allowed transitions can occur if there is a change of the dipole moment 
between the two participating terms. Such electronic dipole transitions have 
relatively large cross sections. In addition, other types of change in the 
electronic configuration of the molecule can be associated with absorption 
or emission of radiation, for example, electronic quadrupole or magnetic 
dipole changes. However, cross sections for such transitions are typically 
smaller than electronic dipole transitions by six orders of magnitude or 
more. Such transitions are included in the category of forbidden transitions. 

Selection rules, derived from the quantum-mechanical theory of the terms, 
distinguish between allowed and forbidden transitions. Examples of selec-
tion rules are: spin change in a transition is forbidden; total angular 
momentum quantum number changes other than 0, ±1 are forbidden. A 
more detailed discussion of term symbols and selection rules can be found 
in Brasseur and Solomon (1984). 

The forbidden transition Χ3Σ~ -» Α3Σ„ produces very weak absorption 
bands between 260 and 242 nm. Dissociation to two ground-state oxygen 
atoms (O 3P) takes place at 242 nm (corresponding to an energy of 8.99 x 
10"19J or 5.58 eV). At this wavelength, the bands terminate in a weak 
continuum, which extends to still shorter wavelengths. These features com-
prise the Herzberg bands and continuum. 

The allowed transition X 3Σ~ -> Β 3Σ~ is responsible for the strong bands 
between 200 and 175 nm, the Schumann-Runge bands. These bands termi-
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nate in the Schumann-Runge continuum, which extends to shorter 
wavelengths and corresponds to the dissociation 

02->0(3P) + 0( ! D) 

in which one oxygen atom emerges in the excited *D state. Molecules in 
the upper term of the Schumann-Runge bands, the B 3Σ~ state, can undergo 
a spontaneous transition to the 3ΠΜ state, but the latter has no potential 
energy minimum so that it is unstable and rapidly dissociates to two oxygen 
atoms in the 3P ground state. As a result of this process, known as predissoci-
ation, the lifetime of 0 2 molecules in the B 3Σ~ state is exceptionally short. 

Figure 2.8 shows the detailed structure of the Schumann-Runge bands 
and illustrates the rotational line structure of the vibrational bands. The 
vibrational levels involved in the transitions are indicated in the figure. For 
example, 1-0 corresponds to rotational lines in the transition between the 
first excited vibrational level of the B state and the ground vibrational level 
of the X state. This important band system shows a high degree of regularity 
as well as complexity. The regular appearance of the system at longer 
wavelengths arises from the regularity of the spacing of vibrational and 
rotational energy levels. At the shorter wavelengths, the number of lines 
from incommensurably overlapping bands becomes so great that complexity 
appears to be winning out. Between 56,000 and 57,000 cm-1, the spectrum 
has a disordered, almost random appearance. 

2.3.2 Line and Band Strength 

The strength 5 of a spectral line or band is defined as 

S= \σνάν (2.3.2) 

where the integration is over the entire line or band. The cross section σν 

is usually expressed in the units cm2, so that the corresponding units for 5 
are cm2 s_1. We turn now to a discussion of the factors controlling the 
strengths of lines and bands in a band system such as that shown in Fig. 2.8. 

First, line or band strength for absorption is proportional to the ratio 
of the number density of molecules in the lower state of the transition, nh 

to the total number density of molecules of the absorbing gas, na. At 
thermodynamic equilibrium at temperature T, this ratio is given by the 
Boltzmann factor, 

gle-E>/k»T 

nll "a = ~ -E./KT* (2.3.3) 

where Ex is the energy of level / and the summation is over all energy levels. 
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Fig. 2.8. Calculated spectrum of the Schumann-Runge band system shown with a few 
measured data points (+). [From Kockarts (1971). Copyright © 1971 by D. Reidel Publishing 
Company, Dordrecht, Holland.] 
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The integers gz and g, are degeneracies, the number of distinct states 
having energies Et or Ej. For example, there are 2 / + 1 quantum-mechani-
cally distinct orientations possible for a molecule whose angular momentum 
quantum number is /, and the corresponding degeneracy is gj = 2 / + 1. 
The denominator on the right side of Eq. (2.3.3) is the partition function, 
which gives the proper normalization, the summation over all states. It 
depends weakly on T, but not on the quantum numbers of energy level /. 

The effect of the Boltzmann factor can be seen in the spectrum of Fig. 
2.8 in two ways. First, within each vibrational band, the rotational quantum 
numbers of both the upper and lower states of each transition increase as 
the transitions progress from the strongest lines, near the short-wavelength 
edges of each band, toward weaker lines at longer wavelengths. Higher 
rotational quantum numbers for the lower states of each transition corre-
spond to greater rotational energies of the lower state, and therefore, 
according to the Boltzmann distribution [Eq. (2.3.3)], to fewer molecules 
available for absorption. Second, vibrational bands corresponding to a 
transition whose lower state is an excited state have far fewer molecules 
available for absorption than bands corresponding to absorption from the 
ground vibrational level. Neglecting degeneracy , the ratio njna is propor-
tional to 

e-E,/khT = e~hvxlkhT 

where Ex = hvi is the vibrational energy of the excited lower level. For 
typical vibrational transitions of diatomic molecules, the energy difference 
between adjacent vibrational levels gives hvi/khT^5 at 273 K, so the 
number density ratios are typically ^0.01. Comparing representative bands 
with lower-state quantum numbers 0 and 1 in Fig. 2.8, for example the 2-0 
and 2-1 bands, it can be seen that the strengths of corresponding lines 
within the two bands typically have ratios ~ 100:1, and this is primarily 
due to the differences in populations of the energy levels as expressed by 
the Boltzmann factors. 

The important consequence of these population effects is that absorption 
band structure is strongly temperature dependent through the factor hvj kb T. 
Because this factor is large for vibrational transitions, the relative strengths 
of bands with different lower-state vibrational quantum numbers are 
extremely sensitive to temperature. On the other hand, differences in energy 
between rotational levels are much smaller, so the temperature sensitivity 
of the ratios of line strengths within a band is much less, although the 
overall envelope of the rotational lines within a single vibrational band is 
controlled by temperature. 

The changes in the electronic configuration of the molecule in vibrational 
transitions or in combined electronic and vibrational transitions also 
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influence the band strengths through a factor called the oscillator strength, 
which can be evaluated from calculations based on the quantum-mechanical 
description of the molecule. The relative oscillator strengths of vibrational 
bands within an electronic transition, such as the 0 2 Schumann-Runge 
band system, are governed by the Franck-Condon rule, which states that 
the oscillator strength increases as the correspondence between the 
configurations of the upper and lower vibrational states increases. Together 
with the Boltzmann distribution, the oscillator strength controls the relative 
strengths of vibrational bands in a system such as the Schumann-Runge 
bands and is responsible for the general increase in strength toward shorter 
wavelengths shown in Fig. 2.8. 

2.3.3 Line Shape and Line Width 

Absorption lines have finite spectral width as a consequence of one or 
more of the following factors: finite lifetime Δί of the upper state, which 
leads to an uncertainty in the energy Δ£ through the uncertainty principle 

ΔΕ At ^ h/ΙτΓ, 

finite lifetime due to perturbation by molecular collisions, and Doppler 
frequency shifts due to relative thermal motions of the molecules. For a 
single line of strength 5, the absorption cross section can be expressed in 
the form 

av = Sftv-v0) (2.3.4) 

where ftp - v0) is a shape factor giving the relative cross section at a point 
displaced by (P - P0) frequency units from the line center P0. The function 
f(v~ v0) is normalized so that l^ftv ~ po) dv = 1. 

The simplest model for the effect of finite lifetime is the Lorentz line shape, 

ftp - i/o) = (ajir)\{v - v0)
2 + air1 (2.3.5) 

where aL = {2πϊ)~ι and t is the mean time between major perturbations of 
the excited state. The frequency at which \v - p0\ = aL is the half-power 
point for the line, and aL is called the Lorentz half-width. 

Line broadening produced by finite lifetime of the upper state is called 
natural broadening. In this case, t is proportional to the mean lifetime of 
the upper state, the inverse of the molecular emission probability. For the 
0 2 Schumann-Runge bands, the mean lifetime in the upper state for some 
vibrational bands is ~10~9s and the corresponding Lorentz half-width (in 
wave number units) is ~ 1 cm-1. Natural broadening is a significant broaden-
ing mechanism for these bands in the mesosphere and upper stratosphere. 
In contrast, typical lifetimes for upper states of vibration-rotation transitions 
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in the infrared are ~0.1 s, and natural broadening is completely negligible 
compared with collisional broadening for these bands. 

Broadening due to collisions, or pressure broadening, is a complex process, 
but it is usual to approximate each collision as an encounter that truncates 
the wave function corresponding to the state of the molecule by producing 
a large sudden phase shift. In this approximation, the "phase shift" approxi-
mation, the Lorentz line shape is a good approximation, with t the mean 
time between collisions. When typical kinetic theory values are used to 
represent molecular collisions, 

a L -0 .07(p/ /7 s ) (r s /r ) 1 / 2 cm"1, (2.3.6) 

where ps = 1000 mb and Ts = 273 K. At these reference pressure and tem-
perature values, the Lorentz half-width usually falls in the range 0.05-
0.11cm-1. 

The Lorentz profile gives a good approximation to the shapes of pressure-
broadened lines and is generally applicable at pressures typical of the middle 
stratosphere or greater, but there are some limitations. (1) There are sig-
nificant variations in aL from gas to gas, from band to band for the same 
gas, and in some cases even between rotational lines in the same band. Line 
width is also a function of the type of colliding molecule, or broadening 
gas. (2) Temperature dependence varies with the particular transition, but 
the actual temperature dependence is often stronger than that given by Eq. 
(2.3.6). The form T~07 is more representative than T~05. (3) Departures 
from the Lorentz shape occur at large distances from the line centers 
(\v - v0\ » aL). These extended wings can be important in the relatively 
transparent regions of the spectrum. Departures from the Lorentz shape in 
the extended wings are very diflBcult to measure and are a major source of 
uncertainty in atmospheric radiative transfer. 

Even without pressure or natural broadening, finite line widths would 
arise because of molecular motion along the line of sight. This motion gives 
rise to the Doppler line shape 

f(v ~ vo) = (7mD)-1/2exp[-(*> - *> 0 )7«D] (2.3.7) 

where 

« D Ξ " m ^ o / c , "m = ( 2 f c b T / M a ) 1 / 2 , 

and Ma is the molecular mass. According to this definition, the spectral 
interval from line center to the half-power point (half-width) is (In 2)1 / 2aD, 
not aD. 

When both Lorentz and Doppler broadening are important, the shape 
factor is given by the convolution integral of the Doppler and Lorentz 
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shapes: 

i ,/, f°° e~x2dx 
f{v ~ vQ9 aO9y) = αϊιπ-*'2γ - j — : — - 5 (2.3.8) 

where y = aL/aO9 and x = u/um. This is the Vbigi /me 5Äa/?e, applicable 
when aL ^ aD. In particular, it is applicable to the Schumann-Runge bands 
in the upper stratosphere and mesosphere, since aD = 6 x 10~2 cm-1, com-
parable to the Lorentz half-width for natural broadening of some of the 
lines in these bands. For lines of vibration-rotation bands in the thermal 
infrared, aD

 Ä 5 x 10~4 cm-1, and it follows from Eq. (2.3.6) that the 
Doppler and pressure-broadened half-widths for lines in these bands 
become comparable at altitudes of 30-40 km. 

Figure 2.9 compares Doppler and Lorentz profiles when the half-widths 
are equal. The Doppler profile is concentrated near the center but falls off 
rapidly in the wings, while the Lorentz profile has very broad wings. The 
Voigt profile resembles the Doppler profile near the line center and the 
Lorentz profile in the line wings. Because line wings are often of great 
importance in atmospheric radiative transfer, the effects of the Lorentz 
profile are often important well above the altitude at which the Doppler 
and pressure-broadened half-widths are equal. At these altitudes, the 
Doppler profile underestimates the absorption coefficient in the line wings, 
but the Lorentz profile underestimates the spectral width of the regions near 

Lorentz 

Doppler / / 

Frequency or wave number 

Fig. 2.9. Lorentz and Doppler line shapes for approximately equal half-widths and 
intensities. The corresponding Voigt profile is also shown. 
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the centers of strong absorption lines, since the Lorentz half-width continues 
to decrease with decreasing pressure. 

Both the Doppler profile and the pressure-broadened Lorentz profile 
depend on temperature. However, the temperature dependence of line shape 
is usually of secondary importance compared with the temperature depen-
dence of line and band strength. 

2.3.4 Structure of Vibration-Rotation Bands 

2.3.4.a Energy Levels 

For a rigid rotating dipole, the energy levels E3 are given by 

Ej^ BJ(J+l)9 (2.3.9) 

where B, the rotational constant, is inversely proportional to the moment 
of inertia of the dipole. The selection rule for a radiative transition is 

Δ / = ±1. (2.3.10) 

The absorption spectrum corresponds to Δ7 = +1 and has the following 
characteristics. There is an absorption line corresponding to the transition 
/ = 0 - » / = l a t frequency v - 2B/h or wave number IB /he. Another line 
corresponding ί ο / = 1 - * / = 2 occurs at frequency 4Β/Λ, etc. Thus, a series 
of lines occurs with uniform frequency spacing 2B/h. The relative strengths 
of these lines are approximately proportional to the Boltzmann factor with 
degeneracy (2 / 4-1), 

S(J) - (2 / + l)e-mJ+l)/k»T. (2.3.11) 

The most important modifications to this simple model of a rigidly 
rotating dipole arise from the following factors: 

1. Nonrigidity of the oscillator. At high rotation rates, the dipole separa-
tion and moment of inertia increase as a result of centrifugal stretching. 
The effect is to decrease line separations at large / values, and it may cause 
the progression of line positions with increasing / to reverse and produce 
a "band head," or sharp limit on the band. 

2. Complexity of the oscillator. Linear molecules have a single moment 
of inertia and behave much like this simple model. For nonlinear molecules 
there are moments of inertia about two or three axes, and rotational energy 
levels must be described by two or three quantum numbers. This leads to 
a far more complicated spectrum such that the spacing of individual rota-
tional lines associated with changes of all of the rotational quantum numbers 
may appear quite random. 
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Despite these complexities, typical rotational line spacings are of order 
2B/hc in wave numbers, or 0.1-1 cm-1. There is considerable variation 
between bands, however, and line spacings are generally smaller for heavier 
molecules. 

Molecules with permanent electric dipole moments, such as H20 and 
0 3 , have strong pure rotation spectra. Linear symmetric molecules such as 
C0 2 , 0 2 , and N2 have no electric dipole moment in the ground vibrational 
state and hence no electronic dipole rotational spectra. 0 2 and N2 lack 
dipole moments even when vibrating; consequently they have no vibrational 
or rotational features involving electronic dipole radiation. 

To a first approximation, the lower vibrational energy levels of a molecule 
correspond to those of a linear harmonic oscillator and are uniformly spaced 
at levels Ev = (v + \)hvQ where v = 0 , 1 , 2 , . . . is the vibrational quantum 
number and v0 is the fundamental frequency of the oscillator. The selection 
rule for dipole radiation for this simple oscillator is Δυ = ±1 and the relative 
oscillator strengths for bands with upper-state quantum number v is propor-
tional to v. In practice, anharmonicities of various kinds lead to departures 
from uniform spacing of the levels, to violations of the selection rule, and 
to weak "overtone" bands for which |Au| > 2. 

In a vibration-rotation transition, the selection rule for dipole radiation 
associated with a rotational energy change for a linear molecule such as 
C0 2 is either Δ7 = 0, ±1 or Δ / = ±1. Such bands exhibit either two or three 
subbands corresponding to the two or three possibilities for Δ/. The subband 
with Δ / = +1 in absorption is called the R branch and lines on the short-
wavelength end of the band. The band with Δ / = - 1 in absorption, called 
the P branch, falls on the long wavelength end. The band with Δ / = 0, if 
it occurs, falls in the middle and is called the Q branch. A schematic spectrum 
of a linear molecule with an unresolved strong Q branch and with the ideal 
uniform line spacing 2B/h in the P and R branches is shown in Fig. 2.10. 

