
Chapter 7 The Extratropical Zonal-Mean 
Circulation 

7.1 Introduction 

In Section 5.2.1 we presented some aspects of the observed climatology 
of the zonal-mean circulation of the middle atmosphere, its annual cycle, 
and its interhemispheric variations. For example, Fig. 5.1 showed the 
existence, in the zonal mean, of a cold tropical tropopause, a warm 
stratopause, and a cold summer mesopause, while the corresponding mean 
zonal geostrophic winds, illustrated in Fig. 5.2, are generally westerly 
in winter and easterly in summer, decreasing to small values near 
the mesopause. In the present chapter we examine the processes that main-
tain the climatological zonal-mean state in the extratropics. We concen-
trate especially on the ways in which dynamical phenomena can lead to 
large departures, in certain parts of the middle atmosphere, from a hypo-
thetical climatology determined solely by radiative and photochemical 
effects. 

To investigate the role played by dynamical processes in producing the 
observed middle atmosphere circulation, it is first useful to consider what 
form the circulation would take in the absence of dynamical processes, 
other than some representation of convection, and perhaps baroclinic wave 
activity, in the troposphere. The temperature field associated with such a 
circulation can be calculated from a radiative-photochemical model of the 
stratosphere and mesosphere, together with a radiative-convective model 
of the troposphere. An example for near-solstice conditions was given in 
Fig. 1.2, from the time-marched calculations decribed by Fels (1985). This 
shows strong latitude and height variations of the resulting zonally sym-
metric temperature, with a maximum of about 290 K at the summer 
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stratopause and temperatures below 180 K throughout the middle atmo-
sphere at the winter pole, decreasing to 130 K at the winter mesopause. The 
temperature field Tr(</>, z, t) say, calculated in this way will be referred to 
as the radiatively determined temperature. 

A comparison of the calculated radiatively determined temperature field 
in Fig. 1.2 with the observed January-mean field of Fig. 5.1a reveals some 
overall similarities between the two, but also some striking differences. For 
example, the observed midlatitude summer stratopause temperature, at 
about 280 K, is close to Tr, but the observed north polar night is much 
warmer than the corresponding Tr (by about 30 K in the lower stratosphere, 
increasing to 100 K in the mesosphere), while the observed southern summer 
mesopause is much colder (by about 60 K). The July-mean zonally averaged 
observed temperature of Fig. 5.1c is roughly a mirror image of Fig. 5.1a, 
except that the southern winter polar midstratosphere, at about 180 K, is 
only just above the radiatively determined value. 

Assuming thermal-wind balance, 

/ 2ngrtan<AdMgr_ R dTr 

V a ) dz aH θφ 

[cf. Eqs. (3.4.1c) and (5.2.2)], and a suitable lower boundary condition, one 
may calculate the zonal gradient wind, ugr say, that would be associated 
with the radiatively-determined temperature Tr. Figure 7.1 shows the 
wgr(0, z) field corresponding to the temperature field of Fig. 1.2, given that 
ugr equals the observed climatological values at 100 mb. This "radiatively 
determined" gradient wind exhibits extremely strong westerlies in the winter 
polar night, associated with the strong latitudinal gradients of TT there, 
and quite strong easterlies in the summer hemisphere. The magnitudes of 
the winds increase with height throughout the stratosphere and mesosphere. 
In contrast, the observed zonal-mean geostrophic zonal winds for January 
(Fig. 5.2a) show more moderate growth with height, peaking near 60 km 
altitude in both hemispheres and decreasing to small values near the 
mesopause: the observed jets "close off" in the upper mesosphere. In July 
(Fig. 5.2c) the Southern Hemisphere winter westerlies are stronger than 
their Northern Hemisphere counterparts of January, but still decrease above 
60 km altitude. (Note that observed zonal-mean geostrophic zonal winds 
are usually small enough to be a good approximation to the observed 
gradient winds.) 

