
Chapter 5 Extratropical Planetary-Scale 
Circulations 

5.1 Introduction 

This chapter will discuss observational and theoretical aspects of some 
of the planetary-scale "climatological" features of the extratropical strato-
sphere and mesosphere, which vary slowly from month to month during the 
annual cycle and recur regularly from year to year. Such features include 
the westerly zonal-mean winds that occur in the winter hemisphere, the 
easterly zonal-mean winds that occur in summer, and the geographically 
fixed planetary-scale wave patterns observed primarily in the northern 
winter. 

A natural way to isolate features of this type is to perform time aver-
ages for individual calendar months in a record extending over many 
years. Thus, from 10 years of data, say, one can average the 10 Januaries to 
obtain a "mean January" field, and so on. The resulting climatological 
monthly mean flow patterns tend to take a wavy form in the Northern-
Hemisphere winter: these patterns can, if desired, be separated into zonal-
mean and zonally varying parts, as in Section 3.3. Their zonally varying 
parts are known as "stationary waves" and can be further separated into 
zonal Fourier components. The time-dependent departures from the 
climatological average are often known as "transient eddies." (Note that 
this definition of "transient" differs from that of Sections 3.6 and 4.1.) 
Space-time spectral analysis of these transient components sometimes 
reveals the presence of large-scale, coherent, zonally propagating "traveling 
waves." 
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5.2 The Observed Annual Cycle 

It was mentioned in Section 1.5 that global observation of stratospheric 
temperature began in earnest in the late 1960s with the advent of satellite-
borne infrared radiometers. Using instruments of this kind, together with 
conventional radiosonde measurements up to about the 10-mb level in the 
lower stratosphere, our knowledge of the planetary-scale structure of the 
middle atmosphere has gradually expanded over the last 20 years. There 
now exists a data base potentially large enough to construct fairly stable 
climatologies of temperature, geopotential height, geostrophic wind, and 
other quantities up to mesopause levels in the extratropics. So far, little 
detailed analysis of this climatological data set has been performed, but 
some general remarks about the gross planetary-scale structure of the middle 
atmosphere can be made. 

We first describe the annual cycle of certain monthly mean fields. These 
can be displayed in several different ways: for example, the mean geopoten-
tial fields, (Φ), say (where (...) here denotes the climatological monthly 
average), for each month can be contoured on polar stereographic charts 
at various log-pressure levels. Alternatively, the monthly mean geopotential 
field can be expanded in zonal Fourier harmonics up to some zonal wave 
number 5 representing the limit of resolution of the data, 

s 
(Φ) = Α0(φ, z) + Σ Α,(φ, ζ) cos[sA + α,(φ, z)], (5.2.1) 

and the amplitude As and phase as of each harmonic contoured in the 
(</>, z) plane for each month. We present examples of both of these 
approaches for various atmospheric fields. 

5.2.1 The Zonal-Mean Flow 

The most basic monthly mean fields are the zonal means, corresponding 
to the term A0 in Eq. (5.2.1). Schematic solstice cross sections of zonal-mean 
temperature and zonal-mean zonal wind in the middle atmosphere were 
presented in Figs. 1.3 and 1.4, which were based primarily on Northern-
Hemisphere data. 

To give some idea of the seasonal cycle and interhemispheric differences, 
Figs. 5.1 and 5.2 show monthly mean data for January, April, July, and 
October, from the 1986 COSPAR International Reference Atmosphere 
(CIRA) compilation, based on approximately 5 years of satellite data. Figure 
5.1 shows the zonal-mean temperature for these months and, like Fig. 1.3, 
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Fig. 5.1. Monthly and zonally averaged temperature (K) for altitudes up to approximately 
90 km, based on about 5 years of data from the Nimbus 5 and 6 satellites (January 1973-
December 1974 and July 1975-June 1978, respectively) above 30 mb; data supplied by Berlin 
Free University at 30 mb and Oort's (1983) climatology for 50 mb and below, (a) January, (b) 
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April, (c) July, (d) October. From the 1986 CIRA compilation, courtesy of J. J. Barnett 
M. Corney, Department of Atmospheric Physics, Oxford University. (See also Barnett 
Corney, 1985a.) 
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and 

223 



224 5 Extratropical Planetary-Scale Circulations 

o.oH 

-r^—i—"—ι 1 r—'—i——r* 
80S 70S 60S 50S 40S 30S 20S 10S 0 ION 20N 30N 40N 50N 60N 70N 80N 

( a ) Zona l mean wind ( m / s ) J a n u a r y 

- i r-
80S 70S 60S 50S 40S 30S 20S 10S 0 ION 20N 30N 40N SON 60N 70N 80N 

( b ) Z o n a l mean wind ( m / s ) A p r i l 

Fig. 5.2. As for Fig. 5.1, but showing geostrophic zonal winds i n m s ! (eastward winds 
positive, westward winds negative), above about 15 km. 
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Fig. 5.2 (continued) 
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illustrates the basic features of a cold tropical tropopause, warm stratopause, 
and cold summer mesopause. The pattern in July is approximately a mirror 
image of January. However, the polar stratosphere is somewhat colder (and 
thus nearer to radiative equilibrium) in the southern winter (Fig. 5.1c) than 
in the northern winter (Fig. 5.1a). The most dramatic interhemispheric 
asymmetry occurs at the equinoxes; in October the southern polar 
stratopause (Fig. 5.Id) is much warmer than the northern polar stratopause, 
or than either polar stratopause in April (Fig. 5.1b); it is even warmer than 
the equatorial stratopause in April or October. 

Figure 5.2 presents zonal-mean geostrophic winds, computed from the 
temperatures in Fig. 5.1 by integrating the thermal wind equation [Eq. 
(3.4.1c), but neglecting the term in tan φ] 

rdü R df , 

dz aH θφ 

in the vertical, using climatological data at 30 mb as a lower boundary 
condition. The equatorial regions are omitted, partly because of the antici-
pated breakdown of Eq. (5.2.2) there. Features similar to those of Fig. 1.4 
are apparent; these include the westerly jets in the winter midlatitude 
mesosphere (stronger in the Southern Hemisphere than the Northern), 
which extend down to the "polar night jets" in the winter polar stratosphere. 
Easterlies of somewhat weaker magnitude appear in the summer mesosphere 
and stratosphere. Away from the subtropics, equinoctial winds tend to be 
westerly or weakly easterly in both hemispheres. In Chapter 7 we discuss 
the dynamical reasons for some of these observed features of the climatologi-
cal zonal-mean circulation. Interannual variability in the stratosphere is 
discussed in Section 12.5. 