FREQUENCY 

Fig. 2.10. Schematic vibration rotation band for a linear molecule showing the relationships 
between lines in the P, Q, and R branches. 
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2.3A.b Infrared Spectrum of C02 

Carbon dioxide is linear and symmetric in the ground state and has no 
pure rotational spectrum. The vibrational spectrum has three modes: sym-
metric stretching (vx), bending (v2), and asymmetric stretching (*>3). Because 
of the symmetry of the vx mode, transitions involving only vx levels do not 
radiate, but the transition energy for vx is very close to twice the transition 
energy for v2. As a result there is a strong interaction between vx and v2, 
called Fermi resonance, and combined transitions involving changes in both 
vx and v2 quantum numbers take place readily. Moreover, although there 
is no angular momentum about the molecular axis in the ground state, there 
is a contribution to this component of angular momentum in the excited 
v2 (bending) states. As a result of this, and of the Fermi resonant interaction 
with vx for quantum numbers v2 = 2, these excited v2 energy levels split, 
and an additional angular momentum quantum number / is needed to 
represent these states. The vibrational state of C0 2 is described by the 

o c 

symmetric stretch bending (rotational 
1388.23, no radiation degeneracy) 667.40, 

Q-branch 

asymmetric stretch 
2349.16, no Q-branch 

15 μ-m 
hot bands 

01'0 

15 ftm fundamental 

001 

4.3 /xm 
fundamental 

Fig. 2.11. Energy levels and vibrational transitions for C 0 2 . Note the large number of 
transitions corresponding to hot bands in the 15-/Ltm region (667 cm- 1). 
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notation (ι^ vl
21?3); for example, 03*0 corresponds to υλ = 0, Ü2 = 3, t>3 = 0, 

and / = 1. 
These energy levels are illustrated in Fig. 2.11, together with some of the 

allowed transitions producing bands in the 15-μ,ηι region. The transition 
01*0-000 is the fundamental band. Combination bands such as ll10-02°0 
and 100-0110 and upper-state bands such as 0220-03*0 are together referred 
to as hot bands, since their strengths in absorption depend on molecular 
populations in excited states. As a consequence, intensities of these bands 
increase rapidly with temperature. The most important implication of Fig. 
2.11 is that there are many C0 2 vibration-rotation bands in the 15-/xm 
region, each with a slightly different central wave number, and each bearing 
a general resemblance to the schematic spectrum shown in Fig. 2.10. 
Strengths of all of these bands except the fundamental are very sensitive 
to temperature. This picture is further complicated by the occurrence of 
bands of minor isotopes of C0 2 in the same spectral region. The most 
important isotopic bands are the fundamentals of 1 3C1 601 60 and 1 2C1 801 60 
with fractional concentrations of 0.0111 and 0.0020 relative to 1 2C1 601 60. 
These isotopic bands are more important to the energetics of the mesosphere 

Table 2.1 

Band Intensities at 296 K for the 15-/mi C 0 2 Bands* 

Isotopic 
species 

i 2 C i 6 0 i 6 0 

1 3 C 1 6 0 1 6 0 

1 2 C 1 8 ( ) 1 6 0 

Transition 

ooVoi'o 
0110-02°0 
01!0-0220 
Ol'O-lO^ 
02°0-ll10 
02°0-0310 
0220-03*0 
0220-0330 
0220-ll10 
10°0-03x0 
ΚΛΜΙ'Ο 
0330-0440 
ooVo^o 
OO^-O^O 

Band center 

cm- 1 

667.38 
618.03 
667.75 
720.81 
791.45 
647.06 
597.34 
668.12 
741.73 
544.29 
688.67 
668.47 
648.48 
662.37 

μτη 

15.0 
16.2 
15.0 
13.9 
12.6 
15.5 
16.7 
15.0 
13.5 
18.4 
14.5 
15.0 
15.4 
15.1 

Molecular band 
intensity6 

8.26 x 10"18 

1.44 x 10~19 

6.48 x 10-19 

1.85 x 10~19 

1.12 x 10~21 

2.22 x 10"20 

5.21 x 10-21 

3.82 x 10~20 

7.90 x 10-21 

2.72 x 10~22 

1.49 x 10~20 

2.00 x 10"21 

8.60 x 10"20 

3.30 x 10"20 

Lower-state 
energy 

0.0 
667.38 
667.38 
667.38 

1:285.41 
1285.41 
1335.13 
1335.13 
1335.13 
1388.19 
1388.19 
2003.24 

0.0 
0.0 

a Data from Rothman and Young (1981) and Rothman et al (1983). These authors use a 
different nomenclature for the energy levels than that used here which follows Goody (1964). 

b Band intensities correspond to S = \σνά(ν/c), in centimeters per molecule, and are 
reckoned with respect to the total number of C 0 2 molecules, all isotopes. 
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than their concentrations would suggest. That is because their optical depths 
are sufficiently small even in the centers of the strongest lines that they can 
efficiently emit radiation to space (see Section 2.5). Table 2.1 lists properties 
of some of the important 15-μ,πι C0 2 bands. Ramanathan et al. (1985) have 
found it necessary to include some 44 individual 15-/xm bands in their 
investigations of climatic change effects of increasing C0 2 concentration. 

Figure 2.12 shows spectra of C0 2 in the 15-μ,ηι region at low resolution. 
In addition to the P and R branches of the fundamental and some of the 
hot bands, Q branches of 0220-03χ0, 0110-02°0, 02°0-0310, Οΐ'θ-ΚΛ), and 
0220-ll10 can be clearly identified with the help of the data in Table 2.1. 
Some of these are blended with the Q branches of the v2 fundamentals of 
1 3 C 1 6 0 1 6 0 a n d 1 2 c 1 8 0 1 6 0 

A spectrum at much higher resolution is shown in Fig. 2.13. Note the 
unresolved Q branches, the apparently regular P branch in the bottom panel, 

100 
800 750 700 650 

WAVENUMBER in cm ' 
600 

Fig. 2.12. Low-resolution laboratory absorption spectra of C 0 2 at various combinations 
of optical path and pressure. Note the appearance of several Q branches as sharp absorption 
spikes. [From Burch et al (1960), with permission.] 
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Fig. 2.13. Moderately high-resolution absorption spectrum of part of the 15-μπι band of 
C 0 2 . Note that lines with odd / values are missing in the 01!0-000 and 0310-02°0 transitions, 
while lines with even / values are missing from the 02°0-0110 transition because of the high 
degree of symmetry of 1 2C1 602 and 1 3 C l 6 0 2 . Data have been replotted from Madden et al. 
(1957). 

and the overlapping P and R branches in the top two panels. A significant 
feature of the spectrum is the absence of rotational lines corresponding to 
odd / values for transitions whose lower state has / = 0 (e.g., 000, 02°0). 
Because of the high degree of nuclear symmetry for 1 2C1 601 60, antisym-
metric rotational levels for these vibrational states are missing. 
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2.3Ax Infrared Spectrum of H20 

The thermal infrared bands of H20 are comparable in strength to those 
of C0 2 , but the H20 concentration is nearly two orders of magnitude smaller 
throughout most of the middle atmosphere (~5 ppmv compared with 
340 ppmv). Consequently, H20 has a relatively minor influence on thermal 
infrared exchange, but it is not totally negligible. 

Water vapor is nonlinear and asymmetric. It has a dipole moment in the 
ground state and a strong rotational band extending from the 15-μπι spectral 
region toward longer wavelengths. This is the most important water-vapor 
band for thermal radiative exchange in the atmosphere. Of the vibration-
rotation bands, only the v2 fundamental at 6.3 jam influences thermal 
radiative exchange in the middle atmosphere, and then only at relatively 
high temperatures. A number of other bands, including higher-overtone 
bands, occur in the near-infrared and visible spectral regions. They are 
responsible for absorption of solar radiation and significant heating in the 
troposphere, but because of the low water-vapor concentration they make 
only a minor contribution to heating in the middle atmosphere. 

Because water vapor is nonlinear, it has three angular momentum com-
ponents, in contrast to one for a linear molecule in the ground state, and 
as a consequence its spectrum is relatively complex. The most important 
consequence of this structure is that the H20 rotation levels are split into 
2 / + 1 sublevels, where / is the quantum number for total angular momen-
tum. These sublevels are irregularly spaced, and for the larger values of /, 
sublevels for different / values overlap. The result is a spectrum with a 
random appearance of line positions and intensities, as illustrated in Fig. 
2.14. Although the spectrum of water vapor has been studied for many 
years, the band parameters are not as accurately known as those for C0 2 . 

2.3.4.d Infrared Spectrum of Ozone 

With mixing ratios ranging up to 15 ppmv and a strong thermal infrared 
spectrum, ozone is intermediate in importance to C0 2 and H20 for infrared 
energy exchange in the middle atmosphere. It is also asymmetric, and it 
has a dipole moment in the ground state and a pure rotational spectrum. 
However, the important bands for thermal radiative exchange are the 
vibration-rotation bands. Strong vx and v^ fundamentals at 1110 and 
1045 cm-1 together with hot bands and minor isotopic bands in the same 
spectral region comprise the important 9.6-μ,ιη band system. The v2 funda-
mental at 701 cm-1 overlies the C0 2 15-μ,ιη band system and is at most of 
very minor significance for heating-rate calculations, but it has to be taken 
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Fig. 2.14. Comparison between theoretical (triangles) and observed spectrum for H 2 0 in 
the 63-μτη region. [From Nielsen (1941), with permission.] 

into account in the calculation of accurate 15-μηι band transmission func-
tions for remote sensing purposes. 

Because of the molecular asymmetry and the occurrence of hot and 
isotopic bands in the same spectral interval, the structure of the 9.6-μηι 
band is very complex. Line positions and line strengths are rather randomly 
distributed, but average line spacings are smaller than those in the C0 2 or 
water-vapor bands. Spectroscopic parameters for 0 3 are the least well known 
of the three gases, but because the contribution of ozone to the middle 
atmosphere cooling rate is generally less than one-third as large as that for 
C0 2 , uncertainty in ozone spectroscopic parameters should make a relatively 
small contribution to net heating rate error. 

2.3.4.e Other Gases 

Minor contributions to the net heating of the atmosphere are made by 
infrared bands of methane (mixing ratio ^1.6ppmv), N 2 0 (mixing ratio 
<0.4ppmv), HN0 3 (mixing ratio <0.01 ppmv), and the chloro-
fluoromethanes, CFC13 and CF2C12 (mixing ratios ~1 ppbv). In combina-
tion, plausible increases in these gases could enhance the "greenhouse 
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effect" due to enhanced downward infrared radiation from the atmosphere 
by an amount comparable to that expected from doubling of the C 0 2 

concentration (see Section 12.3). At present, in the middle atmosphere, 
these gases contribute no more than a few hundredths of a degree per day 
to net heating. Since CH4, N 2 0 , and CFC13 and CF2C12 have absorption 
bands in the relatively transparent atmospheric "window" region between 
7 and 12 μπι, so that these gases exchange radiation primarily with the 
warm underlying troposphere and surface, their main effect is to warm the 
extreme lower stratosphere and the tropopause region. 

2.4 Transmission Functions 

Exchange of radiation within the atmosphere and between the atmo-
sphere and its surroundings is described by transmission functions. It is 
necessary to distinguish between monochromatic and spectrally averaged 
or band transmission functions and between parallel beam and flux trans-
mission functions. The former describe the exchange of radiance and the 
latter describe the exchange of flux between isotropically emitting surfaces 
or layers. It is also useful to distinguish between transmission functions in 
the laboratory for which absorption and extinction coefficients are constant 
along optical paths and transmission functions in the atmosphere where 
absorption and extinction coefficients vary because of varying temperature 
and pressure along optical paths. In this and the following three sections, 
only gaseous absorption and emission (but no scattering) are considered, 
so that ών = 0 and av = kv. 

2.4.1 Definitions 

The monochromatic parallel beam transmission function Tv(sl9s2) 
appeared in Eq. (2.2.13) as the fraction of the monochromatic radiance 
leaving a point $i that reaches point s2, 

Tu(si,s2) = exp - K(s)pa(s) ds . (2.4.1) 

For the laboratory path at pressure p and temperature T, the extinction 
coefficient can be removed from the integration, and Eq. (2.4.1) can be 
expressed in the form 

7U/7, T9 u) = exp[-M/>, T)u(sl9s2)] (2.4.1') 
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where 

u(sus2)=
 2

 Pads (2.4.2) 

is the optical mass between points Sx and s2. For a plane-parallel atmosphere, 
Eqs. (2.4.1) can be written in terms of the optical depth [Eq. (2.2.15b)], 

Tv(si,s2) = T„(zl9z2, μ) = e x p t - μ - 1 ^u(zl9z2)l (2.4.1") 

where Δτν(ζλ, z2) = \rv(z2) - τν(ζλ)\. Note that μ~ι Δτν(ζχ, ζ2) is positive 
for both upward and downward paths. 

Calculation of the exchange of thermal radiation requires integration 
over the infrared spectrum. This integration involves thousands of absorp-
tion lines, each with a rapidly varying profile. On the other hand, the source 
function is generally a slowly varying function of frequency [e.g., the Planck 
function of Eq. (2.2.10)], so that it is convenient to work with a spectrally 
integrated transmission function. This quantity, the band transmission func-
tion Tr, is defined by 

ΤΤ = ΔΡ;1\ Tvdv, (2.4.3) 

where Δ*>Γ is a spectral band width. This is usually taken to be wide enough 
to encompass many lines but narrow enough that spectral variations of the 
source function are small. Just as for the monochromatic transmission 
function, the functional dependences of the band transmission functions 
for laboratory and atmospheric cases are 

fr(lab) = fr(p, T9 u) 

and 

Tr(atmos) = fr(z1,z2,/x). 

Two useful quantities that are closely related to Tr are the band absorptivity 

AT=l-Tr (2.4.4) 

and the equivalent width (expressed in frequency units), 

Wr = Δ*Γ(1 - tr) = I [1 - ΤΛ dv. (2.4.5) 
J Δντ 

The latter is most often used in describing laboratory data, in which case 

Wr= Wr(p9T9u). 

Equivalent width is also known as the integrated absorptance. It can be 
applied either to a single isolated line or to a complete band such as the 
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9.6-μτη band of 0 3 or the 15-μ,ιη band of C 0 2 . The relationship between 
Wr(p, Γ, u) and u for fixed p and T is called the curve of growth. 

The flux transmission function, applicable to a plane-parallel atmosphere, 
is the μ-weighted angular average of Eq. (2.4.3), 

7 Χ ζ ι , ζ 2 ) = μΤΓ(ζΐ9ζ29μ)άμ-1\ μ άμ ) 

= 2\ μΐΧζΐ9ζ2,μ)άμ. (2.4.6) 
Jo 

For an isotropically radiating horizontal surface, this gives the fraction of 
the flux in band ΔΪ>Γ that reaches level z2 after leaving level zx (or vice 
versa). The angular integration can be carried out explicitly, 

Tr(zx, z2) = — dv\ exp[-Ar,(z!, z2)//x] · μ άμ, 
Δ Ο Δ „ Γ Jo 

or, with the substitution η = μ~\ 

f&i, z2) = -Γ- I Ε^τν(ζλ, ζ2)] Λ , (2.4.7) 
A^r JAvr 

where En(x) is the nth exponential integral, 

£„(*) = J e-*xdv/v". (2.4.8) 

We turn now to methods for evaluating transmission functions in the 
atmosphere from spectroscopic or laboratory data. 

2.4.2 Line-by-Line Integration 

The central problem is to carry out the spectral integration implied by 
Eq. (2.4.3), (2.4.5), or (2.4.7). Straightforward integration over the spectrum 
is the most accurate approach, but it is also extremely time consuming. For 
a bandwidth Δ^Γ of 20 cm-1, several hundred lines would have to be taken 
into account for the 15-/xm C0 2 or 9.6-/im03 bands. This would imply 
several thousand spectral integration steps, which would have to be repeated 
15-20 times to cover each relevant subband of width Δ^Γ and for each pair 
of levels participating in the exchange. Since transmission functions depend 
on temperature and pressure, this process would have to be repeated for 
each atmospheric profile having a different temperature-pressure and/or 
absorbing gas-pressure relationship. 
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This is obviously an expensive process even for a very fast computer, 
but it is not prohibitive for limited calculations, and it can be used to provide 
benchmarks for approximate methods. It has the advantage that spectral 
variations are accurately evaluated and at the same time the effects of 
pressure and temperature on line strength and line width along the varying 
atmospheric paths can be accurately taken into account. Moreover, with 
the aid of a table or an efficient algorithm for obtaining the exponential 
integral, precise angular integration can also be incorporated in the calcula-
tion by using Eq. (2.4.7). The full Voigt line shape or accurate approxima-
tions to it can be readily used, the choice of approximation depending on 
the desired accuracy and the acceptable degree of complexity of the calcula-
tion. The accuracy of this approach is limited by the accuracy of the 
spectroscopic line parameters. 

Fels and Schwarzkopf (1981) have carried out such a calculation for the 
15-μπι bands of carbon dioxide and have tabulated transmission functions 
between pairs of levels on a closely spaced grid between the surface and 
the upper mesosphere. For C0 2 the composition is uniform, but varying 
temperature profiles have to be taken into account. This was done by 
calculating transmission functions for a standard atmosphere temperature 
profile T0(p) and for "warm" and "cold" profiles, T0(p) + 25 Kand T0(p) -
25 K. They were able to show that quadratic interpolation of transmission 
functions between these three sets of transmission functions using the 
mass-weighted mean temperature between the two endpoint levels of the 
transmission function provides a very accurate approximation to the exact 
flux transmission function for the entire 15-μπι band system, provided that 
the actual temperature profile lies within the limits T0(p) + 25 Kand T0(p) -
25 K. These tabulated values also incorporate a weighting factor to account 
for the spectral variation of the Planck function over the 15-μ,πι band. Fels 
and Schwarzkopf have also carried out this calculation for higher C0 2 
concentrations, since these may be relevant in the future. 

2.4.3 Band Models 

Because the concentrations of water vapor and ozone vary, no line-by-line 
method that is generalizeable to arbitrary temperature and composition 
profiles has been applied to these gases. This is one reason for considering 
a simplified transmission-function computation based on approximating 
the structure of vibration-rotation bands by specific models. Another advan-
tage of this approach is that it makes clear the limiting behavior of trans-
mission functions in important asymptotic regimes. Four specific issues will 
be dealt with in turn: treatment of the spectral integration along paths at 
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constant pressure and temperature for Lorentz lines, treatment of varying 
pressure and temperature along the path, angular integration, and treatment 
of the transition to the Doppler line shape. 