It is possible that some of the differences between the climatological 
observations of Figs. 5.1 and 5.2 and Fels's time-marched radiative-photo-
chemical-convective calculations of Figs. 1.2 and 7.1 may be due to defi-
ciencies in the radiative formulation of the latter. However, by far the most 
important reason for these differences is the presence of dynamical processes 
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Fig. 7.1. Zonal gradient wind wgr that is in thermal-wind balance with the temperature 
field Tr of Fig. 1.2 and equals the observed climatological zonal wind at 100 mb. (a) Northern 
Hemisphere (winter), (b) Southern Hemisphere (summer). (Courtesy of Dr. S. B. Fels.) 
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in the middle atmosphere; such processes were deliberately excluded from 
Fels's calculations. The extra heating or cooling that must be provided by 
the dynamical thermal transport is often called the "dynamical heating." 
Some of the dynamical processes contributing to this heating would occur 
in a middle atmosphere whose circulation was zonally symmetric. However, 
simple arguments suggest that the dynamical phenomena of greatest impor-
tance for accounting for departures from Tr—in the extratropics at least—are 
associated with deviations from zonal symmetry: the "eddies" or "waves." 
The following sections discuss which types of wave are likely to be involved 
in this process, and the means by which they may force departures of T 
from Tr. 

7.2 Some Simple Zonally Averaged Models of the Middle Atmosphere 

To gain insight into the ways in which dynamical processes can lead to 
departures of the zonal-mean temperature from the temperature Ττ(φ, ζ, t) 
of a hypothetical atmosphere controlled only by radiative, photochemical, 
and convective effects, it is helpful to begin by considering a hierarchy of 
rather simple models of the extratropical middle atmosphere. A suitable 
starting point is the set of quasi-geostrophic "transformed Eulerian-mean" 
(TEM) equations on a beta-plane (see Section 3.5). Since comparison with 
observed temperatures will be made, the zonal-mean temperature T will be 
used as a dependent variable, rather than the zonal-mean potential tem-
perature Θ = TeKZ/H. Then, with J/cp= Qe~KZ/H (see Section 3.1.1) and 
N2= H~lRe0ze~KZ/H [see Eq. (3.2.13)], the quasi-geostrophic TEM set 
[Eqs. (3.5.5)] becomes 

or -fov* = PÖ1 V · F + X = G, (7.2.1a) 

Tt + N2HRlw* = J/cp, (7.2.1b) 

v* + Po_1(PoH>*)z = 0, (7.2.1c) 

f0üz + H'RTy = 0. (7.2.1d) 

It is convenient here to make a slight physical distinction from the system 
described by Eqs. (3.5.5) by reinterpreting the terms contributing to the zonal 
force per unit mass G. [Note that G is not to be confused with the quantity 
G in Eq. (3.5.2b).] Thus F is now regarded as containing not only a 
contribution 

F(p) - (0, -po^V, Pof^Ö'l θ0ζ) (7.2.2a) 
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from planetary waves [cf. Eq. (3.5.6)], but also a contribution 

F(g) - (0, - p o Ä - P o ^ V ) (7.2.2b) 

from small-scale gravity waves [cf. Eq. (3.5.3b)]. The term X now represents 
all further contributions to the mean zonal force per unit mass associated 
with gravity waves and other small-scale disturbances. The term 7 is the 
zonal-mean diabatic heating rate per unit mass, and will be assumed here 
to equal the zonal-mean net radiative heating rate: the "wave heating" term 
on the right of Eq. (3.5.2e) is negligible for quasi-geostrophic motions and 
also for gravity waves, and will be ignored here together with all other 
wave-induced and molecular contributions to J. As in Section 3.5, (£*, w*) 
is the residual circulation, defined by 

v* - va - pö 1 (Po^/Ö 0 z )z , w* - wa + W / 0 O z ) „ (7.2.3) 

where (üa, vPa) is the Eulerian zonal-mean (ageostrophic) meridional circula-
tion. It should be noted that ν'θ'/θ0ζ can alternatively be written as 
v'T/N2HR~l in Eqs. (7.2.2a) and (7.2.3). Several advantages of the set of 
Eqs. (7.2.1) over the conventional Eulerian-mean set were mentioned in 
Section 3.5. 

7.2.1 Steady-State Model 

We first consider a hypothetical steady-state atmosphere in which the 
seasonal cycle is absent; with time derivatives set to zero, Eqs. (7.2.1a,b) give 

-f0€* = G, N2HRlw* = J/cp9 (7.2.4a,b) 

and substitution into Eq. (7.2.1c) yields 

-Gy +f0pö\p0JK/N2H)z = 0 (7.2.4c) 