5.2.2 Stationary Waves 

We next consider zonally asymmetric aspects of the monthly mean data. 
The most graphic way of depicting these is by means of maps of the various 
fields at different levels. For example, Fig. 5.3 shows monthly mean tem-
peratures at 10 mb for January, April, July, and October in the form of 
polar stereographic charts for each hemisphere. (These maps give the total 
field, and include the zonal mean as well as the zonally asymmetric com-
ponents.) Some clear differences between the seasons and between the 
hemispheres are immediately evident: thus, the Northern-Hemisphere win-
ter 10-mb temperature field (January) is characterized by strong departures 
from zonal symmetry, indicating the presence of stationary waves, while 
the Southern-Hemisphere winter field (July) is more symmetric about the 
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Fig. 5.3. Polar stereographic maps of monthly averaged temperature (K) at 10 mb (approxi-
mately 30 km altitude) for (a) January, (b) April, (c) July, (d) October, for the Northern 
Hemisphere (above) and the Southern Hemisphere (below). Outer circle, equator; inner circle; 
80° latitude. (Courtesy of J. J. Barnett and M. Corney, Department of Atmospheric Physics, 
Oxford University. See also Barnett and Corney, 1985b.) Figure continues. 
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Fig. 5.3 (continued) 
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Fig. 5.3 (figure continues) 
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TEMPERATURE ( K ) AT 10 MB : OCTOBER 

(d) 

Fig. 5.3 (continued) 
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pole and exhibits strong latitudinal temperature gradients, as in Fig. 5.1c. 
Both summer hemispheres are fairly zonally symmetric, with quite weak 
temperature gradients. The spring equinoctial fields (Northern Hemisphere 
in April, Southern Hemisphere in October) are close to isothermal, but the 
autumn equinoxes have noticeable temperature gradients and (in the North-
ern Hemisphere) significant departures from zonal symmetry. 

An alternative method of examining zonal asymmetries is by means of 
meridional cross sections of amplitude As and phase as [see Eq. (5.2.1)] 
for various zonal wave numbers s ^ 1. Examples of the geopotential ampli-
tude and (negative) phase for the mean January and July s = 1 and 2 
components are shown in Fig. 5.4. The summer hemispheres have been 
omitted from this figure since amplitudes are much smaller there than in 
the winter hemispheres. It will be seen that winter amplitudes are greater 
in the Northern than in the Southern Hemisphere. These differences, of 
course, reflect the differences in asymmetry observed in Fig. 5.3. The lines 
of constant phase are fairly horizontal in the extratropical lower strato-
sphere, but tilt equatorward-downward in the upper stratosphere and meso-
sphere. The longitudes of the ridges of each Fourier component (—αλ for 
wave number 1 and -\a2 and -\a2+ 180° for wave number 2) generally 
progress westward with increasing height and decreasing latitude. (Note 
that the phase lines in Fig. 5.4 are labeled with -as.) 

As discussed in Section 5.3 below, there have been many attempts to 
model the stationary waves appearing, for example, in Fig. 5.3 in terms of 
the linear theory of forced planetary waves on a zonally symmetric basic 
state. For this reason another diagnostic that is often applied is the Eliassen-
Palm flux vector F (see Sections 3.5, 3.6, and 4.5.5). A quasi-geostrophic 
version of F in spherical geometry is 

F = [0, -Poa(cos φ)Μ9 p0a(cos φ)β^θ'/θ0ζ) (5.2.3) 

[cf. Eqs. (3.5.3) and (3.5.6)], where / = 2 i l s i n 0 . Using the following 
approximate geostrophic formulas in spherical coordinates, 

u* = -(/αΓιΦ'φ, ν' = (fa cos φ)~ιΦ'λ, (5.2.4) 

[cf. Eqs. (3.2.2)-(3.2.4)], together with Eqs. (3.1.3c) and (3.2.13), this reduces 
to 

F = p0(0, Φ^ΦΪ/ / 2α, Φ Ι Φ Ϊ / Ν 2 ) , (5.2.5) 

where Φ' here represents the departure of the climatological mean geopoten-
tial from its zonal mean value [cf. Eq. (4.5.32)]. (This expression, like 
quasi-geostrophic theory itself, will not be valid near the equator, where / 
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Fig. 5.4. Meridional cross section of the negative phase —as (degrees) and amplitude As 

(decameters) of the monthly mean geopotential height (Φ/g) for wave numbers 5 = 1 and 2, 
from the same data source as Fig. 5.1. Only the winter hemispheres are shown: (a) s = 1 
amplitude, (b) s = 2 amplitude, (c) s = 1 phase, (d) 5 = 2 phase. 
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(c) Geopotentlal height phase (deg. E) wave number 1 
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Fig. 5.4 (continued) 
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is small.) Employing a Fourier decomposition as in Eq. (5.2.1), we have 
s 

Φ' = Σ Ascos(s\ + as) 
5 - 1 

so that Eq. (5.2.5) becomes 

F ^ P o Z ^ O , - ^ - ^ - ) , (5.2.6) 

showing how the contributions to the φ and z components of F from each 
zonal harmonic depend on the square of the amplitude and the latitudinal 
and vertical derivatives of the phase of that harmonic. The philosophy of 
Section 4.5.5 can then be applied; insofar as the disturbance field Φ' or its 
individual Fourier components can be regarded as stationary planetary 
waves embedded in the zonal-mean flow, their propagation in the meridional 
plane can be described in terms of F or the contributions to F from the 
different Fourier components. (Note that these different components con-
tribute additively to F, since products of terms of differing zonal wavenumber 
vanish in the zonal mean.) Figure 5.5 shows a meridional cross section in 
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Fig. 5.5. Normalized Eliassen-Palm flux vectors F/|F| for January in the Northern Hemi-
sphere stratosphere, based on 4 years of data. The vertical coordinate is z. The vectors are 
normalized to avoid plotting problems associated with the rapid decrease of |F| with z. [After 
Hamilton (1982b). American Meteorological Society.] 
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which F is represented by suitably scaled arrows, which suggest propagation 
of wave activity from the winter troposphere up into the stratosphere and 
toward the equator; this is consistent with the ray-tracing calculations of 
Section 4.5.4 and also with the more detailed numerical models of Sections 
5.3 and 11.2. The flux F tends to be dominated by s = 1 in these cases, 
since A\ a; 2A\, and the directions of the F arrows in Fig. 5.5 tend to be 
up the 5 = 1 phase gradient in Fig. 5.4c, consistent with Eq. (5.2.6). 

