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Using ensembles to specify B in VarDA

There are different ways to use ensembles to specify B in variational data
assimilation.

...1 Estimate B directly from an ensemble (as in EnKF).
▶ Multivariate, inhomogeneous and anisotropic by construction.
▶ Straightforward to implement in VarDA, e.g., using the α-control

variable (Lorenc 2003).
▶ Effective number of degrees of freedom is much less than the number of

background variables. Can lead to problems fitting the data.
▶ Covariance localization is necessary to reduce the effects of sampling

error. Somewhat ad hoc. Can disrupt dynamical balance.
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Using ensembles to specify B in VarDA: basic approaches

...2 Use an ensemble to calibrate a parametric model for B.
▶ A flexible and efficient model is needed for describing the correlations of

the analysis variables. Computationally challenging.
▶ Balance operators are used for the multivariate part. Multivariate

covariance information in the ensemble is neglected.
▶ Ensembles are typically used to estimate variances and parameters of

the correlation model (length-scales or spectral/wavelet coefficients).
▶ Fewer degrees of freedom to estimate.
▶ The covariances are localized by construction.

...3 Use a linear combination of the two B models above.
▶ Usually referred to as hybrid data assimilation (e.g. Wang et al. 2008).
▶ The parameterized B model in hybrid DA is usually based on a

simplified (isotropic, homogeneous), static formulation.
▶ Requires tuning of empirical weighting coefficients.
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Representation of correlations via a diffusion equation

Correlation operators for large VarDA problems can be conveniently
modelled using a differential operator (grid-point filter) derived from
the explicit or implicit solution of a diffusion equation (Derber and
Rosati 1989; Egbert et al.!994; Weaver and Courtier 2001; Pannekoucke and
Massart 2008; Mirouze and Weaver 2010; Carrier and Ngodock 2010...).
Especially convenient in complex boundary domains (implementation
of BCs straightforward).
Widely used in ocean VarDA.
Most ocean VarDA applications with the diffusion equation tend to use
rather simple correlation structures (quasi-isotropic) and subjective
estimates of the length-scales.
Here the purpose is to outline:

...1 how the diffusion equation can be used to represent anisotropic and
inhomogeneous correlation functions; and

...2 how the correlation structures can be calibrated using ensembles.
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Accounting for anisotropy using tensors: some definitions

Aspect tensor A: For a correlation function C ( r̃ ) that depends on the
(non-dimensional) distance r̃ between locations x and x′ then

r̃ = ∥ r̃ ∥
A−1 =

√
(x − x′)TA−1(x − x′)

▶ Isotropic case: A = L2 I and r̃ = |x − x′| /L.

Correlation Hessian H and “Daley” tensor D:

H = D−1 = − ∇∇TC ( r̃ )
∣∣
r̃=0

▶ Isotropic case: D = D2 I where D is the Daley length-scale.

Diffusion tensor κ:
∂η

∂t
−∇ · κ∇η = 0

▶ Rescaled tensor: L = ∆t κ after “temporal” discretization.

All these tensors are assumed to be symmetric and positive definite (and
hence invertible).
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Why are these different tensors of interest?

The normalized kernel of a diffusion operator with constant κ is a
correlation function C ( r̃ ) with known analytical form.

▶ The diffusion kernel with an explicit scheme approximates a Gaussian.
▶ The diffusion kernel with an M-step implicit scheme is a member of the

Whittle-Matérn or Matérn correlation family (see later).

Link to ensemble estimation.
▶ The Hessian H , and hence D, can be estimated from ensemble

statistics (see later).
▶ H can in turn be related to the aspect tensor A of the Gaussian and

Matérn functions.
▶ A can in turn be related to κ (or L) of the explicit or implicit diffusion

operator.