Consider first the absorptivity for a single line along a path at constant 
pressure and temperature Äx over an interval A^r that is symmetric about 
the line center. This absorptivity is 

A^r JAVT 

e~k»u] dv 

cxp[-Sf(v)u]}dv (2.4.9) 

where f(v) is the line-shape factor normalized to unity with line-center 
frequency set equal to zero and S is the line strength referenced to absorber 
mass rather than to absorber number as in Eqs. (2.3.2) (5 = 5 /M a = \kvdv). 
If the lines in the band are sufficiently well separated that their overlapping 
contributions to absorption are negligible, Eq. (2.4.9) can be approximated 
by 

■u A, - - J {1 - exp[-Sf(v)u]} dv (2.4.10) 

where 8 is the mean spacing between lines. Above about 25 km, this isolated 
line approximation is sufficiently accurate for the P and R branches of C0 2 
and for water vapor. It is also adequate for C 0 2 Q branches and the 0 3 
9.6-μπι band above about 40 km. 

When/ (^) is the Lorentz line shape, the integral in Eq. (2.4.10) can be 
expressed in a closed form, known as the Ladenberg-Reiche function, 

My, Ü) = üe~u[I0(ü) + 7,(0)] (2.4.11) 

where 

Su 
y = aJ89 u=- (2.4.12) 

27raL 
and I0 and Ix are modified Bessel functions. The isolated line absorptivity, 
Äi, has useful asymptotic limits that can be derived without reference to 
Eq. (2.4.11). For sufficiently small u, the exponential in Eq. (2.4.10) can be 
replaced by the first two terms in its power series expansion, so that 

Su f °° 
A - > T f(v)dv = Su/S = 2iryu as ü -> 0. (2.4.13) 

This weak line limit is valid for any line shape provided that absorption is 
sufficiently weak in the line center. On the other hand, if the line is fully 
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absorbed, or saturated, in the line center and for some spectral distance on 
either side of the center, most of the contribution to A} comes from the line 
wings for which the Lorentz profile can be approximated byf(v) ~ aj πν2. 
Substitution of this expression into Eq. (2.4.10) leads to the strong line limit, 

Ä, -> 2γ(2πύ)ι/2 = -(Sua^2. (2.4.14) 
o 

The Ladenberg-Reiche formula interpolates between these two asymptotic 
regimes. 

Next consider the mean absorptivity for a band containing an array of 
nonoverlapping lines whose strength distribution is described by the density 
function Q(S) such that Q(S) dS represents the probability that a line 
selected at random from the array has strength between 5 and 5 + dS. It 
follows that the average absorptivity of the band is 

Asl~ 8 
\ Q(S)[l - e-

Sf(v)u] dSdv. (2.4.15) 
> Jo 

Equation (2.4.15) can be evaluated in closed form for the Lorentz line shape 
and some reasonably realistic line strength distributions. Absorptivities Äsl 

also have weak and strong limits, but mean absorptivities for the cases 
with distributed line strengths approach the strong line limit more slowly 
than the isolated single line absorptivity Αλ because line arrays include very 
weak lines, which are slow to saturate. 

When line overlap is important, the monochromatic transmission func-
tion for the overlapping lines is the product of the monochromatic trans-
mission functions for the individual lines. Thus, for n overlapping lines. 

Tv = f[ e~k^u = exp -Σ KM . (2.4.16) 
i = l L i = l -I 

A widely used model for incorporating the effects of line overlap into 
the evaluation of absorptivity is the random model. It is assumed that line 
centers are randomly distributed over the band width Δι>Γ, that the probabil-
ity of any line being centered at a particular position in the interval is 
independent of the probability that any other line is at any other position 
in the interval, and that the line strength probability distribution for any 
line is independent of the strengths of all other lines. With these assumptions, 
Eq. (2.4.16) can be evaluated for any line shape, and the result is the general 
random model, 

T„ = ( l - ^ ) , (2.4.17) 

where Wsl = Asl8 is the average single-line equivalent width from Eqs. 
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(2.4.15). Equation (2.4.17) is usually applied in the limit n -» oo, in which case 

Tn -» fr(random) = e~w*,B. (2.4.18) 

Note that for strongly overlapping lines WJ 8 may exceed unity. 
Two distributions of line strength that are reasonable representations of 

actual line strength distributions for some bands are 

Q(S)=-e~§/<T (2.4.19) 
σ 

and 

Q(S) = S~le-§/(T
9 (2.4.20) 

where σ is a constant characterizing the distribution. Equation (2.4.20) is 
singular at the origin and so can be useful for representing a band with a 
relatively large number of very weak lines. With ü = σιι/ΐπα^, the first of 
these leads to the Goody model, 

fr(u, y) = exp[-27ryM(l + 2u)~1/2]9 (2.4.21) 

while the second leads to the Malkmus model, 

Tr(u, y) = exp{-27ry[(l + 2u)l/2 - 1]}. (2.4.22) 
These transmission functions have the following asymptotic limits. (1) If ü 
is small, fr -> e~2wyu = β~™/δ in both cases. In this limit, absorption is very 
weak in the centers of the lines of average strength and the transmission 
function has the same form as for spectrally uniform (gray) absorption with 
absorption coefficient σ/8. If in addition liryu « 1, the lines are well 
separated and TT -» 1 - Ιπγύ = 1 - au/8, the isolated weak line limit for a 
line of strength σ. (2) If ü is large, Tr -> e'^2^ for the Goody model 
and TT H> e-2^(2")1 / 2 for t r i e Malkmus model. If in addition y2u «_(2ττ)"2, 
the lines are well separated and Tr(Goody) -» 1 - 7ry(2w)1/2 and ^(Malk-
mus) -> 1 - 27T)>(2M)1/2. These expressions correspond to the square-root 
regime of the isolated strong line. 

Equations (2.4.21) and (2.4.22) are best thought of as physically motivated 
expressions for the band transmission function, which can be optimized in 
applications by fitting to characteristics of any particular spectral interval 
Δ^Γ as determined from laboratory data or from calculations based on the 
fundamental spectroscopic parameters. 

The Goody model applied to 10-cm"1 band intervals provides an excellent 
representation of transmission in the 6.3-μ,πι and rotation bands of water 
vapor. Since the 9.6-μ,ιη band of ozone and particularly the 15-μ,ιη band 
system of C 0 2 are less random, they are more difficult to represent with 
random models, but the Malkmus model has been shown by Kiehl and 
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Ramanathan (1983) to give an excellent representation of transmission in 
these bands, provided it is applied to narrow spectral intervals (~5 cm - 1 

in width). 
The random models are most useful when applied to relatively narrow 

spectral divisions of a band. Whole-band absorptivity formulations are also 
available and can be used to provide transmission functions with accuracies 
of 10% or better for H 20, 0 3 , C0 2 , CH4, and N 2 0. One widely used form 
for such models that is particularly useful for weak bands is the exponential 
sum fit. In this approximation, the equivalent width is represented by 

Wr(u) = ^l-YJfie-^ (2.4.23a) 

(2.4.23b) 

constrained by 

£ / = £*,■ = !, (2.4.23c) 

where the model parameters fcf, / · , 5, and Δ^Γ are obtained by fitting 
laboratory data. Note that in the weak absorption limit Eq. (2.4.23a) gives 
WT(u) -> Su. 

A whole band equivalent width formulation that is more appropriate to 
strong bands has been widely used in the stratospheric calculations by Cess 
and Ramanathan and their collaborators. The equivalent width WT is rep-
resented by 

ι^Σ/ή WT = 2A0( T) ln( 1 + L f }'2) (2.4.24a) 

where 

6 ^ (2A24b) 
Α0(Τ)δ 

and the summation is over n overlapping bands of strengths 5, with lines 
of Lorentz half-width avi and mean spacing δ in the spectral interval. The 
effective band width parameter A0( T) is determined by comparing Wr with 
laboratory data. Note that in the limit £ -» 0, the dependence on half-width, 
band intensity, and optical path corresponds to the nonoverlapping strong 
line limit. 

Water vapor is a special case because its absorption covers such broad 
spectral intervals. In this case, it is convenient to define an emissivity εχ 
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appropriate for laboratory situations, 

ε,(ρ, T, 11) = I B„(T)[1 - Tv(p, T9 u)] άν/(σΤ4/π), 
Jo 

and the corresponding flux emissivity, 

εΐ(ρ,Τ,ζι,ζ2) = 2π\ μάμ Bv(T)[l - Τν{ζλ, ζ2, μ)] dv/σΤ* 
Jo Jo 

= 2 I εΙρ,Τ,ΰ{μ)}μάμ, (2.4.25) 
Jo 

where p, T9 and ü are appropriate mean values for the slant path at angle 
cos-1 μ between ζλ and z2. Such expressions are particularly useful for 
water vapor because the temperature dependence arising from the Planck 
function through the factor T~4BV( T) is quite small. Water vapor has strong 
absorptions on both extremes of the Planck function, the rotation and 
6.3-μπι bands, so that there is a high degree of cancellation between the 
opposing temperature dependences of the two bands. The resulting small 
temperature dependence of ef makes it possible to carry out surprisingly 
accurate flux calculations using simple expressions of the form 

F^(z) = σΤ4 def(z\ z), (2.4.26) 
Jo 

with the convention that T corresponds to the surface temperature for 
values of ef such that εΓ(ζ', ζ) > ef(0, z). However, when this formulation 
is used, it is necessary to take overlapping bands such as the 15-μπι C0 2 
band into account. 

2.4.4 Treatment of Pressure and Temperature Variations along the Path 

All of the models discussed above are applicable directly to parallel-beam 
transmission along a constant-pressure and constant-temperature path for 
the Lorentz line shape. Along vertical paths, the actual line shape is not 
Lorentz. It is a composite of high- and low-pressure Lorentz lines with 
broad high-pressure wings and a narrow low-pressure line center (Fig. 2.15). 
Approximate treatments of the variation of temperature and pressure along 
the atmospheric paths depend on the type of band model. For one-parameter 
models, such as Eq. (2.4.23), a scaling approximation can be employed. 

In scaling approximations, pressure and temperature dependences are 
arbitrarily assumed to be separable from frequency dependence, 

Κ(ρ9Τ) = φ(ρ9Τ)ψ(ρ). 
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High-pressure 
Lorentz profile 

Low-pressure 
Lorentz profile 

Frequency, v 

Fig. 2.15. Schematic composite showing how an actual line profile over a variable pressure 
path forms as a composite of the individual Lorentz profiles. The atmospheric line profile is 
not Lorentz in general; it is more sharply peaked because of low-pressure contributions, with 
broader wings due to high-pressure contributions. 

Then 

Δτ, = j φ{ν)φ{ρ9 T) du = φ(ν) j φ{ρ9 Τ) du 

= kv(pr, Tr) I [φ(ρ, Τ)/φ(ρΤ9 TT)] du = k„(pT9 TT)ü, 

where 

- ί [Φ(ρ,Τ)/φ(ρΤ9Ττ)]άη 

is a scaled absorber mass and pr and Tr are reference pressure and tem-
perature. Spectral integration can then be carried out at (pT9 Tr)9 or the 
laboratory transmission function measured at (pT9 TT) can be used. Atmo-
spheric transmission over path Δτ„ is then a function of the single parameter 
u9 and we have the equivalence 

Tr(u9 atmosphere) <-> Tr(u9 pT9 TT9 laboratory). (2.4.27) 

Pressure dependence is frequently represented by a power law, so that 

Φ(ρ9Τ) = §(Τ)(ρ/ρτ)
η 

where 5 is a mean line strength for the interval and the empirical exponent 
n is determined from laboratory measurements at varying pressures. With 
this approximation, 

ί &>■>·«"· (2.4.28) 



2.4 Transmission Functions 59 

In the weak line limit, absorption is independent of pressure so that n ~ 0 
is appropriate for weak absorption. In the strong line limit, absorption is 
proportional to the square root of the product of pressure and absorber 
mass so that n ~ 1 is appropriate for this limit, and in general 0 ^ n ^ 1. 
The scaling approximation works fairly well for the troposphere, but it is 
a poor approximation if important contributions to radiative exchange are 
distributed over more than about two scale heights. 

The random models are two-parameter models depending on an optical 
path parameter ü and a line-width parameter y. For these models, there is 
a more satisfactory approximation, the Curtis-Godson approximation. In 
this approximation, the equivalence 

TT(u, p, atmosphere) <-» Tr(u, p, Γ, laboratory) (2.4.29) 

is made. The equivalent width in the denominator of the Lorentz line shape 
[Eq. (2.3.5)] is replaced by a suitable mean value a, so that, from Eq. (2.4.16), 

This expression, which varies from the exact expression only by the replace-
ment of a by a in the denominator, is accurate in the strong line limit since 
a is neglected in the frequency integration in this case. The choice of a is 
then determined by requiring that this approximation provide an exact 
match to the weak limit, 

f r ( w e a k ) - > l - - i - I duY^S,. 

Thus, 

A v J J*„rir(v2+a2) Avr J a 

so that 

<* = J [Σ(*«,·)] d«/j (LSi)du. 

Since a, ~ {p/Pr)aT where aT is the Lorentz width at standard pressure, and 
X Si = nS( T), the path length and pressure in any two-parameter representa-
tion can be replaced by their Curtis-Godson means: 

p=^j p[S(T)/S(TT)] du (2.4.30a) 
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u= [S(T)/S(TT)]du. (2.4.30b) 

If the temperature dependence is neglected, the Curtis-Godson mean pres-
sure is just the absorber mass weighted mean pressure. The Curtis-Godson 
approximation has been shown to be very accurate for absorbing gases 
whose concentration decreases monotonically with height. It is less accurate 
but still useful in the case of ozone, whose concentration increases with 
height in the troposphere and lower stratosphere. 

2.4.5 Angular Integration 

Next, consider the problem of converting the parallel-beam band trans-
mission functions derived from band models into flux transmission func-
tions. This can be done straightforwardly by evaluating the integrand of 
Eq. (2.4.6) at Gaussian quadrature points and carrying out the Gaussian 
integration. At each quadrature point, one simply replaces ü evaluated from 
Eq. (2.4.28) or (2.4.30b) with ü/μ. Convergence of the integration is rapid, 
and good accuracy can be achieved with only a small number (~2) of 
Gaussian points. However, a simpler approach is to take advantage of the 
fact that diffuse radiance for a plane-parallel atmosphere is at least approxi-
mately equivalent to direct beam radiance at some intermediate value of 
μ. In fact, heating rates in the troposphere and stratosphere can be calculated 
with an accuracy of ~ 1 % with the approximation 

ff(p,u)~Tr(p9u/fi)9 (2.4.31) 

where 

fi~l 
The reason for the surprising accuracy of this "diffuse flux factor approxima-
tion" for heating rate can be understood by returning to the exponential 
integral form of the flux transmission function of Eq. (2.4.7). It will be 
shown in Section 2.5 that the band heating rate at level z depends on the 
derivative of Tf, dff(z, z')/dz, or 

dTf , 2pa0(z) f ^ ( Δ Ο 
dz Avr JAVT ά{Δτν) 

= ± 2 p ^ z ) f M z ) i ? 2 ( A T j A , ( 2 A 3 2 ) 

where the sign depends on whether Δτ„ increases (—) or decreases (+) with 
z. The ^-dependence of the two factors in the integrand of Eq. (2.4.32) is 
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Fig. 2.16. Factors in the integrand of J κνΕ2(Δτν) dv. Only the shaded areas contribute to 
the integral, and hence to df{/dz. 

depicted in Fig. 2.16 for a single line that is strong enough to be saturated 
in the center. Near the line center E2 ~ 0, and in the far wings kv ~ 0. 
Consequently, contributions to the integrand come only from the fairly 
narrow intervals in which Δτ„ « 1. 
can be found such that 

For any value of Δτ„, a quantity μ~ 

2£3(Δτν) = εχρ(-μ ι Δτ„), 

where 1.5 < / I - 1 < 2. For Δτ„ = 1, /I"1 ~ f. Thus, the accuracy and wide-
spread applicability of the diffuse flux factor approximation stems from the 
fact that exchange in the strong bands of interest is dominated by spectral 
intervals in which Δτν ~ 1. For very weak bands, the lines may be unsatur-
ated near the centers and this may not be the case; instead, exchange may 
be dominated by smaller values of Δτ„, and a larger value of / I - 1 would 
be appropriate. For such bands, Gaussian quadrature may be used. Alterna-
tively, where an exponential sum fit to whole band absorptivity is used, the 
diffuse flux factor can be used with great accuracy with / I - 1 given by 

/I"1 = 1.5 + 

with T, obtained from Eq. (2.4.23b), 

0.5 
1 + 4r, + 10rf 

-SO,®,· 

(2.4.33a) 

(2.4.33b) 

where the summation is over all gases overlapping in the interval Δ*>Γ 
(Ramanathan et al, 1985). 

2.4.6 Voigt Line-Shape Effects 

The treatment up to this point is applicable to Lorentz lines. It is also 
applicable to any line shape in the weak line limit, since transmission 



62 2 Radiative Processes and Remote Sounding 

functions are independent of line shape in this limit. In the upper strato-
sphere and mesosphere, the transition to the Doppler line shape has a strong 
influence on transmission functions and net heating rates. The exact Voigt 
line shape can be used for line-by-line integrations. When band models are 
employed, however, approximate treatments of the Voigt line shape are 
needed. Fortunately, Voigt effects are important only where line overlap is 
negligible, so that it is sufficient to consider Voigt shape effects for isolated 
lines. 