5.2.3 Transient Eddies 

As mentioned in Section 5.1, the term "transient eddies" (or "transient 
waves") is often used to describe departures from a time-mean flow such 
as the zonally asymmetric climatological monthly mean considered above. 
These departures can take many different forms, and careful space-time 
filtering, or examination of individual cases of transient development, may 
be needed to distinguish between the different phenomena. Transient dis-
turbance fields can always be decomposed into zonal Fourier components, 
including in general a zonal-mean contribution. Whether such a decomposi-
tion helps to illuminate the dynamics will depend on circumstances. 

The most spectacular transient phenomenon to be observed in the middle 
atmosphere is the major stratospheric sudden warming; however, this does 
not occur every year, and its discussion will be postponed to Chapter 6. 
More ubiquitous large-scale transient features include traveling planetary 
waves and breaking planetary waves, and these will be mentioned briefly 
here. 

Some observations of traveling planetary waves, such as the 5-day wave 
and the 2-day wave, were mentioned in Section 4.4, and the simplest theory 
of the 5-day wave was described there. Detailed space-time spectral analysis 
of the type used by Mechoso and Hartmann (1982) has revealed a number 
of coherent, traveling, planetary-scale wave structures in the middle atmo-
sphere. These traveling waves may vary from season to season and between 
hemispheres; both westward-moving and eastward-moving disturbances are 
found. Further theoretical attempts to model some of these structures are 
discussed in Sections 5.4 and 5.5.2. 

A phenomenon that has recently been identified from stratospheric 
satellite data, and that may well turn out to be a common transient process, 
is the breaking planetary wave. A case study is presented by Mclntyre and 
Palmer (1984, 1985), who use isentropic maps of Ertel's potential voracity, 
as well as isobaric charts of geopotential height, from January and February 
1979 to discuss the dynamics of the event. The time development is illustrated 
in Fig. 5.6: on January 26 there is an off-centered cyclonic vortex in the 
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middle stratosphere, as revealed by the low geopotential at 10 mb over 
Scandinavia in Fig. 5.6a and the corresponding high potential vorticity on 
the 850-K isentropic surface (also near 10 mb, or 30 km altitude) in Fig. 
5.6b. The latter diagram shows a "tongue" of high potential vorticity 
emanating from the main vortex and extending westward over North 
America. A sequence of isentropic potential vorticity maps for the days 
immediately preceding January 26 suggests that this tongue represents 
material that has been dragged out of the main cyclonic vortex by the flow 
associated with the secondary "Aleutian anticyclone" in Fig. 5.6a. This 
argument is based on the facts that potential temperature Θ and Ertel's 
potential vorticity P are both conserved by air parcels in adiabatic, friction-
less flow (see Sections 3.1 and 3.8); in the middle atmosphere they should 
represent quasi-conservative tracers over periods of a few days. The sugges-

Fig. 5.6. Polar stereographic maps (outer circle: 20°N) of (a) NMC-based analysis of the 
10 mb geopotential height (decameters) on January 26, 1979. (b) Coarse-grain estimate of 
Ertel's potential vorticity divided by gH/p0 (where H = 6.5 km and pQ = 1000 mb) on the 
850-K isentropic surface on January 26, 1979, in 10~ 4 Km - 1 s_1. Values greater than 4 units 
are lightly shaded, and those greater than 6 units are heavily shaded. The dashed circle shows 
the position of a local maximum of just under 4 units, (c) As for (b), but for January 27, 1979. 
[From Mclntyre and Palmer (1984), with permission.] 
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Fig. 5.6 (figure continues) 

tion is confirmed by calculations of air-parcel trajectories and by indepen-
dent observations of ozone, which is also quasi-conservative at these alti-
tudes and latitudes in winter (Leovy et al, 1985). 

The sequence of events discussed by Mclntyre and Palmer is character-
ized by rapid and irreversible deformation of material contours, as represent-
ed for example by the isopleths of P on the Θ = 850 K surface (which in 
small-amplitude wave motions would merely undulate back and forth). For 
this reason the authors describe the process as "planetary-wave breaking," 
by analogy with the breaking of ocean waves on a beach (see also the 
discussion of breaking internal gravity waves in Section 4.6.2). They suggest 
that isentropic mixing associated with events of this kind may be responsible 
for eroding the main winter polar vortex, to produce the region of uniform 
potential vorticity (or "surf zone") that is often observed to surround it in 
the northern hemisphere. However, Clough et al. (1985) find that other 
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Fig. 5.6 (continued) 

wave-breaking events, such as that of December 1981, appear to exhibit 
much less isentropic mixing than that described by Mclntyre and Palmer. 
The reasons for these differences in behavior are not yet understood. 

It should be noted that on January 27,1979 the potential vorticity tongue 
appears to start breaking up into "blobs": if real, these features could 
indicate the presence of barotropic or baroclinic instability (see Section 
5.5.2). 

We have shown in this section that a variety of transient planetary-scale 
eddy phenomena can occur in the middle atmosphere. Through the time-
averaged quadratic eddy flux terms, such transient eddies may exert an 
important influence on aspects of the time-mean flow, including the station-
ary eddies. The stationary eddies, in turn, may strongly control the behavior 
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of the transient eddies. These effects are difficult to interpret and evaluate, 
since a comprehensive theory for the interaction of transient eddies and a 
zonally asymmetric time-mean flow (comparable to that of Sections 3.3-3.6, 
for the interaction of eddies with the zonal-mean flow) is still lacking. 

5.3 Detailed Linear Models of Stationary Planetary Waves 
in the Middle Atmosphere 

The modeling of stationary planetary waves in the troposphere began 
with the paper by Charney and Eliassen (1949), who used a simple linear, 
barotropic beta-plane model. The waves were forced by a uniform eastward 
basic wind blowing over the surface orography. Later studies (e.g., 
Smagorinsky, 1953) also included the influence of thermal sources in forcing 
the waves. 

The first major study of stratospheric planetary waves, including station-
ary waves, was performed by Charney and Drazin (1961), using quasi-
geostrophic theory on a beta-plane. Their largely analytical methods were 
outlined in Section 4.5, and their main results were discussed there. 

Detailed quantitative investigation of vertically propagating stationary 
planetary waves in the stratosphere began with the work of Matsuno (1970). 
Rather than studying the precise generation mechanism for the waves, he 
concentrated on the hypothesis that the stationary waves in the Northern 
Hemisphere winter stratosphere are forced from the troposphere; he there-
fore imposed 500-mb heights based on observation as a lower boundary 
condition. 