(since κ = R/cp), showing how the diabatic heating rate J must be related 
to G = pö*V · F + X in this hypothetical state. [Note that Eq. (7.2.4c) is a 
steady-state version of the quasi-geostrophic potential voracity equation; 
this can be seen by substituting Eq. (3.5.10) into Eq. (3.3.4).] If all eddy 
and small-scale effects are absent, so that G vanishes, then ϋ* = 0 by Eq. 
(7.2.4a): the continuity equation [Eq. (7.2.1c)] then implies that |VP*| grows 
exponentially with z, in general. To prevent this unphysical behavior we 
can impose the boundary condition H>* = 0 at a lower boundary z = z0, 
say. Then H>* = 0 everywhere and so J = 0 everywhere, by Eq. (7.2.4b). The 
atmosphere is then in radiative equilibrium, under our assumption that J 
is the net radiative heating rate: thus, the temperature T must equal the 
the radiatively determined value TT(y, z), so that the long-wave cooling 
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everywhere balances the solar heating. Moreover, ü = ur, where ur is the 
geostrophic radiatively determined wind, satisfying 

fo^+H-lR^ = 0 (7.2.5) 
dz dy 

[see Eq. (7.2.Id), but contrast Eq. (7.1.1)], and since ϋ* = w* = 0 and eddies 
are absent, üa = vPa = 0 as well, by Eq. (7.2.3). 

7.2.2 Annually Varying Model with No Waves 

We next include time-dependence by letting the solar heating rate take 
on an annual variation, Js(y9 z, t), say, but still assume that eddy and 
small-scale effects are absent, so that G = 0. Further qualitative insight can 
be obtained by parameterizing J in terms of f. As a simple example we 
use the Newtonian cooling form 

J / c p = - [ f - Tr(y, z, i)]/r r(z), (7.2.6) 

where TT(y, z, t) is the temperature calculated from a time-dependent radia-
tive-photochemical model (such as that from which Fig. 7.1 was obtained) 
with specified solar heating Js(y, z, t), and rT(z) is a radiative relaxation 
time. This parameterization is not expected to be quantitatively accurate 
for large departures of T from ΓΓ; however, it does contain the important 
physical feature of relating the net heating rate to departures of T from the 
radiatively determined temperature Tr. 

Using Eqs. (7.2.1) with G = 0 and J/cp given by Eq. (7.2.6), it can be 
shown that 

where ε(ζ) = fl/N2(z), as in Eq. (3.2.16). In this equation the term in Tr 

(which depends on the solar heating 7S) provides the forcing, to which f is 
the response. In general T will follow Tr(y, z, t) but will be somewhat lagged 
in time (since the relaxation time τΓ is nonzero) and somewhat more smoothly 
distributed in space [because of the properties of the elliptic operator on 
the far left of Eq. (7.2.7)]: the zonally symmetric dynamics thus provide a 
kind of "inertia." Since f is not equal to Tr in general, Eq. (7.2.6) implies 
that the net radiative heating rate does not generally vanish; by Eqs. (7.2.1) 
the residual circulation (ϋ*, νΡ*) does not vanish, either. This idealized 
model makes it clear that the nonvanishing of the net heating rate J is 
essentially due to the presence of the "dynamical inertia," and cannot be 
regarded as imposed by external radiative agencies. To put it another way, 
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although the solar heating 7S has been specified in advance in this model, 
the "long-wave cooling" J - Js must be determined as part of the solution. 

Assuming vertical scales of order H, where H is the scale height, and 
horizontal scales of order L, where flL·2 ~ N2H2, we can apply a simple 
order-of-magnitude argument to Eq. (7.2.7) to obtain 

d-^~(f-Tr)/rr (7.2.8) 

approximately, in the present model. (This argument does not apply near 
the equator, where flL2« N2H2: see Section 8.1 for a discussion of the 
relevant time-dependent balance in the tropics.) If &f(y, z) is the maximum 
annual variation of T in the model and r is a seasonal timescale (say 3 
months), an estimate of the temperature tendency is 

df/dt~Af/r. (7.2.9) 

However, typical radiative relaxation times are usually a few days ( r r « τ), 
so that 

f - ΤΓ~-ΑΤ« ΔΤ (7.2.10) 
T 

from Eqs. (7.2.8) and (7.2.9), and thus departures of f from the annually 
varying radiatively determined value Tr(y, z, t) are much smaller in this 
model than the amplitude of the annual swing ΔΤ. It follows that these 
departures are also much smaller in magnitude than the annual swing ΔΤΓ 
in the radiatively determined temperature, which can be estimated by 
comparison of opposite hemispheres in Fig. 7.1. The model, therefore, 
predicts extratropical temperatures T(y, z, t) that are always "close" to the 
annually varying temperatures Tr(y, z, t) determined from radiative-photo-
chemical-convective considerations alone.1 