Consider the behavior of an isolated Voigt line on constant-pressure-
constant-temperature paths as a function of two parameters, ü = Su/2naL 

and d = 2 a L / a D , where άΌ = (ln2)1 / 2aD is the Doppler half-width. Since 
the Voigt shape resembles the Doppler shape in the line center for d < 1, 
the maximum line-center strength is ~(7raD)_15w/(ln2)1/2. If this is 
sufficiently small, the weak line approximation applies and Ä, ~ Su/δ. On 
the other hand, if the line is saturated throughout the Doppler line core 
region, only the Lorentz wings influence the transmission and Ä, ~ 
2(SwaL)1/2/5. Between these regimes, if d is sufficiently small that the line 
has a definite Doppler core, the "shoulders" and wings of the Doppler core 
dominate transmission. Since f(v) falls off rapidly in the Doppler wings, 
the growth of Äj with ü is relatively slow in this regime. Despite this relatively 
slow growth of absorption in the Doppler regime, the principal effect of 
the Voigt shape on atmospheric absorption and net heating rate is to increase 
the rate of change of absorption and the heating rate over values that would 
be obtained in the corresponding low pressure Lorentz regime. This is 
because the Lorentz line continues to narrow and strengthen in the line 
center as the pressure drops, so that absorption for a strong Lorentz line 
remains in the strong line regime even at very low pressure if the Voigt 
shape is neglected. In contrast, the transition to the weak line regime at 
low pressure does occur for Voigt lines because of the finite lower limit to 
line half-width and the corresponding maximum strength at line center, and 
Aj varies much more rapidly with absorber mass in the weak line regime 
than in the strong line regime. 

Several approximate methods of incorporating the Lorentz-Doppler 
transition into band models have been suggested. One approach is to 
incorporate a smooth transition from Lorentz equivalent width WL to 
Doppler equivalent width WO. An interpolation formula suggested by 
Rodgers and Williams (1974) for this purpose is 

W=ywi+Wi-V^Y (2A34) 
Alternatively, Ramanathan (1976) has suggested that VVL be used when 
dWJdu > dWO/du and that WO be used otherwise. Fels (1979) has shown 
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that the line shape 

f(v) = C, M < k l (core), 

f{v) = aj-ιτν2, \v\>\v0\ (wings), 

v0 = eaL + ßaD, (ε, β are constants ~1) 
(2.4.35) 

C = 
2^o πν0 

might be used to approximate the behavior of isolated lines in the Voigt 
regime. This approximation reduces to the correct weak line limit and 
mimics the effect of strong line regimes that depend on the value of ajaD. 
It can also be easily incorporated into random band models. Figure 2.17 
shows the behavior of equivalent width for emission of radiation to space 
using the Goody random model and Eq. (2.4.35). The overlapping Lorentz, 
nonoverlapping strong line, weak line, and Doppler regimes can be clearly 
distinguished. Because actual band transmission functions involve the 
integrated effects of lines with a wide range of strengths, approximate 
treatments such as Eqs. (2.4.34) and (2.4.35), which are asymptotically 

o -1 

-2 

Overlapping-

Nonoverlapping strong 

Weak 
s ' v^Doppler 

,'V 

-7 -5 -4 -3 

Log|0 Pressure (atm) 

Fig. 2.17. Log-log plot of equivalent width versus pressure for the path between the 
indicated pressure level and space for a strongly absorbing spectral interval (C0 2 , 2300-
2325 cm"1) and a weakly absorbing interval (C0 2 , 5000-5100cm-1). The Goody random 
model with the Curtis-Godson approximation and the Fels approximation to the Voigt line 
shape have been used. Note the linear behavior in both weak and nonoverlapping strong line 
limits. Heating rate per unit mass due to solar absorption in these bands is proportional to 
W/p times the slope of these curves. 
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correct in weak and strong line limits, generally produce accuracies of 
—20% or better in heating-rate calculations. 

2.5 Infrared Radiative Exchange and Radiative Damping 

In a plane-parallel atmosphere, consider the upward and downward flux 
densities integrated over a band of width Δ^Γ [Frt(z) and Fri(z)] at a 
log-pressure level z in an atmosphere bounded below by a surface radiating 
as a blackbody at z = 0, and unbounded above. If the band is sufficiently 
narrow that the Planck function is essentially constant over the band and, 
moreover, if ών = 0 for the entire band, if surface emissivity is unity, and 
if local thermodynamic equilibrium prevails, it follows from Eqs. (2.4.1"), 
(2.4.3), (2.2.18), (2.2.21), and (2.4.6) that 

F^(z) = irBr(0_)ff(0,z) + ir \\ΑΖ')ΘΆ[Ζ]ΖΊ dz' (2.5.1) 
Jo dz 

and 

Frl(z) = -IT f °° BT(z') dTf{z]Z'] dz\ (2.5.2) 
J z OZ 

where Br(z) is the Planck function integrated over the interval Δ*ν Note 
that dff(z, z')/dz' < 0 in Eq. (2.5.2), so that Frl(z) > 0. The notation £r(0_) 
is used to distinguish the Planck function at the surface from that of the 
immediately adjacent atmosphere, allowing for the possibility of a tem-
perature discontinuity at the surface. 

The heating rate per unit mass of air due to band r, hr(z), is given by 

dF dF 
hM = -P -^=-Po - £ - , (2.5.3) 

where Fnr = FrT - Fri is the net upward flux in the band. In this equation 
p(z) is the air density and p0{z) is the basic density in the log-pressure 
coordinate system [see Section 3.1.1 and the discussion following Eq. 
(2.2.15)]. It follows that 

W^-[WPo(z)](w^+ ϊ'ΒΜψ^Μ 
I dz Jo dzdz 

(2.5.4) 

the last term giving the contribution due to the jump in d Tf(z, z')/dz'atz' = z. 
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2.5.1 Exchange Integral Formulation 

Equation (2.5.4) can be rearranged to give 

hr(z) = [Tr/p0(z)]\-Br(z) dUl:°°} - [Β,(Ο-) - ß r(z)] dTf{2'0) 

dz dz 

-\\Br(z')-BXz)]d-^^dz' 
Jo dz dz 

- Γ [Br(z') - Br(z)]^' P dz'}. (2.5.5) 
Jz dz dz ) 

The four terms in this "exchange integral formulation" of the heating-rate 
equation represent the contributions to infrared heating at z due to the 
possible exchanges of photons between levels. The first term represents 
"exchange" with space. Since downward flux from space can be neglected, 
this term always contributes to cooling. The second term corresponds to 
exchange with the underlying surface. Since dfr(z, 0)/dz < 0, it contributes 
to heating if 2?r(0_) > BT(z). Similarly, the last two terms represent contribu-
tions due to exchanges with underlying and overlying layers and contribute 
to heating wherever BT(z') > Br(z). Note that d2Tf/dz dz' is always negative 
or zero. 

The essence of the exchange problem is expressed by the factor 
dff(z9 z')/dz. It is often convenient to express the exchange integral formula-
tion in terms of a corresponding function that has been normalized to lie 
in the range 0-1. This normalization yields the function 

rf ,, A*/r \dff(z,z') 
ΓΓ(ζ, z) = 2pa0(z)Sr(z) | dz 

( ζ ) β χ ρ [ - Δ τ „ ( ζ , ζ ' ) / / * ] Α ' 

u 
WJA 

Sr(z) , 

K(Z)E2[AT„(Z, z')] dv. (2.5.6) 

The term ΓΓ(ζ, ζ') represents the probability that a photon emitted in band 
r between z and z + dz will escape to level z' before being reabsorbed, and 
for this reason it is appropriately called the escape function. Note that, unlike 
Tr(z, ζ'), ΓΓ is not symmetric in z and z', so that the order of its arguments 
is important. Examples of ΓΓ(ζ, ζ') are shown in Fig. 2.18. The term ΓΓ(ζ, ζ') 
decays monotonically away from z with an extremely sharp peak and a 
first-order discontinuity at z. For a gas whose concentration does not increase 
with height, ΓΓ(ζ, ζ') decreases more rapidly above than below z. As illus-
trated in Fig. 2.18, it generally has a small but finite value as z -+ oo, 
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Fig. 2.18. Escape functions ΓΓ(ζ, ζ') for the 15-/im band of C 0 2 centered at the 30 and 
3 mb levels. [From Leovy (1984).] 

corresponding to the probability of photon escape to space. In terms of ΓΓ, 
Eq. (2.5.5) can be rewritten in the compact Stieltjes integral form, 

/ir(z){[277-m 

+ 

(ζ )5 Γ (ζ )Γ ϋντ} = I [Br(z') - Br(z)] drr(z, z') 
Jo 

z'<z 

\[BXz')-Br{z)]dTt{z,z'), 
Jo 

(2.5.7) 

where ma is the absorber mass mixing ratio, and it is understood that 
BT(z') = ßr(0_) for ΓΓ(ζ, ζ') < ΓΓ(ζ, 0) in the first integral and Br(z') = 0 for 
ΓΓ(ζ, ζ') < ΓΓ(ζ, oo) in the second integral, so that the boundary terms are 
incorporated in the integrals. 

2.5.2 Approximations for the Exchange Integrals 

It is evident that, because of the sharply peaked character of the escape 
function and the absence of radiation returned from space, the dominant 
contribution to hT(z) will often be the radiation-to-space term, 

K(z) - 27rma(z)5r(z) Δν^ΒΜΓΑζ,οο) 

= [π/Ρο(ζ)]ΒΛζ)ψ(ζ9π). 
dz 

(2.5.8) 

Rodgers and Walshaw (1966) have shown that, except close to the lower 
boundary, or in regions of large curvature of the vertical profile of BT(z), 
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Eq. (2.5.8) is a remarkably accurate approximation for both water vapor 
and C0 2 . Thus, under a wide range of circumstances, the exchange terms 
can be neglected and hr(z) can be represented by Eq. (2.5.8). This approxi-
mation is called the cool-to-space approximation. Suppose that the necessary 
conditions for validity of this equation hold (sufficient distance from the 
lower boundary and sufficiently small temperature-profile curvature), and 
a dynamical disturbance produces a small local perturbation V from an 
equilibrium temperature Te. The temperature Te may have been maintained 
by a balance between nonradiative as well as radiative terms. If the curvature 
of the vertical V profile is sufficiently small, and if 7" itself is small enough 
to permit linearization of the Planck function, then 

K dt / r a d Po(*)c, teitu^]}'-* ^rad(Z
? Te)T\ 

(2.5.9) 

where the summation over r includes all relevant spectral bands. This simple 
approximation is known as the Newtonian cooling approximation, and 
^rad(z» Te) is the Newtonian cooling coefficient. 

Unfortunately, above the stratopause, the radiation-to-space approxima-
tion breaks down for the 15-μπι bands of C 0 2 , and net cooling or heating 
due to these bands is the small difference between cooling due to radiation 
to space and heating due to exchange with underlying layers (Fig. 2.19). 
At these altitudes, the C 0 2 bands have become sufficiently transparent that 
mesospheric layers can "see" the distant warm stratopause. 

Nevertheless, the applicability and simplicity of the cool-to-space 
approximation, which depends only on the local source function, suggest 
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Fig. 2.19. Contributions of radiation to space (RS) and exchanges with underlying and 
overlying layers to the net cooling of the tropical middle atmosphere. [From Leovy (1984).] 
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the substitution of a Taylor-series expansion of BT in the integrals of Eq. 
(2.5.7) in order to obtain more accurate local approximations in terms of 
BT and its derivatives. The result is 

hr(z) = 27rma(z)5r(z) Δ ^ Ι - α ^ Γ Λ ζ , ο ο ) + [Br(0_) - £Γ(ζ)]ΓΓ(ζ, 0) 
00 1 j m n 1 

+ Σ — [(- l ) m C + ΙΖΛ-τ^- (2.5.10a) 
m = l ^ 

where 

IZ=[ \z'-z\m άΓΧζ, z'), C = ί ' (ζ'-ζΓ dTXz, ζ') 
Jr r (z ,0) ^ΓΓ(ζ,0) 

(2.5.10b) 

are the mth moments of effective radiation lengths downward and upward 
from level z in band r. 

If the atmosphere is sufficiently opaque both upward and downward that 
both radiation to space and radiation to the underlying surface can be 
neglected, the summation in Eq. (2.5.10a) converges rapidly. Moreover, the 
first moments ll

dj and /J,r may be approximately equal and tend to cancel 
each other. In this case, the most important term in the series is 

2 L ' d , r ^ *u,rj J 2 2L'd,r ^ *u,rJ , ~ , 2 

[neglecting a term containing (d2BJ dT2)(dT/ dz)2]9 and the total infrared 
net heating rate due to r radiatively active bands is approximately 

r 

- ™ a ( z ) [ Σ fa) bvAllr + /u,r] ^ j ^ ( 2 . 5 . 1 1 ) 

Equation (2.5.11) corresponds to the "diffusion approximation" to the 
radiative heating rate. Its contribution is important if the atmosphere is 
very opaque upward and downward and local curvature of the vertical 
temperature profile is large, for example, near inversion bases and tops, 
and near the tropopause or mesopause. 

In the case of radiative exchange by C 0 2 in the mesosphere, the upward 
and downward effective radiation lengths /d,rand /J, r are very different. Since 
[1 - ΓΓ(ζ, oo)] is small in the mesosphere, / d r > Zj,,r, and the first derivative 
term in the series of Eq.(2.5.10a) cannot be neglected. This is why the term 
corresponding to exchange with underlying layers is so large in the meso-
sphere in Fig. 2.19. 
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Another limiting regime occurs if the atmosphere is opaque upward, but 
transparent downward, and there is a substantial temperature difference 
between level z and the lower boundary. In this case, the contribution of 
exchange with the underlying surface can be of equal or greater magnitude 
than radiation to space, so that, approximately, 

h(z) « -27rma(z)E(^(^)A^1{Br(z)r r (z ,oo) 
r 

-[ΒΓ(0_)-ΒΓ(ζ)]ΓΓ(ζ,0)}). (2.5.12) 

This approximation applies to radiative transfer by ozone in the 9.6-μτη 
band in the lowest part of the stratosphere. Since there is very little ozone 
below the lower stratosphere, the second term in Eq. (2.5.12) is dominant 
there. It produces a net heating, since generally Br(Q_) > Br(z) for z in the 
lower stratosphere. However, this heating rate is very sensitive to the effective 
radiative temperature of the lower boundary, and hence to the height, 
emissivity, and coverage of clouds in the troposphere. Above about 25 km, 
the atmosphere begins to become more transparent upward than downward 
in the 9.6-μ,πι band, with the result that cooling to space [the first term in 
Eq. (2.5.12)] dominates and the band heating rate becomes negative. 

In practical calculations of hr, the integrals in Eq. (2.5.4) are represented 
by quadratures. The term BT(zf) is represented by an interpolation formula 
with the general form 

Br(z
f) = Σ Φ \ Zj)Br(zj), 

j 

where the quantities α,(ζ', ζ,) are suitable interpolation functions for the 
discrete set of levels z, whose values increase with j . Then 

ÄrU-)=E*ö-(^^)*r (%) 
j 

= I E RijBriZt) + Σ Rij[Br(Zj) ~ BT(Zi)] 

+ Σ Rij[BT(zj) - Br(z4)]], (2.5.13) 

where 

Rij(zi9 Zj) = [n/po(zj)] I aj(z\ Zj) ^ ^ dz'. 

The quantities R^ are elements of a square matrix called the Curtis matrix. 
The first form of Eq. (2.5.13) corresponds to Eq. (2.5.4), and the second to 
the exchange form of Eq. (2.5.5), with the first term corresponding to 
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radiation to space, the second to exchange with the underlying layers and 
the ground, and the third to exchanges with overlying layers. Curtis matrices 
have been applied to the 15-μϊπ C0 2 bands and used to calculate middle 
atmosphere cooling rates by several investigators. As a consequence of the 
sharply peaked character of the escape functions, particularly close attention 
must be paid to the quadrature treatment of the Planck-function profile in 
evaluating contributions to Rtj from layers adjacent to the one for which 
heating is being calculated. Quadrature errors are likely to be largest in the 
mesosphere, where exchange with underlying layers is important. 

The Curtis matrix elements give directly the heating rate response to a 
unit Planck-function change in any other layer. By expressing Br in the 
perturbation form, 

BT(T) = Br(Te) + ( ^ ) ST9 (2.5.14) 

one can also assess quite directly the radiative damping rate for small 
temperature perturbations of arbitrary shape (Fig. 2.20). In general, damping 
rate decreases with increasing vertical scale of temperature perturbations, 
reaching its smallest value when the entire atmospheric column is perturbed 
by the same amount. The damping rate per kelvin of temperature perturba-
tion in this case is the Newtonian cooling coefficient. 