Matsuno's study used a linearized quasi-geostrophic potential voracity 
equation in spherical coordinates, modified to include an ageostrophic term 
(namely, the "isallobaric" contribution to the northward disturbance wind). 
The equation takes the form 

where 

and 

(5.3.1) 

(5.3.2) 

(5.3.3) 

(5.3.4) 



240 5 Extratropical Planetary-Scale Circulations 

Here ϋ(φ, z) is the basic zonal flow, Φ' is the geopotential disturbance, and 
/ = 2Ω sin φ. The ageostrophic modification ensures energetic consistency 
and also a generalized Eliassen-Palm theorem of the form of Eq. (3.6.2). 
On posing a stationary wave solution of zonal wave number s, 

<S>' = ez/2HReV^z)eis\ (5.3.5) 

and taking N = constant, for simplicity, the equation 

- Τ ^ - τ ί ^ η ) + ^ Ψ » + π ϊ * = 0 (5.3.6) 
a2cos</>\ f2 φ/φ N2 

is obtained, where 

au a cos φ AN H 

Equations (5.3.6) and (5.3.7) are the spherical analogs of Eqs. (4.5.27) and 
(4.5.28) respectively; in particular, n2

s is the squared refractive index. 
In Section 4.5.4 some cases were mentioned in which the basic flow ü 

is simple enough that Eq. (5.3.6), or rather its beta-plane analog [Eq. 
(4.5.27)], can be solved semianalytically, under certain approximations. 
Matsuno studied more general flows ϋ(φ, z), representative of the observed 
zonal-mean wind in the northern winter stratosphere, for which a numerical 
method of solution was necessary. He considered only the "ultralong" 
stationary-wave components s = 1-3, which by the Charney-Drazin 
criterion [Eq. (4.5.16)] include those expected to propagate into the winter 
stratosphere, and for each s forced the model from below by the appropriate 
zonal Fourier component of the observed monthly mean 500-mb height for 
January 1967, using a boundary condition of the form of Eq. (3.1.6b). By 
linearity, the complete solution is the sum of the responses in each Fourier 
component. A radiation condition was imposed at the top of the model, 
z = zx, say (near 60 km altitude), by assuming that ü is independent of z 
above zx. This allows separable solutions to be found above zl9 and the 
upward-propagating solutions can be identified as in Section 4.5.2; these 
then supply the required upper boundary condition. Only the Northern 
Hemisphere was considered; the lateral boundary conditions were that 
Ψ = 0 at the pole, to ensure bounded solutions there, and that Ψ = 0 at the 
equator. The latter is somewhat artificial, but can be rationalized by the 
fact that a critical line (a "zero wind line" ü = 0, for these stationary waves; 
see Section 5.6) is present near the equator in the chosen basic flow (see 
Fig. 5.7a). On the equatorward side of this line, n2

s is large and negative, 
and the waves are evanescent there, so that the solution is insensitive to the 
actual equatorial boundary condition. The singularity at the zero wind line 
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was removed by replacing ü in the denominator of the first term on the 
right of (5.3.7) by ü - iya~l cos φ, where y is a small damping coefficient. 

The basic zonal flow used by Matsuno is shown in Fig. 5.7a; it is 
reasonably similar to the January monthly mean Northern Hemisphere 
geostrophic wind of Fig. 5.2a. In Fig. 5.7b is shown the quantity a2nl, where 

nl = 
aü 

f2 

4N2H2 = ni + a2 cos2 φ 
(5.3.8) 

Plots of the calculated amplitude and phase of Ψ for 5 = 1 and 2 are shown 
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Fig. 5.7. (a) Basic wind distribution ΰ(φ, ζ) and (b) a2nl, used by Matsuno in the study 
of the propagation of stationary planetary waves into the stratosphere. The refractive index 
squared for zonal wave number s can be obtained from Eq. (5.3.8). [After Matsuno (1970). 
American Meteorological Society.] Figure continues. 
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Fig. 5.7 (continued) 

in Fig. 5.8; these agree quite well with the observations for January 1967, 
although the computed wave number 2 geopotential amplitude decays more 
rapidly with height than the observed. 

Another diagnostic used by Matsuno was the wave-energy flux (0, ρ0ν'Φ\ 
ρ0νν'Φ') [cf. Eq. (3.6.3)]. For stationary, conservative, linear waves, this is 
equal to wF (Eliassen and Palm, 1961), where F is the EP flux. The pattern 
of arrows representing the wave-energy flux vectors in Matsuno's calcula-
tions shows the characteristic upward and then equatorward orientation 
noted in the observed stationary-wave EP fluxes in Fig. 5.5, as well as in 
the ray-tracing calculations of Fig. 4.14a. 

Several other authors have used linear quasi-geostrophic numerical 
models similar to Matsuno's; for example, Schoeberl and Geller (1977) 
investigated the propagation of stationary planetary waves up to 100 km in 
several different mean wind structures, with Rayleigh friction and 
Newtonian cooling present. They found considerable sensitivity of the 
geopotential amplitude of the waves to the strength of the polar night jet 
and the magnitude of the Newtonian cooling. They interpreted their results 
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Fig. 5.8. Computed amplitude |Ψ| (in meters, times a factor 1.43: solid lines) and phase 
of Ψ (longitude of ridges: dashed lines) for (a) s = 1, (b) s = 2, forced by the observed mean 
500-mb height for January 1967. [After Matsuno (1970). American Meteorological Society.] 
Figure continues. 

in terms of the vertical propagation of the gravest horizontal modes Θη(φ) 
in an expansion of the solution Ψ of Eq. (5.3.6) in the form 

Ψ = Σ^η(ζ)βη(Φ); 

the θ„ approximate the planetary-wave Hough functions discussed in 
Section 4.2. 

The most comprehensive linear calculation to date of the winter-mean 
stationary planetary waves throughout the Northern-Hemisphere strato-
sphere is that of Lin (1982). He used a hemispheric primitive-equation model 
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of the atmosphere from the ground up to 60 km, solving a set of equations 
equivalent to Eqs. (3.4.2), with various representative forms of M(</>, Z). 
Dissipation in the forms of Rayleigh friction and Newtonian cooling were 
incorporated, with specified thermal forcing, and topographic forcing 
included in the lower boundary condition. 

Lin's results confirm those of Matsuno and of Schoeberl and Geller in 
most respects; in particular, they show that the vertical propagation of the 
stationary waves into the stratosphere is sensitive to the zonal-mean wind 
structure, and especially its latitudinal curvature and the latitude of the 
polar night jet. They also indicate that only the s = 1 and 2 components 
can propagate into the stratosphere, in qualitative agreement with the 
Charney and Drazin criterion. With topographic, but not thermal, forcing, 
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the solution simulates quite well the observed winter-mean stationary waves 
in the troposphere and stratosphere. However, inclusion of diabatic heating 
degrades the results somewhat. The reason for this is not entirely clear, but 
the good simulation of tropospheric waves when topographic forcing alone 
is used in this linear model may be partly fortuitous. This is because 
experiments using nonlinear tropospheric general circulation models (see, 
e.g., Held, 1983) indicate that topographic and thermal forcing produce 
roughly comparable contributions to the tropospheric stationary waves. 