On the other hand, an examination of the fields of Tr in Fig. 1.2 and the 
observed climatological T in Fig. 5.1a shows that in January at 0.01 mb (in 
the upper mesosphere, near 80 km altitude), f - TT ~ 60 K at 60°N and 
-45 K at 60°S, values comparable with that of ΔΤΓ ~ 50 K (as obtained by 
subtracting TT at 60°N from 7r_at 60°S). Similarly, at 10 mb and 60°N, in 
the winter middle stratosphere, T - Tr ~ 45 K, comparable with ΔΓΓ ~ 55 K 
for that latitude and height. Clearly, the model described in the present 
section fails to predict these large departures of f from Tr in the upper 

1 The same conclusion holds if Eq. (7.2.6) is regarded as an order-of-magnitude estimate, 
rather than an equality: the argument does not depend on the precise form of the parameter-
ization of 7, but only on the fact that the radiative timescale is much less than the seasonal 
timescale. 
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a' 1 Gyz = 0 

mesosphere and winter stratosphere. Additional effects must be included if 
a basic understanding of the observed annual variations of the temperature 
structure of these regions is to be obtained. 

7.2.3 Inclusion of Wave-Forcing Effects 

To obtain the next model in our hierarchy, we now suppose that G is 
nonzero. The set of Eqs. (7.2.1) with parameterization as in Eq. (7.2.6) 
yields the equation 

7z{p°l7ζΡοε)}ft + { P o ~ { ? ( f ~ Tr)] 1 + f o H R 

[1] [2] [3] (7.2.11) 

for f and, using Eq. (7.2.5), the equation 

^ + ρ ο 1 — ί ρ 0 ε — j üt + pö1 U ^ ( M - Mr)J -Gyy = 0 (7.2.12) 

for ü: the latter is a form of Eq. (3.5.7). [Note that the elliptic operator 
acting on üt in Eq. (7.2.12) differs slightly from that acting on Tt in Eqs. 
(7.2.11) and (7.2.7).] 

We now suppose that the wave forcing represented by G varies on a 
timescale rw: except for rapid events like sudden warmings we can expect 
TW to be comparable to the seasonal timescale r and much greater than the 
radiative timescale rr. If rapid wave events like sudden warmings are 
present, the application of a running time average over a period TW = Ο(τ) 
will remove shorter-period fluctuations in Eq. (7.2.11), leaving only smooth 
variations of timescale 0(rw). In either case a scaling argument similar to 
the one that was applied to Eq. (7.2.7) gives the ratio of terms in Eq. (7.2.11) 
as 

[1] : [2] : [3] = — : - ^ ^ : f0LRl HG (7.2.13) 
τ rr 

if foL2 ~ N2H2 again (thus excluding equatorial regions once more) and 
ΔΟ is a typical variation in G over a time rw. As mentioned in the previous 
section, it is generally found that (T - TT)/rr» ΔΤ/τ in the polar night 
and the summer upper mesosphere, so in these regions the term [1] in Eq. 
(7.2.11) is small, and the effects represented by G must be large enough to 
give a balance between terms [2] and [3]. Equivalently, the time derivatives 
in Eqs. (7.2.1a,b) are small, so that—according to this model—the balances 
expressed by Eq. (7.2.4) hold approximately, at each t, in those regions 
where T exhibits large departures from TT. This is especially true near the 
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solstices, when time derivatives are expected to be small, in any case; for 
example, Tt is then smaller than the estimate of Eq. (7.2.9). 

This simple model suggests that dynamical effects contributing to the 
mean zonal force per unit mass G = pö1 V · F + X are the primary agents 
responsible for maintaining the large departures of f from Tr that are 
observed in parts of the middle atmosphere, and thus for producing the net 
radiative heating rates / that occur there. At the same time, these dynamical 
processes also drive the residual circulation, as can be seen from the 
continuity equation [Eq. (7.2.1c)] together with the approximate equation 
Eq. (7.2.4a) or more generally from Eq. (3.5.8), which can be written as 

[£+*' έ(»·ή)]"·+*'"-*>■+»- (w l - · 
(7.2.14) 

in the present notation. [The transformation of Eq. (7.2.3) shows that the 
Eulerian-mean meridional circulation is also dynamically driven.] Con-
versely, the model also suggests that those regions that are observed to be 
close to radiative equilibrium, such as parts of the midlatitude lower strato-
sphere and the summer stratopause, are in such a state because of the 
absence of any dynamical effects that can lead to significant values of G 
there. 