^ w l i i I i I 

O.I 0.2 0.3 0.4 

DAMPING RATE (day-1) 

Fig. 2.20. Damping rates for the 15-μτη band for temperature perturbations from the 
standard atmosphere: Wehrbein and Leovy (1982, thin solid), Dickinson (1973, dashed), Fels 
(1982, dotted), Apruzese et al (1982, dash-dot). Curves are for radiation to space (oo) and 
for 5- and 25-km "boxcar" temperature perturbations. Also shown is the damping for a 
sinusoidal disturbance of vertical wavelength λ = 12.6 km. [From Leovy (1984), with per-
mission.] 
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An empirical estimate of the Newtonian cooling coefficient has been 
obtained by Ghazi et al. (1985) by combining observed temperature and 
ozone fluctuations with corresponding detailed calculations of heating rate. 
They inferred a vertical profile of Xrad with a maximum of 0.15 (day)-1 

between 40 and 45 km, generally similar to the dotted curve marked (oo) in 
Fig. 2.20. They also found that temperature correlated ozone fluctuations 
arising from temperature-dependent photochemistry contribute an addi-
tional effective temperature damping rate of as much as 0.12 (day)-1 in the 
lower mesosphere. 

2.5.3 Fourier Representation of Radiative Damping 

An alternative and more widely applicable approach to the problem of 
scale dependent radiative damping follows a suggestion of Spiegel (1957). 
Small temperature perturbations, linearized with respect to the Planck 
function as in Eq. (2.5.14), can be expanded in Fourier series in the spatial 
coordinates in order to derive a perturbation heating rate as a function of 
wave number. This approach has been applied specifically to a plane-parallel 
atmosphere by Sasamori and London (1966), and subsequently justified by 
Fels (1982), who demonstrated that conditions for its validity correspond 
to those of an extended form of the WKBJ approximation. Specifically, 
the basic state properties must vary slowly in the vertical in comparison 
with m~\ the local inverse vertical wave number. Moreover, it is necessary 
that m~l < 2H, where H is the scale height. These conditions are satisfied 
for most internal gravity waves and the diurnal tidal modes in the middle 
atmosphere. 

The scale-dependent radiative damping time rR(m, z) is defined by 

dT(m.z) N 1 A / ' ~ "TR(m, z)-lT(m9 z) (2.5.15) 
dt 

where T is the complex Fourier amplitude of the component of the tem-
perature perturbation with vertical wave number m. The dependence on 
height indicated in Eq. (2.5.15) is in the slowly varying sense of the WKBJ 
approximation. Inverse damping time TR1 assumes a particularly simple 
form when the wavelength is short, so that the WKBJ approximation is 
well satisfied and the boundary terms can be neglected. 

Fels (1984) has calculated rR
! for the 15-μπι C 0 2 band using Eq. (2.5.15) 

for disturbances of short vertical wavelength in the mesosphere and using 
a slightly more general expression that accounts for boundary effects and 
line overlap for stratospheric disturbances. His results for the standard 
atmosphere temperature profile are shown in Fig. 2.21. For 0 3 , the maximum 
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Fig. 2.21. Dependence of radiative damping rates at several altitudes (given in km) on 
vertical wavelength. The solid curves have been replotted from Fels (1984), and the dashed 
curves are from Fels (1982). 

damping rate is reached near the stratopause. In the upper stratosphere 
and mesosphere, damping due to 0 3 infrared exchange is independent of 
wavelength for moderate and short wavelengths above the stratopause. This 
behavior corresponds to the optically thin limit in which ozone is essentially 
transparent for distances comparable to these short wavelengths. For C 0 2 , 
which is much more opaque, damping rate increases with increasing m, 
rapidly at first, and then more slowly, and for fixed m it reaches a maximum 
in the lower mesosphere. In this limit, 

T? + ^(dBr/dT)ZSi. 
CPP 

In the C0 2 calculations shown in Fig. 2.21, Fels has taken departures from 
local thermodynamic equilibrium into account at 70 and 80 km using the 
two-level model formulation that will be described in the next section. 
Non-LTE effects are largely responsible for the upward decrease in damping 
rate above a lower mesosphere maximum. 

2.6. Departure from Local Thermodynamic Equilibrium 

If local thermodynamic equilibrium (LTE) prevailed at all altitudes, 
unimpeded radiation to space in the centers of the strong Doppler lines of 
the v2 fundamental of C 0 2 would cool the atmosphere very strongly. 
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In the optically thin limit, the heating rate (in Ks *) is given approxi-
mately by the radiation-to-space term from Eq. (2.5.8), 

hr(z)/p ~ - ^ 2 ? r ( z ) 5 r r r ( z , oo) Δ^-1 

Ιπτη. 
ΖΒΤ(Ζ)§ΤΔΡ71, 

since ΓΓ(ζ, oo) -» 1 as z -» oo. Using the C 0 2 mixing ratio and the v2 funda-
mental band strength from Table 2.1, this rate of cooling exceeds 100 K 
day-1 at typical lower-thermosphere temperatures. These large hypothetical 
cooling rates do not occur because below the altitude at which the optically 
thin limit is reached, the rate of collisional transfer from kinetic to vibrational 
energy limits energy loss. As a result, excited vibrational levels at these 
altitudes are not populated according to the Boltzmann distribution, Kirch-
hoff's Law breaks down, and the source function departs strongly from the 
Planck function. Cooling rates at and above the mesopause are smaller than 
this optically thin LTE limit by more than a factor of 10. In fact, the rapid 
increase in temperature above the mesopause is attributable largely to the 
rapid decrease in radiative cooling efficiency above that level. The non-LTE 
behavior of C 0 2 influences mesopause temperature structure on Venus and 
Mars as well as on Earth. In this section, we develop the non-LTE formula-
tion in terms of the Einstein coefficients and consider two specific non-LTE 
models. 

2.6.1 The Einstein Coefficients 

The interaction between radiation and matter can be described in terms 
of three fundamental processes: spontaneous emission, absorption, and 
induced emission (Fig. 2.22). The last, the process responsible for lasing, 
yields induced photons identical in phase, polarization, and direction of 

RADIATIVE PROCESSES 

Ά 
Absorption, 

Rate = 

Boino'-r 

Spontaneous 
Emission, 

Rate = 

A,oni 
V_ 

Induced 
Emission, 
Rate = 

B , 0 n , I r 

Level 1 
Number 
Density n, 

Level 0 | 
Number j 
Density n0 

COLLISION PROCESSES 

Excitation, 

Rate = 

Quenching, 
Rate = 

Fig. 2.22. Radiative and collisional transitions connecting the ground state and lowest 
vibrational level of a molecule. 
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travel to the incident photons. Consider a vibration-rotation transition with 
upper vibrational level 1, molecular population nx, and ground-state level 
0, population n0, for an absorbing gas whose total number density is na. 
The rates of photon emission and absorption per unit volume are propor-
tional to nx and n0, and in the cases of absorption and induced emission, 
they are also proportional to the band and angular average radiance, 

£ ' = 3 Τ Γ Ι I <r„Lvdvdil = -}-\ I f(p)Lvdpd£l9 (2.6.1) 
477\!>r J47J. JA„r 47Γ J47T JAPr 

where f(v) is a generalized "band-shape factor," which takes into account 
rotational structure as well as line shape. The proportionality constants are 
the Einstein coefficients A10, B0l, and Bl09 defined such that 

Al0nl = rate of spontaneous emission, 

B0ln0LT = rate of absorption, (2.6.2) 

Bl0n1LT = rate of induced emission, 

with each of these terms expressed in units of photons m~3 s_1. Thus, A10 
is the spontaneous emission probability per molecule. Each of these 
coefficients depends on the quantum-mechanical details of the transition 
but is independent of the properties of the radiation field or the thermody-
namic state of the gas. 

The volume heating rate for the band is equal to the rate of decrease of 
monochromatic radiance with distance, —dLv/ds, integrated over all 
frequencies in the band and all solid angles. This can readily be shown 
from the definition of hr or from the heating-rate equation in the form of 
Eq. (2.5.3). Hence, applying the radiative transfer equation [Eq. (2.2.5)], 
the heating rate per unit volume is 

phr=-\ I ^ p dv d£i = 47rSrna(LT - Jr). (2.6.3) 
JATT J Avr US 

For the spectrally narrow bands of interest, frequency in the band can be 
approximated by the constant value vx. Then phr can also be expressed in 
terms of the Einstein coefficients, 

phr = hvr(B01n0Lr - Al0nx - BxonxLr). (2.6.4) 

If the gas is in complete thermodynamic equilibrium, then hT = 0, Lr is 
the Planck function, and the ratio nx/n0 corresponds to the Boltzmann 
distribution, 

nl/n0 = gi0e-h"</k»T (2.6.5) 
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where gw = gjgo, the degeneracy ratio. For the v2 fundamental of C 0 2 , 
g10 = 2. It follows from Eq. (2.6.4) that 

#o i /# io = gio 

and 

Al0 = 2-^Bi0 = ^ B 0 l . (2.6.6) 
c c g10 

These relations hold under nonequilibrium as well as equilibrium condi-
tions, since the Einstein coefficients are independent of the state of the gas 
or the radiation field. This is an application of the principle of detailed balance. 

Comparison of Eqs. (2.6.3) and (2.6.4) shows that 

5r = ^ 2 W " o / " a ) [ l - *Γο("ι/"ο)] - Γ ^ ο ι , (2.6.7) 
4π 47Γ 

under nonequilibrium as well as equilibrium conditions, or, from Eq. (2.6.6), 

A 1 0 « at —1[1 -gio(wi/n0)] S r
Ä ^5 r . (2.6.8) 

gioc \n0/ gi0c 

Moreover, with the aid of Eqs. (2.2.10) and (2.6.6), 

(ΗντΑ^ηλ [1 ~ g"*y*bT] r/nA/fiqecXl _ / _ 0 | , . 
Λ " U^nZ) [1 - grJ int /noWHV J U , J J - B \ n J ' {2'M) 

where nleq and n0eq are thermal equilibrium number densities. In Eqs. 
(2.6.7), (2.6.8) and (2.6.9), Sr, A10, and Jr have been approximated by 
dropping terms of order exp(—hvT/kbT). For the v2 fundamental of C0 2 
these terms are smaller than the retained terms by a factor of order 100 
under normal atmospheric conditions. Neglect of these terms is equivalent 
to ignoring induced emission, and they will be neglected throughout the 
subsequent development. Note that Eq. (2.6.8) shows how the emission 
probability per molecule, A10, is related to the measured band strength. 

Equation (2.6.9) shows that the source function for the band is propor-
tional to the ratio of the actual number density in the excited state to the 
equilibrium number density. Under LTE conditions, ηλ = nleq, and Kirch-
hofes Law holds. In the more general case, the problem of determining the 
source function reduces to that of determining ηλ. 
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2.6.2 The Two-Level Model 

Under LTE conditions, the rate of population of level 1 by collisions 
that convert translational kinetic energy to vibrational energy (excitation) 
is exactly balanced by the reverse process (quenching), collisional conver-
sion of level-1 vibrational energy to translational kinetic energy (see Fig. 
2.22). These rates can be represented by C0ln0 for the first process and 
Cl0nl for the second. The kinetic coefficients C0l and C10 are both propor-
tional to molecular number densities, and their ratio can be determined 
from application of the detailed balance principle by setting {nx/nQ) = 
(iieq/rtoeq)· A t equilibrium, 

Co, = C10gl0e-hv^T
9 (2.6.10) 

where the collision parameter C10 is 

C10=koVn, (2.6.11) 

with k0 the molecular collision frequency, η the fraction of collisions 
responsible for vibrational-translational (V-T) energy conversion, and n 
the total number density of all gas molecules. Equation (2.6.10) holds under 
nonequilibrium as well as equilibrium conditions, but C10 is a function of 
temperature. 

The simplest non-LTE model is the two-level model, in which only 
collisional and radiative interactions between level 1 and the ground state 
are considered. Under LTE conditions, the collisional rates are much faster 
than the radiative rates, so that the collisional rates are very nearly in 
steady-state balance. Under non-LTE conditions this is no longer the case, 
but a very close balance exists between the sum of radiative and collisional 
rates tending to populate and depopulate level 1. As shown in Fig. 2.22, 
this balance is 

(A10 + Cl0)nx « (B0lLT + C0l)n0. (2.6.12) 

Solving for (njn0)9 making use of Eqs. (2.6.5), (2.6.6), (2.6.9), and (2.2.10), 
and neglecting terms of order exp(-hvr/kbT) gives 

L r + C01/B01 Lr + φΒτ >-η ,A ^ , ! -
J*= 1 _L n i A = I - L ^ > </>=C10/A10. (2.6.13) 

1 + Cl0/Al0 1 + φ 
The behavior of the source function is controlled by the ratio of the time 

constant for radiative deexcitation of level 1, A^1, to the time constant for 
collisional deexcitation, C7o· For large φ, /Γ-» BT and Kirchhofes Law 
applies, but for φ -> 0, JT -» Lr; the source function reduces to the source 
function for isotropic conservative scattering. 
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For the v2 fundamental of C0 2 , A 1 0 = 1.51s-1. Because conversion 
between kinetic and vibrational energy is an improbable event, only about 
one collision in 105 is effective in deexciting level 1, that is, η == 10~5. Since 
k0 ~ 2 x 10~16 m3 s"1, this gives 

Φ 
2 x 10~21n 

1.51 

(with n in molecules m~3), so that the transition between LTE and non-LTE 
regimes centers around the level at which n ~ 0.75 x 1021 m~3, or 75 km. 
This is the vibrational relaxation level in the earth's atmosphere. 

The effect of vibrational relaxation on the heating rate can be made clear 
by substituting Eq. (2.6.13) into Eq. (2.6.3): 

phr = 47r5rna(Lr - /r) = 4 ^ l r " : f ( £ r " Br). (2.6.14) 
(1 + Φ) 

For large φ (LTE), hr is proportional to ( L r - Br)9 but as φ -> 0, ftr-> 0. 
The decoupling between the radiation field and the kinetic energy of the 
gas is responsible for the vanishing infrared cooling rate at altitudes far 
above the vibrational relaxation level. 

To see this behavior more clearly, assume that the radiation-to-space 
approximation applies. Then 

phr(z) = -27r5rna(z)/r(z)rr(z,oo). 

But eliminating Lr between Eqs. (2.6.13) and (2.6.14) gives 

Λ - ^ Γ + pK (2.6.15) 

47r£rna<p 
so that 

Λ=£Γ/[1+^ΓΓ(ζ ,οο)ψ-1] , (2.6.16) 

and 

2 . 5 r P - ^ J r ( z oo)Br 
Ι + ^ ζ , ο ο ) ^ - 1 

Thus, in the radiation-to-space approximation, vibrational relaxation is 
controlled not by φ~\ but by \Ττ{ζ, οο)φ~ι. If the atmosphere is sufficiently 
opaque, ΓΓ(ζ, οο) is small and excited-state populations can be maintained 
near their equilibrium values by radiation even if φ is small. For the v2 

fundamental of C 0 2 , the level at which 5ΓΓ(ζ, οο)φ~ι ~ 1 occurs about 10 km 
above the level at which φ~χ « 1, so that, for this band, the source function 
tends to equal the Planck function up to about 80-85 km (Fig. 2.23). At 
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Fig. 2.23. Non-LTE source function normalized by the Planck function for the transition 
01!0-000 of 1 2C1 602 for three combinations of latitude and season. The ordinate is -log(pres-
sure in mb) and has the following approximate relationship to altitude: 0, 47 km; 2, 63 km; 
4, 76 km; 6, 87 km; 8, 98 km. [From Dickinson (1984), with permission.] 

very high altitudes, the gas becomes transparent, ΓΓ(ζ, oo)-> 1, and 
^Γτ(ζ,οο)φ~ι becomes large. Then 

i C2 i hT -> -4ττ5Γρ ηΆφΒτ = ~2gio— P naCl0Br 

« -hprP-lCl0gl0n0e-h^/k-T = -hvTCQln0. (2.6.18) 
In this limit, the rate of cooling is just hvT times the rate of collisional 
excitation of level 1. Both the volume heating rate and the heating rate per 
unit mass vanish as z -» oo. 

The two-level non-LTE problem can be posed in the form of an integral 
equation. As described by Houghton (1977), this integral equation can be 
solved for the source function by expressing the heating rate integral in the 
Curtis matrix forms derived from Eq. (2.5.13), 

j 

which can be expressed in the matrix form, 
hr = RJ. (2.6.19) 
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In matrix notation Eq. (2.6.15) is 

Jr = Br + Ehr, (2.6.20) 

where E is a diagonal matrix of dimension equal to the number of columns 
in R. The elements of E are 

Etj = [47rSrna(z0<Mz,)rVV (2.6.21) 

Combining Eqs. (2.6.19) and (2.6.20) gives 

J r = [ I - E R ] 'Br , (2.6.22) 

or 

hr = [ I - R E ] !RBr. (2.6.23) 

Equation (2.6.23) has been widely used to calculate heating rates under 
non-LTE conditions. In these applications, the cooling rate has been calcu-
lated for the entire 15-μπι band system so that it is implicitly assumed that 
the hot and isotopic bands in this spectral region have the same source 
function as the fundamental. The source functions for these relatively weak 
bands are imperfectly coupled to the fundamental, however, so that contri-
butions from the hot and isotopic bands are not accurately calculated by 
this method. In the region above the mesopause where C0 2 is transparent 
even in the strong line centers of the v2 fundamental, the cooling rate due 
to the fundamental dominates the total cooling, and the resulting error is 
not serious. Just below the mesopause, where non-LTE effects are important, 
the contributions of the hot and isotopic bands are large and the error can 
be significant. A model more complex than the two-level model is needed 
for this region. Such a model will be discussed in the next section. 