Linear models of the type discussed here do not include the time-averaged 
nonlinear effects of the transient eddies on the stationary waves. Recent 
studies suggest that these effects may be important in a number of tropo-
spheric phenomena; the same may also be true in the stratosphere and 
mesosphere, although no studies have yet investigated this possibility in 
detail. However, general circulation models of the middle atmosphere do 
perform nonlinear simulations of the stationary planetary waves, and these 
are discussed in Section 11.2. 

5.4 Detailed Linear Models of Free Traveling Planetary Waves 
in the Atmosphere 

In Section 4.4 we presented a simple linear theory of the "5-day wave," 
the most prominent observed free traveling Rossby wave or global normal 
mode. This theory took the basic zonal flow w to be zero. In the present 
section we outline the theoretical methods that can be used to search for 
free traveling waves in more realistic zonal-mean wind structures ϋ(φ, z). 

The mathematical problem amounts in principle to seeking eigensolutions 
of the form 

Φ' = Κ^[Φ(Φ^)^{5λ'ωί)] (5.4.1) 

to the linearized primitive equations of Eqs. (3.4.2) on the sphere,.subject 
to an upper boundary condition of decaying wave-energy density (as in 
Section 4.4) and to the lower boundary condition [Eq. (3.1.6a)]. The linear-
ized version of the latter can be applied at z = 0, as well as z* = 0, when 
topography is absent (h = 0); it takes the form 

Φ; + — Φ ; + - Φ φ + νν'Φζ = 0 at z = 0. (5.4.2) 
a cos φ a 

In practice, the easiest way of finding these solutions is to adopt the 
method of Geisler and Dickinson (1976) and add a forcing term 
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to the right of Eq. (5.4.2), corresponding to g times an assumed nonzero 
vertical velocity imposed at z* = 0. The integer zonal wave number s and 
(real) frequency ω are varied until a large, quasi-resonant response occurs 
in the model atmosphere. (The restriction to real ω means that only stable 
modes are considered: unstable modes, with complex ω, are discussed in 
Section 5.5.) An infinite, truly resonant response would correspond to a 
mode that is a true free mode of the unforced problem. In practice, weak 
damping in the form of Newtonian cooling and Rayleigh friction is usually 
included in Eqs. (3.4.2), and this ensures that the response remains finite. 
Moreover, some of the quasi-resonant modes may in fact be weakly propa-
gating (or "leaky"), rather than evanescent, as z -» oo, and a radiation 
condition may be required.1 It is reasonable to suppose that those theoretical 
modes with the largest response to the imposed forcing may be good 
candidates for representing free traveling modes in the atmosphere, which 
are perhaps excited by random or other forcing effects. 

Geisler and Dickinson used their method to search for theoretical waves 
of zonal wave number 1 with periods close to 5 days in zonal-mean winds 
that are representative of the middle atmosphere at solstice. They found 
that the period and low-level structure of the quasi-resonant mode are not 
very sensitive to the zonal wind configuration, and resemble those of the 
simple solution of Section 4.4 quite closely. In the upper stratosphere and 
mesosphere, however, the amplitude and phase of the model 5-day wave 
become strongly asymmetric about the equator, with relatively large 
geopotential amplitude in the summer mesosphere. Geisler and Dickinson 
also included Newtonian cooling with a 10-day relaxation time: the main 
effect of this was to halve the summer mesosphere maximum. 

Another free traveling mode to receive much attention is the 2-day wave 
(Fig. 4.11), which may perhaps be identified with the gravest antisymmetric 
(in w') mode for s = 3 in the absence of mean winds. Here the inclusion 
of a mean flow ϋ(φ, ζ) in numerical calculations (e.g., by Salby, 1981a,b) 
leads to larger amplitudes in the summer hemisphere than in the winter 
hemisphere, in agreement with observation. The observed 16-day wave can 
likewise be identified with the second symmetric s = 1 mode; this mode is 
also fairly sensitive to the details of the basic wind field. Some observations 
of the 16-day wave in the upper stratosphere are presented in Fig. 5.9, and 
some theoretical calculations are shown in Fig. 5.10. Note that both show 
roughly equatorially symmetric amplitude structure at equinox, but much 

1 One can also regard the (real) quasi-resonant frequencies as approximations to the true 
(complex) eigenfrequencies of the dissipative problem. From this viewpoint, the distinction 
between the free modes considered here and the unstable modes of Section 5.5 may become 
blurred. 
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Fig. 5.9. The observed "16-day wave," as revealed by a latitude-time section of the 
geopotential height amplitude of s = 1 westward-traveling waves at 1 mb, band-passed to 
include periods between 12 and 24 days. (The results are insensitive to the precise bandwidth.) 
Values are averaged over 10 days. The contour interval is 50 m, and stippling indicates values 
greater than 100 m. [After Hirooka and Hirota (1985). American Meteorological Society.] 

Fig. 5.10. Geopotential height amplitude (arbitrary units) of the second symmetric mode 
for s = 1 in idealized background wind ϋ(φ, ζ) and temperature Τ{φ, ζ) fields for (a) equinox 
(period = 16.4 days) and (b) solstice (period = 15.7 days). [After Salby (1981b). American 
Meteorological Society.] 
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larger amplitudes in the winter hemisphere than in the summer hemisphere 
at solstice. 

5.5 Barotropic and Baroclinic Instability 

5.5.1 Necessary Conditions for Instability of Zonally 
Symmetric Basic Flows 

The linear theoretical models of planetary-scale disturbances in the 
middle atmosphere that have been considered so far in this book have all 
been for stable disturbances; that is, their amplitudes do not increase 
indefinitely with time. These disturbances have typically been of the form 
of Eq. (5.4.1), with real frequency ω, or a sum of terms of this kind. We 
now briefly examine a large class of disturbances whose amplitudes, as 
predicted by linear theory, grow without limit. These modes thus represent 
unstable disturbances to the basic flow and, if they are of the form of Eq. 
(5.4.1), their frequencies ω are complex, with positive imaginary parts. 