The residual circulation in the middle atmosphere can be calculated 
diagnostically using observed temperatures, an accurate radiative heating 
algorithm for /, the spherical-geometry equivalents of Eqs. (7.2.4b) [or, 
more accurately, Eq. (7.2.1b)] and (7.2.1c), and appropriate boundary 
conditions. A pioneering calculation of this kind was performed by 
Murgatroyd and Singleton (1961), who attempted to estimate the Eulerian-
mean meridional circulation (v, w) by making what is now known to be an 
unjustifiable approximation, namely that the eddy heating terms on the 
right of the Eulerian-mean thermodynamic equation [Eq. (3.3.2e)] are 
negligible. However, under this assumption Eq. (3.3.2e) becomes essentially 
isomorphic to Eq. (7.2.1b); the continuity equation [Eq. (3.3.2d)] is of the 
same form as Eq. (7.2.1c), and so the Murgatroyd and Singleton circulation, 
sometimes also called a "diabatic circulation" (see Section 9.3.1), is a close 
approximation to (ϋ*9 w*). It is shown schematically in Fig. 7.2: generally 
rising motion takes place above 30 km in the summer hemisphere, with flow 
from the summer to the winter hemisphere in the upper stratosphere and 
mesosphere, and descent in the winter hemisphere. The lower stratospheric 
circulation is more symmetric about the equator, with rising motion at low 
latitudes and descent in high latitudes. 

It must be emphasized that the Murgatroyd and Singleton diagnostic 
calculation assumes T(y, z, t) to be given, and then derives (ü*, w*). It does 
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Fig. 7.2. Schematic streamlines of the solstice diabatic circulation in the middle atmo-
sphere, as obtained from the Murgatroyd and Singleton (1961) calculation. S, summer pole; 
W, winter pole. [After Dunkerton (1978). American Meteorological Society.] 

not require details of the eddy-forcing G. A more predictive approach is 
to solve the complete set of mean-flow equations for w, T, ü*, and vP*, given 
some knowledge of G. A classic study of this type was that of Leovy (1964b), 
who parameterized G in terms of ü by assuming a linear "Rayleigh friction" 
drag, 

G = -ü/rm9 (7.2.15) 

where rm is a constant mechanical relaxation time, and used an expression 
of the form of Eq. (7.2.6) for J. A variety of choices of rr and rm were 
examined: with rr = rm — 15 days, for example, several basic features of 
the seasonal cycle of T and ü were simulated, although the details of the 
polar night stratosphere were not captured. 

Current wave, mean-flow interaction theory leads us to expect that the 
parameterization of Eq. (7.2.15) is not likely to be very accurate, even with 
a relaxation time rm that depends on z. For some types of wave (e.g., gravity 
waves: see Sections 4.6.2 and 7.3), improved parameterizations are now 
available; for others, no satisfactory alternative parameterization has yet 
come to light. 

A different, more qualitative, approach makes use of the result of Section 
3.6 that the quantity V · F depends on wave transience, nonconservative 
wave effects, and wave nonlinearity. Thus, if waves are in some sense 
strongly transient, nonconservative, or nonlinear (or any combination of 
these) in a particular region, we can anticipate large local values of pö1 V · F 
there and perhaps large local departures of f from Tr. (Under the same 
conditions large values of X often tend to occur as well.) The identification 



7.3 The Upper Mesosphere 305 

of the mechanisms responsible for local deviations of the climatological 
temperature fields from the radiatively determined value thus amounts to 
a search for wave motions that significantly violate the "nonacceleration 
conditions" in the relevant regions of the middle atmosphere. Likely candi-
dates in the mesosphere and in the winter stratosphere are discussed in the 
next two sections. 

7.3 The Upper Mesosphere 

As noted in Section 7.1, a comparison of Figs. 5.1a,c with Fig. 1.2 reveals 
that the observed climatological temperature field T at the solstices in the 
upper mesosphere is much warmer than the radiatively determined value 
Tr in midwinter and much colder in midsummer. In accordance with the 
arguments of Section 7.2.3 we consider in this section what wave motions 
could significantly break the nonacceleration conditions in this part of the 
atmosphere, in a climatological sense, and thus lead to the large climatologi-
cal values of G = pö1 V · F + X, on the order of 100 m s"1 day-1, required 
to account for such discrepancies. 