Before leaving the two-level model, a comment on the role of rotational 
fine structure is needed. Throughout the preceding discussion, it has been 
implicitly assumed that the rotational-level populations are not affected by 
the interplay of radiative and kinetic processes that produce non-LTE 
conditions. As a consequence, Einstein coefficients were needed only for 
the vibrational transition as a whole, not for the individual rotational 
transitions comprising the fine structure. The fine structure of the band was 
assumed to be determined by the kinetic temperature of the gas alone. This 
major simplification was possible because collisional exchange between 
translational and rotational energy is very efficient, occurring at nearly every 
collision. As a consequence, the rotational energy levels remain in thermal 
equilibrium up to a level at which the density is ~10~5 times the vibrational 
relaxation density, well above the level where cooling by C0 2 infrared 
emission ceases to play a significant role. 
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2.6.3 Dickinson's Multilevel Model 

The processes considered in the last section can be summarized in the 
following energy-transfer steps: 

C0 2 (v2 = 1) ±5 C0 2 (ground state) + hv (15 /im), (2.6.24) 
the fundamental radiative transitions, and 

Air + C0 2 (Ü2 = 1) ±5 C0 2 (ground state) + air + KE, (2.6.25) 
the fundamental V-T transitions, where KE is kinetic energy. 

Adequate treatment of the hot bands requires at a minimum that the 
radiative and kinetic transitions involving the 100, 02°0, and 0220 levels be 
taken into account. These levels are so closely spaced that collisional 
equilibration between them must be very rapid, as it is for the rotational 
levels. Consequently, they can be treated as a single level, v2 = 2, with 
degeneracy 4. The most important transitions affecting the population of 
this level are the vibration-vibration (V-V) transitions 

C0 2 (v2 = 2) + C0 2 (ground state) ±* 2C02 (v2 = 1), (2.6.26) 
the V-T transitions 

Air + C 0 2 (u2 = 2) ±5 C0 2 (v2 = 1) + air + KE, (2.6.27) 
and the radiative transition 

C0 2 (v2 = 2) ±5 C0 2 (v2 = 1) + hv (15 /mi). (2.6.28) 
Because 15-/xm band Doppler lines are well separated, the spectrum of this 
radiative transition is well separated from that of the fundamental, even 
though both occupy the same broad spectral interval. Additional interactions 
involving higher vibrational levels occur but are usually of minor import-
ance.2 Because little energy exchange is involved, the V-V transitions are 
rapid and the forward and backward transitions have nearly the same 
bimolecular rate constant, Kyy. On the other hand, the V-T exchanges 
involve large energy transfers and are very slow. The rate for the forward 
reaction of Eq. (2.6.27), KWT2, is ~10~5/c0, comparable with the rate KWTl 

of the forward reaction of Eq. (2.6.25). 
The fundamental isotopic bands are coupled to the fundamental of the 

principal isotope by V-V reaction of the type 
C0 2 (v2 = 1, main isotope) + C0 2 (ground state, minor isotope) 

±5 C 0 2 (ground state, main isotope) 
+ C 0 2 (v2 = 1, minor isotope). (2.6.29) 

Because the energy changes are again small, these reaction rates are also 
2 Excitation of higher vibrational levels by transformation of absorbed solar radiation may 

sometimes render these interactions important, however. 
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fast, and forward and backward reaction rates are nearly equal. In addition, 
the isotopic fundamental radiative transitions [Eq. (2.6.24)] and lowest-level 
V-T transitions [Eq. (2.6.25)] must be separately treated for each isotope. 
Isotopic hot bands are not important. 

Dickinson (1984) has extended the two-level model to account for these 
additional processes. This involves the solution of a coupled set of integral 
equations that are generalizations of Eq. (2.6.12) and involve the number 
densities of the first two excited vibrational levels of 1 2C1 601 60 and the 
first excited level of 1 3C1 601 60 and 1 2C1 601 80. For the collisional interaction 
between level 1 and the ground state, he considered the additional effect 
of atomic oxygen, which appears to exchange energy efficiently with vibra-
tionally excited C0 2 and could be important above the mesopause. 

Dickinson's calculated source functions for three latitudes for the v2 

fundamental of 1 2C1 602 are shown in Fig. 2.23. In each case the source 
function is shown normalized by the local value of the Planck function. 
Throughout the winter hemisphere and in the tropics, these normalized 
source functions decrease with height above the level at which 
\TT(z, oo)</>-1 ~ 1, in accordance with the radiation to space approximation 
[Eq. (2.6.16)]. At high latitudes in the summer hemisphere, the normalized 
source functions increase to a strong maximum near the mesopause before 
decreasing at still higher levels. This is a consequence of the extremely steep 
lapse rate in this region and the corresponding dominance of upwelling 
radiation from the warm stratopause region. This effect is more pronounced 
for the hot and isotopic bands than for the fundamental. The effect of this 
upwelling radiance on heating is illustrated in Fig. 2.24. The upwelling 
radiance is sufficient to produce net heating near the summer mesopause. 
Figure 2.25 shows the altitude-latitude distribution of C0 2 infrared cooling 
for the solstices as calculated by Dickinson. Cooling maxima occur near 
the stratopause and in the lower thermosphere, with the calculated magni-
tude of the latter dependent on the uncertain rate of V-T exchange with 
atomic oxygen, so these values are somewhat uncertain. Weak mesopause 
warming extends from the summer polar region into the tropics. This feature 
is sensitive to details of the vertical temperature profile. 

Absorption of solar photons in near-infrared bands can result in a 
cascading of quanta into the v2 = 2 level and from there into v2 = 1 quanta 
or thermal energy via the processes represented by Eqs. (2.6.24)-(2.6.27). 
The efficiency with which these quanta can cascade to the v2 = 1 level 
depends on rates of V-V transfer to N2, 0 2 , and H20, as well as "leakage" 
via emission in the 4.3-μπι band of C 0 2 and the 6.3-μιη band of H20. 
These processes were first decribed in detail by Houghton (1969). Williams 
(1971) has calculated that solar absorption by C 0 2 produces heating of as 
much as 1 K day- 1 near the mesopause. 
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Fig. 2.24. Contributions of the 1 2C1 602 fundamental and the hot and isotopic bands to 
cooling rate for July at 70°N latitude. The ordinate scale is the same as in Fig. 2.23. [From 
Dickinson (1984), with permission.] 

2.7 Absorption of Solar Radiation 

So far, this chapter has emphasized emission, absorption and transfer 
of thermal infrared radiation, the process responsible for cooling the middle 
atmosphere. In the global mean, this is approximately balanced at each 
level by absorption of solar radiation. 

From the direct solar beam, the rate of energy absorption per unit volume 
for a spectral interval Δι>Γ, ρ/ιΓ(ζ*), follows from Eq. (2.2.16), 

phr(z*) = -μο J Sov-^e-^'-o dv 

= na(z*) f σ Α ^ ( ζ , ) / μ β * . 
J Αι>Γ 

(2.7.1) 

This is closely related to the direct beam photodissociation rate per molecule, 

P(z*) = I evavS0ve-T^y^ dv, (2.7.2) 

where ^diss is the dissociation threshold, ev is the quantum efficiency for 
photodissociation (frequently ev ~ 1 for v > vdiss), and S0v = S0v/hv is the 
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Fig. 2.25. Numbers on contours give total C 0 2 15-/tm band cooling rate in degrees Kelvin 
per day for the January and July 1972 COSPAR International Reference Atmospheres. [From 
Dickinson (1984), with permission.] 

monochromatic solar flux density expressed in photons rather than energy 
units. If more than one gas absorbs in a spectral interval, 

phr(z*) = Σ "a.,- I σ,. Α^- τ" ( ζ Φ ) / Μ ο dv9 (2.7.3) 

where, in both Eqs. (2.7.2) and (2.7.3), τν includes contributions from all 
absorbing gases (number densities n a , ) , 

ί J z* 

(2.7.4) 

In order to see how heating per unit volume depends on frequency and 
height, consider the monochromatic version of Eq. (2.7.1) in an atmosphere 
whose scale height is constant and equal to H so that z* = z (see Section 
1.1.1). The monochromatic volume heating rate phv is 

phu(z) = ^ = na{z)avS0ve~^z)/^ 
dv 

= σ„5ο,η3(0) e x p [ - z / H - Ησ„η3(0)μο' e " I / H ] . (2.7.5) 
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This vertical distribution was first pointed out by Sydney Chapman, who 
first applied it in the explanation of ionized layers. We shall refer to it as 
Chapman layer structure. The monochromatic volume heating rate has a 
single maximum at the altitude at which Hauna(z)/ μ0 = 1, that is, the altitude 
at which the slant optical path from outside the atmosphere reaches unity. 
The monochromatic heating rate at that level is 

Mzmax) = P~lo-vS0,na(zmax)e~\ (2.7.6) 

It falls off as e~z/H above zmax due to the upward decrease of na, and it 
falls off below zmax at a much more rapid rate due to the exponential 
absorption. The altitude of the maximum increases with increasing zenith 
angle (decreasing μ0), so both na(zmax) and h(zmSLX) decrease with increasing 
zenith angle. 

According to Eq. (2.7.5), most of the absorption of solar radiation takes 
place within one or two scale heights of the layer maximum, zmax. Thus, a 
plot of zmax versus frequency (Fig. 2.26) illustrates the influence of different 
absorption processes on different regions of the atmosphere. It also illus-
trates the influence of solar photon frequency on different regions of the 
atmosphere. Since the emission altitude of photons in the solar atmosphere 
and the processes responsible for photon emission depend on frequency, 
there is a direct link between altitudes and processes in the solar atmosphere 
and altitudes and processes in the earth's atmosphere. 

I 1 1 1 I I LJ. 
0 50 100 150 200 250 300 

WAVELENGTH ( n m ) 

Fig. 2.26. Altitude of unit optical depth for normal incidence solar radiation. Principal 
absorbers and ionization thresholds are indicated. [From Herzberg (1965), with permission.] 
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At visible wavelengths (λ > 310 nm) solar radiation penetrates to the 
surface, but below about 310 nm in the ultraviolet, ozone absorption of 
solar radiation in a photodissociation continuum begins to shield the surface. 
This continuum absorbs most strongly at about 40 km and 250 nm, and it 
is responsible for shielding the surface from the biologically damaging 
radiation below 300 nm. Molecular oxygen absorbs in the Herzberg dissoci-
ation continuum below 240 nm, and oxygen becomes the dominant absorber 
below about 200 nm. The rate of absorption and consequent 0 2 photodis-
sociation near 200 nm is strongly dependent on the opacity due to ozone 
in the same spectral region. Between 175 and 200 nm, the Schumann-Runge 
bands are responsible for most absorption, and their complicated structure 
influences solar photon penetration in the mesosphere and upper strato-
sphere. The Schumann-Runge continuum controls solar photon penetration 
between 135 and 175 nm in the lower thermosphere and mesopause region. 

Complex 0 2 spectral features between 115 and 135 nm allow some solar 
radiation to penetrate to the upper mesosphere. A most important gap 
occurs at 121.6 nm, precisely the wavelength of hydrogen Lyman a, the 
strongest solar emission line. Because NO and alkali metals, which are 
present in trace amounts near the mesopause, ionize at wavelengths longer 
than 121.6 nm, this penetrating radiation is largely responsible for the 
formation of the D and lower E ionization layers in the upper mesosphere 
and lower thermosphere. X-rays and cosmic rays, which can also penetrate 
into the mesopause region, are responsible for the remainder of the ioniza-
tion there. The bulk of the ionization in the earth's atmosphere is formed 
higher in the thermosphere, however, and is due to the ionization of the 
major gases at wavelengths between 10 and 100 nm. 

2.7.1 Solar Radiation Flux 

The information needed to calculate solar heating rates and photodissoci-
ation and ionization rates includes the spectral distribution of solar flux 
and its time variability, the molecular absorption cross sections, and the 
dissociation and ionization efficiencies. The relationship between the solar 
spectrum and the structure of the sun is well described by Brasseur and 
Solomon (1984), so only a brief account will be given here. 

Figure 2.27 depicts the solar spectrum. Most solar radiant energy flux is 
emitted from the visible surface of the sun, the photosphere, at an effective 
blackbody temperature of about 6000 K. The solar spectrum at wavelengths 
longer than about 300 nm corresponds closely to a blackbody at this tem-
perature. Temperature decreases upward through the photosphere to a 
minimum of about 4600 K at the base of the chromosphere, then rises to 
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Fig. 2.27. Solar spectrum under quiet and active conditions and spectrum of an intense 
solar flare. [From Smith and Gottlieb (1974), with permission.] 

106K or more in the corona. Between 121.6 and 300 nm, the effective 
blackbody temperature of the solar spectrum reflects these lower tem-
peratures between the photosphere and the base of the chromosphere. At 
121.6 nm, the wavelength of Lyman a, and at shorter ultraviolet wavelengths, 
the solar spectrum is dominated by emission lines originating in the chromo-
sphere and corona. 

The variability of the solar atmosphere increases with increasing height, 
and as a result, the variability of the solar spectrum increases with decreasing 
wavelength. This is illustrated schematically in Fig. 2.27. Variability occurs 
on the time scales of the 26-day solar rotation, the 11-year sunspot cycle, 
and with a variety of short-lived solar disturbances, particularly flares. In 
the past, solar variability at ultraviolet wavelengths has been estimated from 
its correlation with solar flux at the radio wavelength 10.7 cm, which can 
be measured at the Earth's surface, but more recently ultraviolet variability 
has been monitored directly by satellites. At wavelengths affecting the 
thermal structure of the middle atmosphere (—160-700 nm), measured 
peak-to-peak variations in solar flux range from about 10% at 160 nm to 
about 5% at 200 nm. At wavelengths longer than 200 nm, measured solar 
variability drops rapidly and is less than 1% at 300 nm. However, the 
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variability may be somewhat greater than this, since available measurements 
do not yet cover a full solar cycle. 

2.7.2 Absorption of Solar Radiation by Gases 

Molecular oxygen absorption was discussed in Section 2.3.1, and absorp-
tion cross sections are shown in Figs. 2.7 and 2.8. Because of the complex 
structure of the Schumann-Runge bands and their temperature dependence, 
constant broadband absorption cross sections are not suitable. The World 
Meteorological Organization has provided tables of broadband transmission 
functions for this spectral region for the standard atmosphere temperature 
distribution. These nonexponential transmission functions take into 
account the spectral complexity of the bands. Photodissociation rates of 
several minor constituents in the upper stratosphere are sensitive to trans-
mission in the Schumann-Runge spectral region, so it is important to have 
an accurate broadband description of this transmission. The photodissoci-
ation efficiency of 0 2 is nearly unity at wavelengths shorter than the dissoci-
ation threshold at 242 nm. 

Ozone absorption takes place in three dissociation continua in which 
dissociation efficiency is close to unity: the Hartley band from 200 to 310 nm, 
the Huggins bands, which blend with the Hartley band near 310 nm and 
extend to 350 nm, and the much weaker Chappuis bands extending from 
440 to 800 nm (Fig. 2.28). The Hartley and Chappuis bands are smooth 
continua whose cross sections are independent of temperature and pressure. 
The Huggins bands have a diffuse banded structure (not shown in Fig. 2.28) 

400 500 600 
WAVELENGTH (NM) 

700 800 

Fig. 2.28. Absorption spectrum of ozone. Note the temperature dependence in the Huggins 
bands. Weak band structure in this 310 to 350-nm spectral region has been suppressed in this 
presentation. Data from World Meteorological Organization (WMO, 1986). 
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with some temperature dependence. Band maxima are insensitive to tem-
perature, but the minima show variations of up to 30% over the temperature 
range 200-290 K, with lower values at low temperatures. Despite the small 
absorption cross sections, the Chappuis bands are of great importance 
because they occur at the peak of the solar spectrum and absorb in the 
lower stratosphere and troposphere. Shorter wavelength radiation is nearly 
absent at these levels because of absorption higher up. Because of the 
Chappuis bands, ozone in sunlight is subject to rapid photodissociation 
right down to the surface. 

Ultraviolet absorption by H20, N 0 2 , HN0 3 , and many other gases is 
vital to the chemistry of the middle atmosphere but does not contribute 
significantly to heating, so these absorption cross sections will not be 
discussed in detail here. Readers are referred to Brasseur and Solomon and 
the report by the World Meteorological Organization (WMO, 1986). In 
general, gases with dissociation thresholds at wavelengths longer than about 
300 nm are dissociated by the intense portion of the solar spectrum and are 
not shielded by overlying 0 3 and 0 2 , so they dissociate rapidly in sunlight 
at all altitudes; lifetimes of individual molecules against dissociation are 
^103 s. In addition to 0 3 , examples of species which dissociate rapidly in 
sunlight are N 0 2 , N 0 3 , and HOC1. On the other hand, molecules with 
dissociation thresholds at shorter wavelengths have relatively long dissoci-
ation lifetimes at all levels. Their dissociation rates decrease rapidly below 
the ozone layer and are also sensitive to zenith angle. Examples are H 20, 
HN0 3 , HC1, and 0 2 (see Chapter 10). 

If scattering is neglected, Eq. (2.7.1) can be used to calculate heating 
rates due to solar absorption by 0 3 or 0 2 . However, this straightforward 
approach requires a spectral integration; for this reason, approximations 
involving only simple algebraic expressions have been worked out by 
Lindzen and Will (1973), Lacis and Hansen (1974), and Schoeberl and 
Strobel (1978). Errors in the approximation of Lacis and Hansen are ^ 1 % . 