Two types of large-scale instability that may be important in the middle 
atmosphere are barotropic and baroclinic instability; these are both 
described by quasi-geostrophic theory. Barotropic instability depends on 
large horizontal curvature of the basic flow profile, while baroclinic instabil-
ity depends, roughly speaking, on vertical curvature. Combined barotropic-
baroclinic instability can occur in a basic flow that varies both horizontally 
and vertically, 

A more precise statement of some of the necessary conditions for 
barotropic or baroclinic instability is provided by the theorem of Charney 
and Stern (1962). This states that, under appropriate boundary conditions, 
a necessary condition for instability of a basic zonal flow ü(y, z) on a 
beta-plane to conservative quasi-geostrophic disturbances is that the basic 
northward quasigeostrophic potential vorticity gradient qy = ß - üyy -
PÖl{po£Üz)z must change sign somewhere in the flow domain. We give a 
simple proof of this theorem that, unlike most stability proofs, does not 
restrict the disturbances to the "normal mode" form of Eq. (5.4.1). 

We suppose that the flow is bounded by vertical walls at y = 0, L, and 
by a rigid lower boundary z* = 0; within the linear theory considered here, 
the latter can be replaced by z = 0. In the conservative case, the quasi-
geostrophic generalized Eliassen-Palm theorem [Eq. (3.6.5)] can be rewrit-
ten using Eq. (3.6.10) for A, instead of Eq. (3.6.6). If the resulting equation 
is integrated over y and z we obtain 

- -p0qyV'2dydz=\ p0fov'e'/e0z\z=0dy (5.5.1) 
ot Jo Jo ^ Jo 
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to second order in amplitude, using the sidewall boundary conditions v' = 0 
at y = 0, L and assuming that ρ0ν'θ'/θ0ζ -> 0 as z -> oo; here 17' represents 
the northward parcel displacement, defined for example in Eq. (3.6.8). 

The linearized lower boundary condition [Eq. (5.4.2)] can be used to 
simplify the right hand side of Eq. (5.5.1). In the quasigeostrophic beta-plane 
case, this boundary condition becomes 

(5.5.2) 

where D = d/dt + ü d/dx and ψ = f0
 ι[Φ - Φ0(ζ)] by Eq. (3.2.4). The linear-

ized quasi-geostrophic disturbance potential temperature equation is 

[see Eqs. (3.2.9d) and (3.4.2e)]. Now w' is not the geometric disturbance 
vertical velocity and does not vanish at z = 0; however, it can be eliminated 
between Eqs. (5.5.2) and (5.5.3). Equations (3.2.3), (3.2.5'), (3.2.13), (3.5.5d), 
and (3.6.8) then give 

(5.5.3) 

(5.5.4) at z = 0, 

where 

Integrating Eq. (5.5.4), given suitable initial conditions, we obtain 

at z = 0, 

and hence 
at z = 0, (5.5.5) 

by Eqs. (3.2.13), (3.2.16), and (3.6.8). Substitution of Eq. (5.5.5) into Eq. 
(5.5.1) yields 

ay = 0, (5.5.6) 

or, more compactly, 

(5.5.7) 

where 

(5.5.8) 
8(z) is the Dirac delta function, and the z integration extends from just 
below z = 0. The term Bü\z=0 in Eq. (5.5.8) is known as a "non-Doppler" 
term. It is not invariant under a Galilean transformation ü -» ü — u0, 
although it is often negligible compared to Uz at z = 0. 
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If qy is positive everywhere, the integral in Eq. (5.5.7) is positive definite 
and can be taken as a global measure of disturbance amplitude (see the 
end of Section 3.6). Equation (5.5.7) states that this quantity is constant in 
time; in particular it does not grow, and if it is initially small it will remain 
small. This accords with the usual properties of a globally stable disturbance. 
A similar result holds if qy is negative everywhere. 

On the other hand, these considerations do not apply if qy takes both 
positive and negative values. The parcel displacement η' may then perhaps 
grow indefinitely with time, indicating an unstable disturbance, at least 
while linear theory remains valid. The change of sign of qy can be due to 
the interior potential vorticity gradient qy changing sign, or to the boundary 
term somewhere having the opposite sign to the interior qy. An important 
example of the latter case often occurs when vertical shear—and thus a 
horizontal potential temperature gradient, by the thermal wind equation, 
Eq. (3.5.5d)—is present at z = 0. It should be recalled that qy can be related 
to the northward gradient of Ertel's potential vorticity on an isentropic 
surface, by Eq. (3.8.10). 

A stronger condition, due essentially to Fj0rtoft (1950), states that if there 
exists a constant u0 such that (M - u0)qy < 0 for all y and z, then the flow 
is stable to conservative quasi-geostrophic disturbances. This can be proved 
by a method similar to that given above for the Charney-Stern theorem, 
but using the quasi-geostrophic version of the wave-energy equation, Eq. 
(3.6.3) in addition to the generalized Eliassen-Palm theorem. The Charney-
Stern theorem follows as a special case by choosing u0 > max(w) if qy > 0 
everywhere and u0 < min(ö) if qy < 0 everywhere. 

It should be noted that these theorems only give sufficient conditions for 
stability or, conversely, necessary conditions for instability. They cannot by 
themselves tell us that a particular flow is definitely unstable; an explicit 
search for unstable modes will normally be necessary. The simplest cases 
occur when ü and qy depend only on y (leading to the possibility of 
barotropic instability) or when they depend only on z (leading to the 
possibility of baroclinic instability). Numerous calculations of unstable 
disturbances to such flows have been made. 

5.5.2. Barotropic and Baroclinic Instability Calculations for Representative 
Middle Atmosphere States 

In this section we describe some calculations of unstable modes that 
have been suggested as possible explanations for some of the observed 
traveling-wave structures mentioned in Sections 4.4 and 5.2.3, or at least 
for the initiation of such structures. 
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The first example is that of the localized eastward-moving "warm pool" 
documented by Prata (1984) in the Southern Hemisphere winter upper 
stratosphere and shown in Fig. 4.12. Hartmann (1983) has shown that, in 
the region where this phenomenon occurs, the spherical analog of qy tends 
to change sign, owing to strong meridional curvature of the zonal-mean 
zonal wind on the poleward flank of the stratospheric jet (Fig. 5.11). He 
performed linear instability calculations for this basic flow, and found 
barotropically unstable disturbances of zonal wave numbers 1 and 2, which 
move eastward with periods of 3-4 days and 1.5-2 days, respectively, and 
which have e- folding times of a few days and geopotential amplitude 
maxima near 70°S. He suggested that the localized disturbances observed 
by Prata may represent a "phase-locking" of these wave-number 1 and 2 
modes. However, linear theory is only able to describe the early, small-
amplitude evolution of disturbances of this kind, and a full understanding 
will probably need to await nonlinear calculations, in which the unstable 
disturbances are allowed to grow to (and perhaps equilibrate at) finite 
amplitude. 