It is now generally believed that gravity waves provide the main part of 
the necessary forcing G in the upper mesosphere: as discussed in Section 
4.6.2, such waves grow in amplitude as they propagate from tropospheric 
source regions up into the rarefied mesosphere, and "break," leading to 
turbulence, small-scale mixing, and dissipation. Associated with these waves 
there is an Eliassen-Palm flux divergence V · F(g) ~ -pöX(Pou'w')z (called 
Χλ in Section 4.6.2), representing a zonal force per unit mass on the 
zonal-mean flow: the mixing induced by the waves also leads to diffusion 
of mean-flow properties. Parameterizations of these processes, due to 
Lindzen (1981), are given in Eq. (4.6.18). The net contribution to the forcing 
G associated in this way with gravity waves tends to drag the mean flow 
toward the horizontal phase speed of the waves. 

Since gravity waves are absorbed at or near critical levels, where the 
local horizontal wind speed equals their horizontal phase speed, the only 
gravity waves reaching the mesosphere from below are expected to have 
phase speeds outside the range of horizontal wind speeds occurring in the 
underlying stratosphere. Thus, when winter westerly winds are present in 
the stratosphere we can anticipate that gravity waves within a range of 
easterly phase speeds will occur in the mesosphere and break there. Con-
versely, when summer easterly winds are present in the stratosphere, gravity 
waves with westerly phase speeds would be expected to appear, and break, 
in the mesosphere. In winter, the breaking gravity waves of easterly phase 
speed will exert an easterly force on the westerly jet, and hence tend to 
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close it off; similarly, the breaking gravity waves in summer will tend to 
close off the easterly jet. (An analogous "shielding effect" has also been 
postulated as an explanation of the mesospheric equatorial semiannual 
oscillation: see Section 8.5.2.) 

A more detailed argument is as follows. Consider the solstices [see Figs. 
5.2a,c]: in the winter mesosphere, above the peak of the westerly jet, the 
gravity-wave contribution to G is negative, while in the summer mesosphere, 
above the peak of the easterly jet, G is positive. By the approximate Eq. 
(7.2.4a) we expect ϋ* to be directed from summer to winter hemisphere at 
these altitudes: mass continuity then requires that (p0w*)2 > 0 in the winter 
mesosphere and (p0w*)z < 0 in the summer. Assuming that w* does not 
vary rapidly over a pressure scale-height H (or, alternatively, that w* = 0 
at some level at or above the mesopause), this implies descent in the winter 
mesosphere and ascent in the summer (see Fig. 7.2). By Eqs. (7.2.4b) and 
(7.2.6), this means that f should be warmer than TT in the winter upper 
mesosphere and cooler than Tr in the summer, in accordance with the 
observations. By the thermal wind relation of Eq. (7.2.Id), the reversed 
latitudinal gradients in f imply reversed vertical shears in ü and hence a 
closing-off of the jets. 

Experiments with Lindzen's parameterizations in fairly simple models of 
the middle atmosphere suggest that the gravity-wave drag and diffusion 
contributions to G can account satisfactorily for much of the departure of 
t from Tr in the mesosphere, given reasonable values of the wave para-
meters: see Fig. 7.3. The magnitude of the computed drag in such models 

90 75 60 45 30 15 0 -15 -30 -45 -60 -75 -90 
LRTiTUDE 

Fig. 7.3. Zonal-mean temperature (K) at the Northern-Hemisphere winter solstice, derived 
from a zonally symmetric model including a parameterization of the zonal drag associated 
with breaking gravity waves, but no representation of planetary waves. The reversed meridional 
temperature gradient in the upper mesosphere should be compared with the observations in 
Fig. 5.1a and contrasted with the radiatively determined calculations in Fig. 1.2. [After Holton 
(1983a). American Meteorological Society.] 
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Fig. 7.4. As in Fig. 7.3, but for residual mean meridional wind v* (m s l). [After Holton 
(1983a). American Meteorological Society.] 