Absorption of solar radiation in the near infrared bands of C0 2 and 
water vapor makes a small but significant contribution to heating in the 
stratosphere. The most important bands of C0 2 are centered at 4.3, 2.7, and 
2.0 /im. Water vapor has bands centered at 2.7,1.9,1.6, and 1.1 μιη, together 
with a series of very weak bands extending to 0.55 μπι in the visible. Because 
of its low concentration, water vapor absorbs much less solar radiation in 
the stratosphere than does C0 2 . Heating rates for these gases can be 
calculated from the expression 

dW 
hr(z*) = -p- 'So,, ~^(z*, μ0), (2.7.7) 

where WT(z*, μ0) is the band equivalent width for the direct solar path from 
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level z* to space, and S0,r is the solar flux averaged over band r. The value 
of WT(z*, μ0) can be calculated using band models and tabulated spectro-
scopic data as described in Section 2.4. Allowance must be made for overlap 
between C 0 2 and water-vapor bands and for the transition to the Voigt line 
shape in the upper stratosphere. 

Although daily mean values of solar heating rate can be approximated 
by using a suitable daily mean value of μ0 together with a heating-rate 
multiplier corresponding to the illuminated fraction of the day, calculations 
of high accuracy are carried out by numerical integration of the solar heating 
rate over the illuminated period. 

2.7.3 Effects of Scattering 

For the middle atmosphere, three scattering processes play a role: reflec-
tion and scattering from the underlying surface and troposphere, including 
clouds and aerosols; in situ molecular scattering (Rayleigh scattering); and 
in situ scattering by aerosols, particularly volcanic aerosols. Of these, the 
first is by far the most important. It is relatively easy to incorporate in 
calculations, but because the heating rate between the tropopause and 30 km 
is very sensitive to this upwelling solar flux, it is also sensitive to the 
distribution of clouds and aerosols. 

The method of Lacis and Hansen is illustrated in Fig. 2.29. The strato-
sphere is divided into layers, and the solar heating is calculated by taking 
the difference between the direct solar radiation incident at the top of each 
layer and that emergent at the bottom of the layer, and adding the difference 
between the upwelling reflected solar flux incident at the bottom and 
emergent at the top. The solar flux at any interface depends on the total 
ozone amount along the path, as specified by the algebraic approximations 
derived by Lacis and Hansen. For the direct solar flux, the total ozone 
amount is the product of the vertical ozone column above the interface and 
the effective zenith angle, with the latter corrected appropriately for spheric-
ity. The total ozone amount for upwelling radiation is the sum of two 
components, that due to the path for direct solar radiation reaching the 
underlying surface (clouds or ground) and that due to the diffusely reflected 
path from the surface to the interface. For the latter, Lacis and Hansen use 
an effective "diffuse flux approximation" factor 1.9. The upwelling flux is 
proportional to the reflectivity of the underlying surface, whose prescription 
depends on cloud cover. For clear conditions, the reflectivity is assumed to 
be the average over all reflection angles of the reflectivity of a surface of 
known albedo overlain by a Rayleigh scattering atmosphere. For cloudy 
conditions, the reflectivity is that of a diffusely reflecting cloud alone, and 
is assumed to depend on the optical depth of the cloud in the visible. 
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Fig. 2.29. Illustration of the Lacis and Hansen (1974) scheme for calculating ozone 
absorption. Solar energy deposited in the thin sublayer of the ozone layer is calculated by 
differencing the incident direct solar flux between the bottom and top of the layer, and 
differencing the upwelling diffuse flux between the top and bottom of the layer. The upwelling 
flux is assumed to come from an underlying reflecting layer whose albedo depends on surface 
properties, solar zenith angle, and the occurrence and properties of clouds. 

This method provides an efficient and reasonably accurate calculation 
of ozone heating rate, accounting for upwelling solar radiation in the 
stratosphere. It does not account for scattering in the stratosphere or the 
interaction between scattering and absorption by ozone in the troposphere. 
As an alternative to the use of prescribed underlying surface and atmosphere 
reflectivities, Earth's reflectivity as measured by satellites can be used. The 
reflectivity seen by a satellite at wavelengths longer than about 340 nm is 
almost the same as the reflectivity seen looking downward from the strato-
sphere. 

Background aerosol concentrations are not large enough to have a 
signicant effect on the energy balance of the stratosphere, but the aerosol 
effect can be important following major eruptions such as that of El Chichon 
in 1982 (see Section 12.5.2). The volcanic aerosols consist mainly of small 
sulfuric acid particles (radius ~1 μ,πι) whose single scattering albedo is 
high, —0.98-1.00. Because they absorb infrared radiation emitted by under-
lying ground or cloud, and because they increase the effective path of 
sunlight through the ozone layer, they tend to warm the lower stratospheric 
region in which they reside. If the volcanic cloud contains significant 
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numbers of relatively absorptive soil particles, direct absorption of sunlight 
also contributes to heating. 

Polar stratospheric water ice clouds and noctilucent clouds forming in 
the upper mesosphere may also have a small influence on heating in the 
middle atmosphere. Polar stratospheric clouds occur frequently in the 
southern hemisphere winter polar vortex and more rarely in the northern 
hemisphere winter polar vortex in the 15- to 25-km layer. The influence of 
these clouds on the radiation budget has been studied by Pollack and 
McKay (1985), who showed it to be generally unimportant except possibly 
in the southern winter polar vortex. Noctilucent clouds occur during summer 
near the polar mesopause. Though of great interest as an indicator of 
water-vapor condensation in the upper mesosphere, these clouds probably 
have only a minor effect on the radiation balance. Not only are the clouds 
extremely thin, but at these altitudes gas-particle heat exchange is inefficient 
in much the same way that translation-to-vibration energy exchange in C0 2 
is inefficient. 

2.8 Radiative Equilibrium Temperature and Heating-Rate Distributions 

In the preceding sections the components of the radiative energy balance 
of the middle atmosphere have been considered. In this section, we consider 
the contributions of these components to the net heating rate and the 
radiative equilibrium temperature distribution that these contributions 
would produce in the absence of dynamical processes. 

2.8.1 Net Heating and Its Components 

The earliest detailed calculation of net heating rate in the middle atmo-
sphere was carried out by Murgatroyd and Goody (1957) and included 
absorption of solar radiation by 0 2 and 0 3 and emission and exchange of 
longwave radiation by C 0 2 and 0 3 . A number of calculations have been 
carried out since the pioneering work of Murgatroyd and Goody and have 
refined but not greatly altered the original conclusions. Most of the middle 
atmosphere is quite close to radiative equilibrium, such that there is near 
cancellation between large heating and cooling terms. Except in the polar 
regions, net heating-rate magnitudes rarely exceed 2 K day-1, but there is 
a strong net cooling (up to 10-15 K day-1) in the winter polar region between 
the stratopause and mesopause, and somewhat weaker net heating (up to 
~ 5 K d a y - 1 ) ' i n the summer polar lower mesosphere. These substantial 



92 2 Radiative Processes and Remote Sounding 

imbalances in polar regions exert a strong control on the seasonally varying 
temperatures and zonal winds. 

A recent calculation by Kiehl and Solomon (1986) illustrates these points 
(Fig. 2.30). This calculation made use of detailed global distributions of 
temperature and 0 3 concentration measured by an instrument on board a 
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Fig. 2.30. Net heating rates (K day-1) calculated for January and March. Temperatures 
and ozone concentrations used in the calculation were obtained from the Limb Infrared 
Monitor of the Stratosphere (LIMS) on the Nimbus 7 spacecraft during 1979. Due to lack of 
LIMS data, climatological temperatures and ozone concentrations were used south of 60°S, 
and there are no calculations above 50 km south of 60°S. [From Kiehl and Solomon (1986), 
with permission.] 
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polar orbiting satellite, the Limb Infrared Monitor of the Stratosphere 
(LIMS) instrument on board the Nimbus 7 satellite (see Section 2.9.3). 
Calculations were not made above 60 km or, in the south polar region, 
above 50 km due to lack of data. During January and May this calculation 
shows strong net cooling in the winter polar region, moderate net heating 
in the summer lower mesosphere, and very weak net heating elsewhere. 
During March there is strong cooling in both polar regions. There is 
considerable structure in the heating distribution above the stratopause in 
low latitudes, especially in January. This structure is real and is associated 
with the strong semiannual temperature cycle at low latitudes. 

Figure 2.31 shows long-wavelength contributions to the balance by C 0 2 , 
0 3 , and H 2 0 during January 1979. The patterns of the three contributions 
are similar, with maximum cooling near the stratopause, except that the 
9.6-μπι band of ozone contributes strong warming in the lower equatorial 
stratosphere. This feature is due to absorption of upwelling long-wavelength 
radiation, and it is sensitive to the distribution of tropospheric cloudiness. 
Water vapor and 0 3 make negligible contributions to long-wavelength 
cooling above 60 km, and the upward extension of the C 0 2 long-wavelength 
cooling into the upper mesosphere according to Dickinson is shown in Fig. 
2.25. Note the good agreement between the calculations of Dickinson and 
Kiehl and Solomon in the region of overlap, despite the use of different 
temperature data sets. 

Heating due to absorption of solar radiation by 0 3 , N 0 2 , and 0 2 
calculated by Kiehl and Solomon is shown in Fig. 2.32. In the region shown, 
0 2 and N 0 2 heating rates are negligible but 0 2 heating becomes important 
in the upper mesosphere due to strong heating in the Schumann-Runge 
bands. Figure 2.33 shows heating rates from London that extend the heating 
due to absorption of solar radiation by 0 3 and 0 2 above the mesopause. 
Absorption by 0 2 is responsible for the strong high level heating maximum. 
Note, however, that London's heating rates are significantly greater than 
those calculated by Kiehl and Solomon in the region of overlap. 

Experimental verification of the heating rates shown in Figs. 2.25 and 
2.29-2.32 is not currently feasible because the flux divergences are so small. 
However, an indirect check of the validity of these calculations is possible. 
In the stratosphere and lower mesosphere, dynamical contributions to global 
mean heating at any level are small, so that global mean net radiative heating 
should be small throughout this region. In the middle and upper mesosphere, 
dynamical contributions to global mean net heating may be larger, but a 
small value of calculated global mean net radiative heating should still 
provide a rough check on calculations. Table 2.2 gives global mean net 
heating rates at various levels from the calculations of Kiehl and Solomon 
and Dickinson. 
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Fig. 2.31. Contributions of (a) C0 2 , (b) 0 3 , and (c) H 2 0 to the total long-wave cooling 
during January 1979. [From Kiehl and Solomon (1986), with permission.] 
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Fig. 2.32. Contributions of 03 , 02 , and N02 to heating rate during January and March 
1979. [From Kiehl and Solomon (1986), with permission.] 

The small values of calculated global mean net heating in Table 2.2 
support the validity of the components of the calculations. The discrepancy 
in the lower mesosphere in the calculation of Kiehl and Solomon (1986) 
may be due largely to errors in the input ozone and temperature data. 
Solomon et al (1986) have shown that the LIMS ozone measurements may 
be in error in this region for the following reason. Energy of solar ultraviolet 
radiation used to dissociate 0 3 will be released when 0 3 reforms during 
recombination. A fraction of this energy will appear as vibrational excitation 
of 0 3 , and some will cascade from high vibrational levels into the upper 
levels of transitions in the 9.6-μπι spectral region. The resulting enhanced 



96 2 Radiative Processes and Remote Sounding 

Fig. 2.33. Solar absorption by 0 3 , 0 2 , N 0 2 , and C 0 2 during summer and winter, from 
London (1980). Differences between these values and those in Fig. 2.32 are largely due to 
differences in the ozone distributions used in the calculations. [From London (1980), with 
permission.] 

Table 2.2 

Calculated Globally Averaged Net Heating Rate 

Altitude 
(km) 

65 
70 
75 
80 
85 
90 
95 

100 

Net heating 
(K/day)a 

+0.2 
+0.8 
+0.6 
+0.7 
+ 1.7 
+4.7 
+2.4 
+ 1.5 

Altitude 
(km) 

25 
30 
35 
40 
45 
50 
55 
60 

Net heating 
(K/day)b 

-0.3 
-0.6 
-0.7 
-0.9 
-0.6 
-0.7 
+0.3 
+ 1.4 

a Dickinson (1984). 
b January mean, Kiehl and Solomon (1986). 
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9.6-μτη band radiation would have been interpreted as a spurious 0 3 excess 
in the analysis of the LIMS measurements. 

2.8.2 Radiative Equilibrium 

The radiative equilibrium temperature distribution is of interest as an 
indicator of the amount of temperature change that must be effected by the 
circulation. It can be calculated from 

— = — ( Σ *r,ir + Σ *r ,uw) , ( 2 . 8 . 1 ) 
at pCp 

where £ r hrM and £ r hr>uvv are the volume heating-rate contributions due to 
infrared and ultraviolet-plus-visible bands, respectively. Equation (2.8.1) is 
integrated from arbitrary initial conditions until a steady state is achieved. 

Figure 2.34 shows the results of such a calculation. In the tropics and 
subtropics the radiative equilibrium temperature distribution is close to that 
observed. At high latitudes, particularly in the winter hemisphere, radiative 
equilibrium temperatures are far from observed temperatures. In the winter 
polar cap region, only infrared radiation transferred from the troposphere 
maintains nonzero temperatures. In radiative equilibrium, temperature 
decreases continuously from the summer to winter pole at all levels, in 
marked contrast to the observed temperature gradients in the upper meso-
sphere and lower stratosphere. Notice that this temperature distribution is 
very similar to that obtained from the time-marched radiative calculation 
shown in Fig. 1.2. 

Fig. 2.34. Radiative equilibrium temperature distribution for northern (left) summer sols-
tice. [From Wehrbein and Leovy (1982), with permission.] 
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2.9 Remote Sounding 

Until relatively recently, our knowledge of the distributions of tem-
perature, winds, and such important trace gases as ozone and water vapor 
was limited to data from the worldwide radiosonde network, extending no 
higher than about 30 km, from a limited number of rocket profiles, and 
from some balloon and aircraft measurements obtained in connection with 
special experiments. None of these provided truly global coverage. This 
situation underwent a radical change beginning in the late 1960s with the 
advent of satellites carrying sensors capable of sounding the middle atmo-
sphere. Examples of temperature and constituent distributions derived from 
satellite sounding are shown throughout this book. 

The most useful satellite data sets for the middle atmosphere have so 
far been generated by polar orbiting satellites in the Nimbus, NOAA, and 
Explorer series. These satellites operate in sun-synchronous circular orbits 
near an altitude of 1000 km. The characteristic period of these orbits is 
slightly more than 100 min, so that there are typically 13-14 orbits per day. 
Because the earth is spinning beneath the satellite orbit, the subsatellite 
track slips westward by about 30° longitude from one orbit to the next. 
Sun-synchronous orbits maintain a constant angle between the earth-sun 
line and the line joining the earth's center and the satellite at the point 
where the satellite orbit crosses the ecliptic plane. 

The satellite orbit slowly precesses to maintain constant-local-time satel-
lite crossings of each latitude. The precession rate is accomplished by 
inclining the satellite orbit about 7° from the earth's polar axis. The lowest-
order non-spherically symmetric component of the earth's gravity field 
provides the torque necessary to maintain the proper ^recession rate. The 
satellite orbit crosses each latitude circle twice each orbit, once ascending 
in latitude and once descending in latitude. Because the orbital period is 
not ordinarily commensurate with the earth's rotation period, orbits on 
successive days do not overlay. Instead, the spaces between adjacent orbital 
ground tracks on a given day are gradually filled in on succeeding days. A 
typical segment of the subspacecraft track of a sun-synchronous satellite is 
shown in Fig. 2.35. 

A brief discussion of the use of radiance data acquired by satellites to 
infer properties of the middle atmosphere is given in this section. 

2.9.1 Nadir Sounding of Temperature 

The spectral distribution of upwelling radiance contains information 
about the vertical distribution of temperature and gaseous constituent con-
centrations. Since atmospheric opacity varies with wavelength and the depth 
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from which emergent radiation is emitted varies with opacity, different 
depths in the atmosphere are sensed by measurements at different wave-
lengths. 

The upwelling radiance Lr in spectral band r sensed on a nadir viewing 
satellite is given by 

-f 
Jo 

Br(z)wT(z)dz (2.9.1) 

, M - l where wr(z) = i (^) dp, 

and lv is the instrument spectral response function, normalized such that 

I{v)dv = 1, L 
and the transmission function is for the vertical viewing path. The notation 
0_ is used to denote inclusion of the lower boundary in the integration. The 
quantity wT(z), called the "weighting function," determines the contribution 
of different atmospheric levels to Lr. 

In order to examine the properties of wr, consider a hypothetical instru-
ment capable of sensing monochromatic radiance at frequency v that is 
used to measure radiance emitted by a uniformly mixed absorbing gas with 
basic absorber density (scaled to reference temperature Ts) pa0(

z) = 

Pao(0)e"z/H = Pao(0)(/>/Po) a n d a constant absorption coefficient kv. The 
transmission function is 

T„(z, co) = exp[-^HpaO(0)(/?/po)], 

where p0 is the pressure at the level at which pa0 = pao(0) (e.g., the ground), 
and 

dTv(z,<x>) P dTv 

dz H dp 

= KpaO(0)(p/po) exp[-kvHPaO(0)(p/p0)l (2.9.2) 

This function has the pressure dependence of the Chapman layer structure 
for normal incidence radiance. Like the Chapman layer, it has a single 
maximum where the optical depth, τν = kvHpa0(z), is equal to 1. The 
upwelling radiance is determined primarily by the Planck function near this 
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level. Most importantly, this function has a characteristic width of about 
two scale heights, and this is the characteristic thickness of the region sensed 
at the instrument frequency v. 