The Southern Hemisphere zonal-mean wind structure shown in Fig. 5.11 
also has a reversed potential vorticity gradient on the equatorward flank of 
the jet, and Hartmann (1983) showed that instabilities are associated with 
this also. These bear some resemblance to observed modes that move slowly 

Fig. 5.11. (a) Basic wind distribution ΰ{φ, ζ) and (b) quasi-geostrophic potential vorticity 
gradient dq/θφ (divided by Ω; regions of negative dq/βφ stippled) for the month of August 
1979 in the southern hemisphere. [After Hartmann (1983). American Meteorological Society.] 
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eastward in the Southern Hemisphere. However, Hartmann (1985) points 
out that the theoretical modes have a poleward EP flux (-p0w V < 0), while 
the observed modes have an equatorward EP flux. 

Plumb (1983) examined the baroclinic instability of profiles w(z), which 
broadly capture the vertical variation of the zonal wind in the Southern 
Hemisphere winter mesosphere. He found that a baroclinically unstable 
mode of zonal wave number 3 and 2-day period can develop when the 
westerly upper mesospheric shear exceeds 6 m s_1 km-1. He suggested that 
this mechanism may elucidate certain aspects of the observed 2-day wave 
that are not explained by the "free normal mode" theory of Salby (1981a) 
(see Section 5.4). Further observations and, again, a nonlinear treatment 
may be needed to resolve the question; it could be that the instability process 
describes the generation of the 2-day wave and Salby's calculations, despite 
being linear, describe some aspects of a finite-amplitude equilibrated state. 

Plumb's example, like those of Hartmann (1983), depends on a change 
of sign of qy within the atmosphere to violate the Charney-Stern stability 
criterion. Other studies have investigated possible baroclinic instabilities in 
the troposphere, stratosphere, and mesosphere that depend on temperature 
gradients (or, equivalently, vertical shear) at the ground, so that the delta-
function term in Eq. (5.5.8) is opposite in sign to qy in the interior. The 
resulting unstable modes for typical winter flows tend to fall into two broad 
classes: the so-called "Charney modes," which decay monotonically with 
height and are largely confined to the troposphere and lower stratosphere, 
and the "Green modes," which oscillate somewhat with height and radiate 
into the stratosphere (Hartmann, 1979; Straus, 1981). The observational 
study by Mechoso and Hartmann (1982) identified eastward-traveling waves 
in both troposphere and stratosphere of the Southern Hemisphere, but with 
little coherence between lower and upper levels. They suggested that the 
tropospheric disturbances might be identified with Charney modes and the 
stratospheric disturbances with Green modes. Yet again, this hypothesis 
deserves a nonlinear investigation, since Mclntyre and Weissman (1978) 
point out that radiating instabilities, which invariably have small growth 
rates, are in general unlikely to describe far-field behavior accurately. The 
reason is that, at finite amplitude, the modes that radiate most readily into 
the stratosphere from an unstable region in the troposphere are likely to 
be those freely propagating waves whose phase speeds and wavelengths 
match those of nonlinear disturbances resulting from instability in the 
troposphere. 

Barotropic and baroclinic instability may also play important roles on a 
smaller scale in the middle atmosphere—for example, in leading to the 
apparent break-up of tongues of potential vorticity into "blobs," as men-
tioned at the end of Section 5.2.3 and depicted in Figs. 5.6b,c. 
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5.6 Planetary-Wave Critical Layers 

It was mentioned in Section 4.5 that the theory of linear, steady, conserva-
tive Rossby waves breaks down at "critical surfaces," on which the basic 
zonal wind ϋ(φ, ζ) matches the zonal phase speed c. This is because the 
factor (w — c)_ 1 in the wave equation [Eq. (4.5.9)] or, more generally, in 
the refractive index squared [Eq. (4.5.28)], becomes infinite there. The 
infinity is removed by the inclusion of further physical effects, namely, wave 
transience, dissipation, and nonlinearity (the effects that violate nonacceler-
ation conditions), one or more of which must become important in a region 
called the "critical layer," which surrounds the critical surface. The detailed 
dynamical behavior within the critical layer depends on the relative impor-
tance of these different effects, and this behavior in turn can have a crucial 
influence on the wave structure far from the critical surface. An understand-
ing of critical-layer dynamics is thus likely to be of great importance for 
the study of planetary-wave propagation in the presence of critical surfaces, 
and much theoretical research is currently being devoted to the phenomenon. 

A convenient idealized model of critical layer behavior uses beta-plane 
geometry and takes the flow to be barotropic (i.e., independent of z); in 
this case the critical surface reduces to a "critical line." We suppose that 
a steady zonal-mean flow ü{y) of the form sketched in Fig. 5.12 supports 

PROPAGATI 
WAVES 

CRITICAL -
LAYER 

EVANESCENT 
WAVES 

Fig. 5.12. Schematic diagram of a basic zonal shear flow ü(y) containing Rossby waves 
of zero zonal phase speed forced by a corrugated northern boundary near y = y0. See text for 
details. 
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small-amplitude Rossby waves of zonal wave number /c(>0) and zero zonal 
phase speed (c = 0). For the purposes of the model, these waves can be 
regarded as generated, say, by the flow past a northern boundary near y = y0 

containing stationary sinusoidal corrugations. This configuration mimics 
aspects of the quasi-horizontal equatorward propagation of stationary 
planetary waves in the mid- and low-latitude stratosphere (Fig. 5.5). It is 
assumed that ü is eastward and constant (ü = ü1 > 0) in the northern region 
yx < y < y0; if the waves are essentially steady, linear, and conservative 
there, it can easily be shown by the methods of Section 4.5 that the 
disturbance stream function may be written in the form 

ilj'=CRe[eikx{e-ily + Reily)} for yx < y < y0 (5.6.1) 

in that region. Here C is a real constant, R is a complex constant, and 
/ = +(/3ΜΪ~1 - k2)l/2, which is real provided that üx is chosen to be less than 
ßk~2. It is easy to verify that the northward Eliassen-Palm flux component 
[see Eq. (3.5.6)] is given by 

F{y) = -p0v'u' = ΡοΨχΨ'γ 

= -l
2p0C

2kl(l-\R\2) for yx<y<y0. (5.6.2) 

Equation (5.6.1) thus represents the superposition of a southward-propa-
gating wave of streamfunction amplitude C and EP flux —\p0C

2kl and a 
northward-propagating wave of amplitude CR and EP flux \pQC2\R\2kl, 
which is "reflected" by the shear layer south of yx. 