Fig. 7.5. Time-averaged north-south wind components near 90 km in June in the Northern 
Hemisphere, measured by various methods at different locations. Note the strong equatorward 
flow in all cases. [After Nastrom et al. (1982).] 
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peaks at about 100 m s_1 day-1 in the upper mesosphere and the diffusion 
coefficient reaches values of about 100 m2 s_1. The implied value of ϋ* can 
amount to some 10 m s_1 near the mesopause, in rough order-of-magnitude 
agreement with the few radar observations of ϋ that are available: see Figs. 
7.4 and 7.5. 

Other wave motions that may contribute to the maintenance of climato-
logical-mean departures of T from Tr in the upper mesosphere are atmo-
spheric tides (see Section 4.3), which may break in the mesosphere and 
could contribute to G both below and above their breaking levels. However, 
planetary waves are unlikely to be important, at least in the summer 
mesosphere, since their amplitudes are small there. 

7.4 The Winter Polar Stratosphere 

The other region of the middle atmosphere in which large climatological 
departures from the radiatively determined temperature are observed is the 
winter polar stratosphere. As discussed in Chapter 5, the occurrence of 
planetary waves is a familiar feature of the winter stratosphere, and it was 
Dickinson (1969) who first suggested that these waves should be regarded 
as the prime agents responsible for forcing departures of T from TT there. 

Dickinson's formulation was partly based on the quasi-geostrophic 
potential vorticity equation [Eq. (3.3.4)]; he identified the mean northward 
geostrophic eddy flux of quasi-geostrophic potential vorticity, v'q\ as the 
essential wave property required for driving departures from the radiatively 
determined state. The relationship 

p ö ' V - F ^ ^ y (7.4.1) 

[see Eq. (3.5.10)] demonstrates that this is equivalent, for quasi-geostrophic 
disturbances, to the formulation of Section 7.2. 

If the "breaking" transient planetary waves mentioned in Section 5.2.3 
are common events in the winter stratosphere, they could well contribute 
to systematically large negative values of pö1 V · F(p) there. The fact that 
the sign is negative is made plausible by the isentropic maps of Ertel's 
potential vorticity P, such as those in Fig. 5.6, which suggest that breaking 
planetary waves effect a systematic southward eddy flux of larger, polar 
values of P and a systematic northward eddy flux of smaller, equatorial 
values of P. If the same holds for quasi-geostrophic quantities on z surfaces, 
then v'q' < 0 and hence pö1 V · F(p) < 0 by Eq. (7.4.1): as expected, these 
waves are violating nonacceleration conditions. [The analogous result for 
isentropic eddy fluxes of P is expressed by Eq. (3.9.11): see Section 7.5.] 
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Dissipating stationary planetary waves (cf. Section 5.2.2) are also likely 
to be associated with negative values of V · F ( p ) , as in the simple example 
mentioned in Section 4.5.5. Radiative damping is one source of dissipation 
for such waves; it has also been suggested that breaking, small-scale waves 
may introduce nonconservative mechanical forcing or damping of the 
planetary waves, just as they do for the zonal-mean flow. However, one 
type of planetary wave that appears unlikely to induce significant forcing 
of the zonal-mean climatological flow is the global normal mode or free 
traveling planetary wave discussed in Sections 4.4 and 5.4. Except perhaps 
during their growth and decay phases, such waves do not strongly violate 
nonacceleration conditions. 

Further research will be required to determine whether the values of 
pö*V · F, or equivalently of v'q', associated with planetary waves are large 
enough in magnitude and of the appropriate distribution in latitude and 
height to account for the observed departures of T from Tr in the winter 
polar stratosphere. [Note incidentally that the calculation of the response 
to such a zonal force is not entirely trivial: equations like Eqs. (7.2.11), 
(7.2.12), and (7.2.14) must be solved subject to appropriate boundary 
conditions.] However, support for some of the ideas presented in this section 
comes from the general circulation-model experiments described in Section 
11.2.1: with some versions of the "SKYHI" model, the polar night strato-
sphere temperature appears to be too close to Tr because the planetary 
waves are too weak. A similar picture emerges from experiments with the 
NCAR Community Climate Model, mentioned at the end of Section 11.1. 
Also relevant is the fact that the observed Southern-Hemisphere winter 
stratosphere is closer to the radiatively determined state than is the Northern-
Hemisphere winter stratosphere: this may be due to the weaker southern 
winter planetary-wave activity mentioned above. 

It should finally be mentioned that observational and model studies 
suggest that gravity-wave drag may also have some role to play in the winter 
stratosphere in contributing directly to the zonal force G as well as perhaps 
forcing or dissipating the planetary waves there. 