It might seem that any real weighting function for a uniformly mixed 
gas would have a characteristic width of at least two scale heights, since in 
general wr would be a superposition of monochromatic weighting functions, 
each corresponding to a different value of kv. This is not quite true, however, 
since kv is pressure-dependent. If kv corresponds to the wings of pressure 
broadened Lorentz lines, 

kv = Sa^7T~\v - p0)~
2 = Ko(p/po) 

where 

kvQ = SaL07r_1(^ - ^o)"2 

[using Eqs. (2.3.5) and (2.3.6) with ps replaced by p0]9 so that 

wr(z) = KoPaO(0)(p/po)
2 εχρί-ϊΚοΗρ^ΟΧρ/ρο)2]. (2.9.3) 

This weighting function has a shape similar to that of Eq. (2.9.2), but it is 
only half as broad. This is the narrowest physically realizable weighting 
function for nadir sounding of the Planck function. 

An approximate representation of the vertical temperature profile can 
be obtained from multichannel satellite radiometer measurements in the 
15-μ,πι C 0 2 band. The set of equations, one for each channel in the form 
of Eqs. (2.9.1), can be inverted to obtain a set of temperatures defining the 
approximate profile. The large width of the weighting functions severely 
limits the vertical resolution of these temperature profiles. In principle, 
resolution might be increased by using measurements from a large number 
of channels with closely spaced weighting functions. However, when there 
is strong overlap between the weighting functions, inversion of radiances 
to yield temperatures is unstable in the presence of any instrumental noise. 
Small radiance errors in one channel will be compensated by magnified 
errors in the temperatures retrieved for levels corresponding to the centers 
of weighting functions for adjacent overlapping channels. These errors in 
turn will propagate still further from the initial level. For realistic instru-
mental noise levels, the best resolution that can be achieved is comparable 
to the vertical width of the weighting functions. 

Three nadir-viewing satellite instruments that have provided useful data 
on stratospheric temperature distributions are the Satellite Infrared Spec-
trometer (SIRS), a grating spectrometer flown on the Nimbus 3 and 4 
satellites during the early 1970s, the Infrared Interferometer Spectrometer 
(IRIS), a Michelson interferometer flown on Nimbus 3 and on the Mariner 
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9 and Voyager planetary missions, and the High Resolution Infrared Radi-
ation Sounder (HIRS), a multichannel filter radiometer flown on the Nimbus 
6 and TIROS-N satellites in the late 1970s. Similar instrumentation has 
been flown by the Soviet Union on the Meteor satellite series during the 
same period. All of the weighting functions for these instruments peak at 
or below the 10-mb level, so they provide useful temperature data only for 
the middle and lower stratosphere. 

In order to reach higher levels with nadir-viewing thermal infrared 
sensors, the technique of correlation spectrometry has been used. The first 
correlation spectrometers flown on a satellite were the Selective Chopper 
Radiometers (SCR) flown on Nimbus 4 and 5, and these have provided 
useful data from 1970 to 1978. In this technique, radiance from the underly-
ing atmosphere first passes through filters to isolate broad regions in the 
15-μ,πι band, and the beam is rapidly cycled by means of a chopper between 
a direct path and path through an absorption cell containing a fixed amount 
of C0 2 . By subtracting the two signals for the same location, a viewing 
path passing through the C0 2 cell and a path avoiding the cell, it is possible 
to isolate the component of terrestrial radiation emitted in the strong lines 
of the Q branch of the C0 2 fundamental. Since this radiation is emitted 
from relatively high altitude, the corresponding weighting function peaks 
at high altitude. By using a second cell with a larger C0 2 path, it is also 
possible to partially isolate the contribution to terrestrial radiance from the 
wings of the Lorentz lines in the P and Rbranches of the 15-μτη fundamental. 
This produces a relatively narrow weighting function, approaching in width 
the theoretical limit discussed earlier in this section. Thus, the SCR instru-
ments have produced a valuable data set covering the entire region from 
the ground to the stratopause. 

A second type of gas-cell correlation spectrometer is the Pressure-Modu-
lator Radiometer (PMR), first flown on Nimbus 6. A second-generation 
version of this instrument, the Stratospheric and Mesospheric Sounder 
(SAMS), was flown on Nimbus 7, providing data beginning in 1978. In the 
PMR technique, a C 0 2 absorption cell is also used, but the pressure in the 
cell is varied by means of an oscillating piston. As the pressure in the cell 
varies, different 15-/mi-band terrestrial radiance contributions are isolated. 
For example, at the lowest cell pressure (0.5 mb), the Doppler cores of the 
Q-branch lines of the fundamental are isolated. This gives a weighting 
function peaked in the upper mesosphere. Weighting functions for the SCR 
and PMR instruments are shown in Figs. 2.36 and 2.37. It can be seen that 
the entire region from tropopause to mesopause is covered by these instru-
ments, but the coverage between 55 and 75 km in the mesosphere is sparse, 
so vertical resolution of temperature retrievals is poor in this region. In the 
case of SAMS, this situation was improved by operating the instrument in 
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Fig. 2.36. Weighting functions for the Selective Chopper Radiometer on Nimbus 4. [From 
Abel et al. (1970), with permission.] 
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a limb-scanning mode (see Section 2.9.3). However, the main purpose of 
SAMS was to provide composition information. PMR cells are also used 
in the TIROS-N Operational Vertical Sounder (TOVS). Three cells, which 
have weighting functions that can be used to retrieve temperature from 
about 30 mb to 0.4 mb, comprise the Stratospheric Sounding Unit (SSU) 
of TOVS. 

2.9.2 Geopotential and Wind 

Temperatures retrieved from satellites are asynoptic: new observations 
are added continuously as the satellite moves in its orbit. However, a number 
of techniques are available to convert these evolving data sets into synoptic 
temperature distributions at specified times. A convenient practical method 
for doing this utilizes the Kaiman filter as described by Rodgers (1976b). 
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Fig. 2.37. Weighting functions for the Pressure Modulator Radiometer on Nimbus 5. [From 
Curtis et al (1974), with permission.] 

New observations of temperature along latitude circles are used to update 
the coefficients in a Fourier-series representation of temperature around the 
latitude circle in a quasi-continuous fashion. Inherent to this process is a 
smoothing operation of the Kaiman filter, which can be tuned to match the 
precision of the observations, so that noise is suppressed. 

Once the global distribution of temperature has been mapped, the distri-
bution of geopotential on constant pressure surfaces can be obtained by 
integrating the hydrostatic equation from a base pressure level on which 
the geopotential is known from analysis of radiosonde observations. This 
base level is usually chosen to be 100 or 50 mb. 

Instead of temperature, thickness of deep layers, typically spanning an 
order of magnitude range in pressure, can be retrieved. These retrievals can 
be carried out with good accuracy by linear regression, in which observed 
radiance is regressed against thickness derived from rocket measurements. 
Nadir satellite data with their broad weighting functions are well suited to 
this simple retrieval technique. The resulting geopotential surfaces have 
provided a sound basis for diagnoses of middle atmosphere circulation, 
although the vertical resolution is very limited. 

Once the distribution of geopotential on middle atmosphere pressure 
surfaces has been deduced, geostrophic or gradient winds can be readily 
calculated, as can a variety of diagnostic quantities relevant to momentum 
and energy balances and wave propagation. Gradient or higher-order 
approximations to the rotational wind generally provide better estimates of 
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diagnostic quantities than geostrophic winds in the middle atmosphere 
(Elson, 1986). Despite the numerous approximations and limitations of the 
nadir-viewing satellite data, the time variations and relationships between 
these derived quantities have given a remarkably consistent picture of 
dynamical processes in the stratosphere in a number of studies, the results 
of which are discussed elsewhere in this volume. 

In the future, we may look for direct satellite determinations of winds 
in the middle atmosphere based on advanced optical techniques. These will 
resolve the Doppler shifts of spectral lines resulting from winds averaged 
over domains whose dimensions are several hundred kilometers in the 
horizontal and a few kilometers in the vertical. An instrument capable of 
this type of measurement is to be flown on the Upper Atmosphere Research 
Satellite (UARS). 

2.9.3 Limb Sounding of Temperature 

As an alternative to nadir sounding, temperature profiles can be derived 
from a radiometer with a narrow field of view scanning vertically through 
the limb of the planet and measuring radiance in the 15-/xm band (Fig. 
2.38). This limb-sounding technique has several advantages over nadir 
sounding. The most important of these is that the weighting functions are 
determined primarily by the instrument field of view, and their width is 
therefore limited more by signal-to-noise considerations than by funda-

Fig. 2.38. Limb viewing geometry. The satellite instrument scans through the atmosphere 
on the limb at tangent height h. Radiance is received from elements of length δχ at height z 
along the tangent path. [From Houghton et al. (1984), with permission.] 
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mental physical principles (Fig. 2.39). Since the instrument views a long 
atmospheric optical path (typically about 40 times the length of the nadir 
optical path to the altitude of the tangent point), and views it against the 
background of cold space, the sensitivity is high, and measurements can 
be easily extended well into the mesosphere. An additional advantage is 
that an "onion-peeling" technique, working from the top down, can be 
used to retrieve temperature, so that retrieval errors at one level do not 
propagate upward, although they do propagate downward. 

The technique has some disadvantages. It is relatively sensitive to the 
presence of aerosols in the lower stratosphere, which can produce serious 
errors, and it cannot be consistently used to probe below the tropopause. 
It requires very precise knowledge of field of view and is sensitive to stray 
light. It also requires precise knowledge of spacecraft attitude and attitude 
change rates so that instrument pointing can be determined. If attitude 
change rates vary slowly compared with the limb-scan time, this rate can 
be nearly eliminated by combining data from adjacent upward and down-
ward scans. If spacecraft attitude is not accurately known so that the absolute 
height scale on the limb is uncertain, a "two-color" technique, suggested 
by Gille and House (1971), can be used to locate a reference pressure level 
on each limb profile. Temperatures can then be associated with pressures 
at all other profile levels by working upward or downward from the reference 
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Fig. 2.39. Weighting functions for one of the 15-μτη band channels of the Limb Infrared 
Monitor of the Stratosphere (LIMS). [From Bailey and Gille (1986), with permission.] 
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pressure level, using the hydrostatic equation and the retrieved temperatures, 
In this technique, simultaneous colocated observations in two 15-/xm chan-
nels, one wide band and one narrow band, are used. Temperature-pressure 
profiles are retrieved using data from each channel starting from an assumed 
reference pressure at the same height on each profile. The two temperature-
pressure retrievals will show systematic disagreement unless the assumed 
reference pressure corresponds to the actual pressure at that height. Thus, 
the true reference pressure can be deduced through an iterative correction 
procedure. 

Thus far, limb-scanning instruments have viewed the horizon at a fixed 
angle with respect to the spacecraft track. As a result, sampling in longitude 
has been limited to the longitudinal sampling frequency of the spacecraft 
orbit. In contrast, nadir sampling has incorporated scanning across the 
spacecraft track with slightly off-nadir viewing, and this is done with the 
TOVS instrument to give complete longitudinal sampling at the resolution 
of the TOVS footprint. 

The vertical resolution and sensitivity to high-altitude signals available 
in limb sounding are responsible for a considerable advance in quality of 
the global middle atmosphere data sets. In addition to SAMS, two limb-
scanning radiometers have flown in Nimbus satellites, the Limb-Sounding 
Infrared Radiometer (LRIR) on Nimbus 6, and the Limb Infrared Monitor 
of the Stratosphere (LIMS) on Nimbus 7. 

2.9.4 Sounding of Composition 

A complete understanding of the chemistry of the middle atmosphere 
requires information on the distributions of nearly 50 minor gaseous species. 
The role played by some of these is discussed briefly in Chapter 10. Among 
the more important are 0 3 , O, H 20, H N 0 3 , NO, N 0 2 , CH4 , CO, HCl, 
N 2 0, CFC13, and CF2C12. Equation (2.9.1) can be inverted to retrieve 
dTv(z, 00)/dz, from which the vertical distribution of absorbing gas can be 
derived, provided that Bv(z) is known independently and the atmosphere 
is in LTE. In practice this approach is very difficult from nadir-sounding 
observations, because of the low concentrations and resulting weak absorp-
tions for most of the gases of interest. Even in principle, the information 
content of upwelling radiance for composition determination is strongly 
dependent on the vertical temperature profile. If the atmosphere is isother-
mal, no vertical structure information can be derived from low-resolution 
upwelling radiances. 

A high degree of overlap between the spectral features of many of the 
gases of interest is another complication. As a result of these difficulties, 
useful retrievals of thermal radiance from nadir viewing have been restricted 



108 2 Radiative Processes and Remote Sounding 

to total column water vapor, total column 0 3 , and some constraints on the 
vertical profile of water vapor. 

In contrast, the long viewing path, cold space background, and depen-
dence of weighting functions on viewing geometry that characterize limb 
emission measurements have made it possible to infer near-global distribu-
tions of several important gases in the middle atmosphere. These include 
0 3 and H20 (LRIR), 0 3 , H20, HN0 3 , and N 0 2 (LIMS), and CH4, N 2 0 , 
CO, and NO (SAMS). Additional global measurements of N 0 2 , H20, and 
0 3 have been made with limb-viewing radiation sensors on the Solar Meso-
sphere Explorer (SME) satellite. Global distributions of several additional 
species are expected to be obtained from UARS limb measurements of 
thermal radiance. 

Ozone is the most important variable species in the middle atmosphere, 
and its prominent ultraviolet spectrum lends itself to distribution determina-
tions from measurements of backscattered solar radiance. Since the radiance 
source is Rayleigh-scattered sunlight for which the scattering cross section 
is strongly wavelength-dependent, the pressure range of the atmospheric 
layer from which the radiance is scattered depends strongly on wavelength. 
On the other hand, attenuation of the scattered radiation, and hence the 
radiance received at the satellite, depends on the amount of overlying 0 3 . 
As a consequence, the ultraviolet spectrum of the earth shows a broad deep 
minimum centered near 250 nm. The signature of this feature in backscat-
tered solar irradiance has been widely used to retrieve 0 3 vertical profiles. 
The most recent instruments to be used for this purpose are the Backscatter 
Ultraviolet Spectrometer (BUV) used on Nimbus 4 and on Atmospheric 
Explorer 5, and the Solar Backscatter Ultraviolet Spectrometer (SBUV) used 
on Nimbus 7 and on current operational satellites. Weighting functions for 
the SBUV instrument are shown in Fig. 2.40. 

The total column amount of ozone has been measured globally since 
1978 with the Total Ozone Mapping Spectrometer (TOMS) flown on several 
satellites. This technique uses differential absorption in reflected near-
ultraviolet radiance to infer the total mass of ozone along the viewing path. 
The TOMS is a scanning instrument, so that measurements are available 
globally at high spatial resolution. Total ozone variations are dominated 
by variations in ozone amount in the lower stratosphere and by variations 
in tropopause height, so these data are especially useful for assessing the 
behavior of the tropopause at high spatial resolution and in regions that 
are poorly sampled by radiosondes. 

Ozone vertical distribution below the level of the concentration maximum, 
about 25 km, is difficult to retrieve by either the ultraviolet backscatter 
technique or the thermal limb emission technique. Measurements of direct 
absorption of radiance along the path from the rising or setting sun (i.e., 
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Fig. 2.40. Weighting functions for the Solar Backscatter Ultraviolet Spectrometer (SBUV) 
on the Nimbus 7 satellite. Note the absence of weighting functions peaked in the lower 
stratosphere. [From Yarger and Mateer (1976), with permission.] 

measurements of radiance during solar occultations) can provide fairly 
precise estimates of the concentrations of many species over a broad altitude 
range, including 0 3 in the difficult region between the tropopause and 25 km 
(Fig. 2.41). This solar occultation technique has also been used extensively 
to infer vertical distributions of stratospheric aerosols. The spatial distribu-
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Fig. 2.41. Geometry for solar occultation measurements of atmospheric composition. [From 
McCormick et al (1979), with permission.] 

tion of solar occultation measurements is severely constrained by the sun-
satellite viewing geometry. This limitation can be partially alleviated by 
using lunar or stellar occultations, but without the advantage of the very 
strong solar occultation signal. 

Atmospheric sounding at microwave frequencies can also yield composi-
tion as well as temperature in the middle atmosphere. High-spectral-resolu-
tion measurements in the vicinity of an 0 2 magnetic dipole transition 
centered near 60 GHz are widely used for temperature sounding and have 
provided useful information on global temperature variations in the lower 
stratosphere. Passive microwave sounding looking upward from the ground 
has yielded profiles of H20 in the upper stratosphere and lower mesosphere 
and profiles of CO in the upper mesosphere. Additional species that are 
important for the chemistry of the middle atmosphere, including ClO, 0 3 , 
and H 2 0 2 , can be measured by microwave techniques. Future microwave 
measurements by UARS are expected to yield global distributions of these 
species. 
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