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Background 

& 

Motivation 



Motivation 

• Targeting observation: where to put additional observations 

during a field experiment? 

• Find the sensitivity of forecast errors with respect to the initial 

condition using adjoint or ensemble methods 

• Make additional observations at the sensitivity regions 

• Find the observation impact (after the fact) on the reduction of 

forecast errors using adjoint or ensemble methods 

• Assessing the impact of current and/or future sensors: what 

is the benefit to assimilate the current and/or future 

sensors? 

• Conduct OSE (Observing System Experiment) 

• Conduct OSSE (Observing System Simulation Experiment) 

• Propose yet another concept to address similar issues 

• Define observability 

• Find the optimal observation configuration that provides the 

maximum observability for a given dynamic system 



A turtle on a table 

A turtle on a table 



Definition 

of 

Observability 



Observability from Wikipedia 

Observability, in control theory, is a 

measure for how well internal states of a 

system can be inferred by knowledge of 

its external outputs. The observability 

and controllability of a system are 

mathematical duals. The concept of 

observability was introduced by 

American-Hungarian scientist Rudolf E. 

Kalman for linear dynamic systems. 

Observability related study in atmospheric sciences: 

 Cohn and Dee (1988), Menard (1994), Daley (1995) 



Observability 

𝑥 𝑛 = 𝑀 𝑛 − 1, 𝑥 𝑛 − 1  

𝑦 𝑛 = 𝐻 𝑥 𝑛 , 𝜆   

𝐽 𝑥0, 𝛿𝑥0, 𝜆 = 𝛿𝑥0
TW𝛿𝑥0 

                + 𝑦 𝑛, 𝜆; 𝑥0 + 𝛿𝑥0 − 𝑦(𝑛, 𝜆; 𝑥0) Y 
𝑁
𝑛=1  

 

where 𝑥 is a state vector (internal state) in model 

space, 𝑦 (external output) is observation vector in 

observation space, 𝜆 is the sensor configuration (e.g. 

the sensor locations), W is a weight matrix, ⋅ Y is a 

norm for the observation operator. Cost function 𝐽  is 

the square of the distance between two initial states, 

𝑥0 and 𝑥0+ 𝛿𝑥0,  and the two sets of observations 

associated with the corresponding initial states. 



Observability … 

Definition. Let 𝜌 > 0 be a positive number. Then the 

number 𝜖 is defined as follows  

𝜖2 = min
𝛿𝑥0

𝐽 𝑥0, 𝛿𝑥0, 𝜆    …         (1) 

subject to 𝛿𝑥0 =𝜌, 𝛿𝑥0 ∈ S …    . 

where S is a reduced space for estimation 

The scalar 𝝐 represents the smallest variation (or 

distance) of 𝑦 corresponding to the variation 𝛿𝑥0 in 𝑥0 . A 

small 𝝐 implies that 𝑥0 is less observable. 

The ratio 𝝆/𝝐 is a measure of observability. It is called an 

unobservability index. A small value of 𝝆/𝝐 implies 

strong observability.  



Applications 

of 

Observability 



Observability of A Sensor 

• Assessing sensor impact 

• We can in principle indirectly assess the 

impact of a given sensor, current or future 

one through the calculation of the 

unobservability index, 𝝆/𝝐,  with respect to 

the variations of the initial condition. 

• Required major components 

• Dynamic model - 𝑀 (e.g. NWP model) 

• Observation operator - 𝐻 

• Formulation of the cost function 

• A minimization algorithm (not easy) 



Optimal Sensor Placement 

The concept of observability provides a quantitative 

measure of the quality of sensor information. 

 

The best sensor configuration (such as sensor 

locations 𝜆) are those that maximize the value of 𝜖, as 

defined in (1), following performance measure, i.e. 

m𝑎𝑥
𝛿𝑥0

𝜖 𝜆                        … (2) 

subject to 𝜆𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆𝑚𝑎𝑥    .. 

 

Eq (1) represents a minimization problem and eq (2) 

represents a maximization problem. While both 

problems are numerically challenging to solve, it is 

especially true for the problem represented by eq (2). 



An Example 

using 

Burgers’ Equation 



Objectives of the Example 

• Illustrate all components/procedures needed 

• Dynamic model, observation operator, cost 

function, minimization and maximization 

algorithms 

• Optimal sensor locations 

• Demonstrate its usefulness in data 

assimilation 

• 4D-Var data assimilation experiments 

• Results obtained from both equally spaced 

sensors and optimal sensor placement using 

Monte Carlo experiments 

• Robustness analysis 



Burgers’ Equations 

Problem: 

• where to place 7 “weather stations” (in 

x-direction) that is measured at each 

model time step? 

• Dimension of the model is 50 (in x-

direction). 

 



Numerical Solution 

Simple standard numerical techniques are used here  



Parameters used  



Sensor Locations 

Optimal sensor locations provide strong observability (small 𝜌/𝜖 )! 

X-direction 



4D-Var Data Assimilation 

• To examine the usefulness of the 

proposed observability in data 

assimilation, two sets of 4D-Var data 

assimilation experiments are carried out. 

• The only differences between the two 

sets of 4D-Var experiments are the 

sensor configurations. 

• One configuration is equally spaces 

sensors, while the other is optimally 

placed sensors 

• Typical 4D-Var data assimilation setup 

for a simple problem. 



Monte Carlo Experiments 

• Two hundred sets of 

background are 

generated. 

• They are used to perform 

two hundred correspond-

ing 4D-Var data 

assimilation for both 

sensor configurations, 

respectively. 



Results 

Sensor data with higher observability (smaller 𝜌/𝜖 ) results in higher estimation 

accuracy. It implies that sensor data with higher observability (smaller 𝜌/𝜖 ) 

contains more valuable information than those with low observability. 

The overall error of the analysis (RMSE) 𝑢𝑎 𝑡  =
 𝑢𝑎𝑘 𝑡 −𝑢

𝑡𝑟𝑢𝑡ℎ 𝑡 2𝐾
𝑘=1

𝐾
 ,K=200 



RMSE of Trajectory  

Maximizing observability results in an overall improvement of the estimation accuracy. 

from equally spaced sensors 

from optimal sensors 

R
M

S
E

 

 𝑢𝑎𝑘 𝑡 − 𝑢
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Robustness Analysis 

In all cases, the optimal sensor locations result in significantly improved estimation 

accuracy, which ranges from 25% to 62% 



Robustness Analysis… 

The results are consistent with the ones with normally distributed errors in both 

background and sensor noises. 



Concluding Remarks 



Thank you 



Observability 



Observability… 



Empirical Covariance Matrix Method  



Projection Gradient Method 



RMSE of Trajectory  

Maximizing observability results in an overall improvement of the estimation accuracy. 
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