7.5 Interpretation and Generalization 

The models described in Section 7.2 are highly simplified and cannot be 
expected to give full quantitative agreement with observations. Their pur-
pose is rather to provide qualitative insights into the physical mechanisms 
that determine the zonal-mean climatological state of the middle atmo-
sphere. They suggest how eddy motions on various scales can keep certain 
parts of the middle atmosphere in a state far from that predicted by 
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radiative-photochemical models; further, they shed light on some of the 
physical properties of the eddies that may be responsible for this mainten-
ance process. 

These models show how dynamical effects are associated with a "dynami-
cal heating" [as represented, say, by the terms on the left of Eq. (7.2.1b)] 
which must be balanced by a net radiative heating. In particular, they make 
it clear that the residual circulation cannot be regarded as a flow that is 
purely driven by an externally imposed net radiative heating rate J, and 
independent of the eddy forcing. Indeed, in the steady-state limit described 
by Eqs. (7.2.4)—which is shown in Section 7.2.3 to be a reasonable first 
approximation for some purposes—the residual circulation and the net 
radiative heating are both entirely eddy-driven under appropriate boundary 
conditions, and would both vanish if the eddy-forcing G were zero. Of 
course, the eddy-forcing G itself is not generally independent of the mean 
flow structure (this fact is made explicit, for example, by the parameteriza-
tions mentioned in Section 7.3). As a result, interesting and complex feed-
backs may occur in the wave, mean-flow interaction and radiative-
dynamical interaction processes. 

Some of the results derived above for quasi-geostrophic flows on a beta 
plane can be extended to flows described by the primitive equations 
on the sphere; it is convenient for this purpose to use the isentropic 
coordinates introduced in Sections 3.8 and 3.9. For example, the analogs 
of the steady-state model equations [Eqs. (7.2.4a,b)] and the continuity 
equation [Eq. (7.2.1c)] in these coordinates are 

α~1ϋ*ιήφ + Q*m0 = G cos φ, (7.5.1a) 

(a cos φ)-\σϋ* cos φ)φ + (σ<?*)β = 0, (7.5.1b) 

from Eqs. (3.9.7a,c), where am = α2Ω cos2 φ + aü cos φ is the zonal-mean 
absolute angular momentum per unit mass, Q = (J/cp)e

KZ/H, and G now 
represents the terms X* + (σα cos φ)~ι V · F in Eq. (3.9.7a). [Note that 
(crV), = 0 because the waves are assumed steady.] Equation (7.5.1b) implies 
the existence of a stream function ψ* such that 

äa(cos φ)0* = ψ%, <T(COS φ)ϋ* = -φβ (7.5.2a,b) 

and substitution into Eq. (7.5.1a) then yields 

w . ü, = cra(cos2 φ)& (7.5.3) 
ο(φ, 0) 

If eddy and frictional effects are absent, then G = 0 and Eq. (7.5.3) implies 
that 

ψ* = Ψ(τή), (7.5.4) 
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say, for some function Ψ; that is, ψ* is constant on surfaces of constant m. 
The residual circulation (ü*, Q*) flows along surfaces of constant zonal-
mean absolute angular momentum, since it must conserve angular momen-
tum when the right-hand side of Eq. (7.5.1a) vanishes. Now if Q* = 0 
everywhere along some isentrope, θ = θ0 say (perhaps a nominal lower 
boundary for the stratosphere), it follows from Eq. (7.5.2a) that ψ* is 
constant on 0O and hence, by Eq. (7.5.4), is constant on all m surfaces that 
intersect θ0. Thus, by Eq. (7.5.2), ϋ* and Q* both vanish everywhere in the 
region threaded by such surfaces. Since Q* = Q in the absence of eddy 
motions, Q = 0 here and the region is in radiative equilibrium, with ϋ* = 0 
also, by analogy with Section 7.2.1.2 

The results of Sections 7.2.2 and 7.2.3 for the annually varying case can 
similarly be extended, but once again the scaling arguments that demonstrate 
the primacy of the eddy forcing in the extratropical middle atmosphere fail 
near the equator. Note incidentally that the mean zonal momentum equation 
in the form of Eq. (3.9.9) shows how Dickinson's argument concerning the 
role of the northward eddy potential vorticity flux generalizes to the primitive 
equations in isentropic coordinates, with Ertel's potential vorticity P 
replacing the quasi-geostrophic potential vorticity q. 
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