In the region south of y2 it is assumed that ü is westward and constant 
(ü = ü2 < 0) and so 

f o c e ' ' ^ ^ for y<y2, (5.6.3) 

where Λ = (J3|M2|
 _1 + fc2)1/2. This represents a disturbance that is evanescent 

with decreasing latitude; it can be verified that 

Fiy) = 0 for y<y2. (5.6.4) 

Thus far, the theory is simple; the difficulties arise when the wave 
solutions are sought in the intervening "shear zone" between yx and y2, 
which includes the critical line, y = yc say, where ü = c = 0. The mathemati-
cal theory describing the dynamics of the waves in the shear zone, and in 
the critical layer in particular, is quite complicated, and we only quote the 
main results here. For simplicity, we suppose that the curvature of the ü(y) 
profile is so small that partial reflections of the waves from outside the 
critical layer can be neglected. We concentrate on the ways in which the 
details of the flow in the critical layer affect the "reflection coefficient" R, 
and thus the amplitude of the reflected waves in y > yx, far from the critical 
line. 
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It has long been known that if the waves are steady, linear, and dissipative 
in the critical layer (as for example in Matsuno's model of Section 5.3), the 
layer is perfectly absorbing under the hypotheses mentioned above, with 
R = 0. A similar result was shown by Dickinson (1970) and Warn and Warn 
(1976) to hold at moderately large times under the long-wave approximation 
k(yi ~ yi) <<c 1 (specifically, for 1 « t* « a~l/2, where t* = küxt and a is a 
small dimensionless wave-amplitude parameter) for linear, conservative, 
transient waves that are "switched on" at some initial instant t = 0 and 
maintained thereafter. However, at larger times (ί* ~ α"1/2), nonlinear 
effects must become important in the critical layer [which then has a thickness 
-al/2(yl - y2)]. Stewartson (1978) and Warn and Warn (1978) showed that 
the conservative, nonlinear critical layer then oscillates between partial 
absorption (\R\2 < 1), reflection (\R\2 = 1), and over-reflection (\R\2 > 1), 
tending to a state of perfect reflection (\R\2 = 1) at still larger times (i* » 
a~1/2). It has recently been shown that this flow is, in fact, barotropically 
unstable (Killworth and Mclntyre, 1985; Haynes, 1985); while, at first sight, 
the resulting mixing in the critical layer might be expected to introduce 
enhanced dissipative effects, and thus to bring about absorption, Killworth 
and Mclntyre demonstrate that absorption does not necessarily occur: under 
fairly general conditions the critical layer remains a perfect reflector in a 
time-integrated sense. 

A partial physical description of the reflection process is as follows. In 
the Stewartson-Warn-Warn model the flow within the critical layer takes 
the form of "Kelvin's cats'-eyes." As shown schematically in Fig. 5.13, this 
flow tends to wrap up the contours of absolute vorticity ζ = f — uy + vx [to 
which the quasi-geostrophic potential vorticity q reduces in this barotropic 
model: see Eq. (3.2.15)]. The barotropic analog of Eq. (3.5.10) is 

dy 

integrating this over the shear layer and using Eqs. (5.6.2) and (5.6.4) we 
obtain 

\2Vc'dy = -\C2kl{\ - \R\2). (5.6.5) 
Jyx 

Since nonacceleration conditions hold outside the critical layer, ν'ζ' = 0 
there, and the left of Eq. (5.6.5) can be replaced by 

ÜT dy. (5.6.6) 
J critical layer 

Examination of the sequence of diagrams in Fig. 5.13 shows that Eq. (5.6.6) 
oscillates between negative and positive values of continually decreasing 
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Fig. 5.13. Time-dependent analytical solution for a barotropic Rossby-wave nonlinear 
critical layer at non-dimensional times (a) al/2t* = 2, (b) α1/2ί* = 4, (c) al/2t* = 6 (Stewart-
son, 1978; Warn and Warn, 1978). The flow is periodic in x, and the y scale is greatly 
exaggerated: the initial critical line was at y = yc. The thin lines indicate streamlines, and the 
"Kelvin's cats'-eyes" are the lens-shaped regions of closed streamlines; their width is of order 
a

l/2(yx - y2). The thick line shows the successive positions of the material absolute vorticity 
contour, ζ = Cc say, that initially lay along y = yc. Thus C< L in the stippled regions and 
ζ > Cc in the unstippled regions. For this model, v = 0, so ν'ζ' = υ'ζ = ν'(ζ - Cc) = ν(ζ - ζε). 
In (a)C it can be seen that most of the stippled region within the cats'-eyes has v > 0, and most 
of the unstippled region has v < 0. Thus υ'ζ' = ν(ζ -ζε)<0 throughout most of the critical 
layer, Eq. (5.6.6) is negative, and | £ | < 1 by Eq. (5.6.5), indicating partial absorption. Similar 
arguments show that in (b), υ'ζ' « 0 and \R\ * 1, indicating near-perfect reflection, and in (c) 
υ'ζ' > 0 and \R\ > 1, indicating overreflection. (Courtesy of P. H. Haynes.) 
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magnitude as the velocity field wraps up the vorticity contours more and 
more. Thus, by Eq. (5.6.5), \R\2 oscillates between values less than and 
greater than 1, approaching 1 (perfect reflection) at large times. The picture 
is complicated by the fact that the Stewartson-Warn-Warn flow goes 
unstable, leading to complex small-scale features in the velocity and vorticity 
fields. Nevertheless, Killworth and Mclntyre's general result shows that 
\R\2 cannot depart systematically from 1 at large times in the model, even 
when this happens. 

While great strides have recently been made in understanding these 
models of critical layers, the assumptions made in the theory (for example, 
that the waves are small-amplitude disturbances to an initially zonal flow) 
are of course still rather poor idealizations of actual atmospheric situations. 
Thus, the implications of the theory for the modeling of planetary waves 
and for the interpretation of atmospheric observations are not yet clear. It 
is, however, of interest that the time-dependent nonlinear theories predict 
behavior within the critical layer that bears some resemblance to the break-
ing-wave structures observed by Mclntyre and Palmer (1983, 1984) in 
isentropic potential vorticity maps of the stratosphere (see Section 5.2.3). 
(The z-independent vertical absolute vorticity component in the barotropic 
theory plays the role of the potential vorticity in the more general case.) In 
particular, the theoretical flows exhibit the same kind of rapid and irrevers-
ible deformation of material contours (Fig. 5.13) as is suggested by the 
stratospheric maps of Mclntyre and Palmer (Figs. 5.6b,c), and for this 
reason these authors propose that nonlinear critical-layer theory may model 
certain aspects of the observed breaking planetary wave events. [Rapid, 
irreversible deformation of material contours can also occur, for example, 
when vortices interact nonlinearly (see, e.g., Dritschel, 1986). Such flows, 
too, may turn out to provide useful idealizations of features of breaking 
planetary waves.] 
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