Estimating H(x) at each grid-point x and using it to define κ(x) in the
diffusion operator allows us to model anisotropic and
inhomogeneous correlation functions.
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Anisotropic correlations with the diffusion equation: theoretical basis

Consider the 2D diffusion equation

∂η

∂t
−∇ · κ∇η = 0

where κ is an anisotropic (but constant) diffusion tensor

κ =

(
κxx κxy
κyx κyy

)
which is assumed symmetric κyx = κxy and positive definite.

Note: t is a pseudo-time variable in this context.
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Anisotropic correlations with the diffusion equation: theoretical basis

The solution is a Gaussian covariance operator:

η(x , y , t) =

∫
R2

C (x , y , x ′, y ′) η(x ′, y ′, 0) dx ′dy ′

where

C (x , y , x ′, y ′) = C ( r̃ ) = γ−1 e−r̃ 2/2,

γ = 2π |A|1/2,

r̃ =

√
(x − x′)T A−1 (x − x′),

A = 2 t κ,

H = − ∇∇TC
∣∣
r̃=0 = A−1.
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Representing anisotropic correlations with an explicit scheme

The anisotropic Gaussian correlation operator can be approximated
numerically by iterating the diffusion operator with an explicit scheme:

η(x , y , t) = γ (1 +∇ · L∇)M η(x , y , 0)

where L = ∆t κ.

We can relate L to D:

L =
2M∆t
2M

κ =
2t
2M

κ =
1

2M
A =

1
2M

H−1

or

L =
1

2M
D.

The scheme is conditionally stable. In the isotropic case M > 2(D/∆x)2.
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Representing anisotropic correlations with an implicit scheme

Consider the solution to the linear system

γ−1 (1 −∇ · L∇)M η(x , y , t) = η(x , y , 0)

where, with foresight,

γ = 4π(M − 1) |L|1/2.

This elliptic equation can be interpreted as the inverse of a diffusion
operator resulting from implicit time-discretization with L = ∆t κ.

The scheme is unconditionally stable, so M is a free parameter.
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Representing anisotropic correlations with an implicit scheme

It can be shown that the formal solution is given by (Whittle 1963)

η(x , y , t) =

∫
R2

C (x , y , x ′, y ′) η(x ′, y ′, 0) dx ′dy ′

where

C (x , y , x ′, y ′) = C ( r̃ ) =
22−M

(M−2)!
r̃ M−1 KM−1( r̃ )

are members of the Whittle-Matérn correlation family, with

r̃ =

√
(x − x′)T A−1 (x − x′).

A = ∆t κ

H = − ∇∇TC
∣∣
r̃=0 = (2M − 4)A−1.
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Representing anisotropic correlations with an implicit scheme

As with the explicit scheme we can relate L to D:

L = ∆t κ = A =
1

2M − 4
H−1

or

L =
1

2M − 4
D.

In Rd , the d -dimensional implicit diffusion kernels are

C ( r̃ ) =
21−M+d/2

Γ(M−d/2)
r̃ M−d/2 KM−d/2( r̃ )

and

L =
1

2M − d − 2
D.
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Examples of 2D isotropic implicit-diffusion kernels
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Anisotropic and inhomogeneous implicit-diffusion kernels

A class of anisotropic and inhomogeneous correlation functions from
the Matérn family is (Paciorek and Schervish 2006)

C (x, x′) = Ã
(
x, x′

) 21−M+d/2

Γ(M−d/2)
r̃ M−d/2KM−d/2( r̃ )

where

r̃ =

√
(x − x′)T

(
L(x) + L(x′)

2

)−1

(x − x′)

and

Ã
(
x, x′

)
= |L(x) |1/4 |L

(
x′
)
|1/4

∣∣∣∣12 (
L(x) + L

(
x′
))∣∣∣∣−1/2

.

These are the approximate kernels of the implicit form of the
anisotropic diffusion operator when the aspect tensors vary slowly and
smoothly in space.
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1D example: inhomogeneous SOAR vs 2-step implicit-diffusion kernel
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Estimating the correlation Hessian tensor from ensemble statistics

Assume the availability of a sample of simulated model-state errors ε
(e.g. ensemble perturbations).
Apply the inverse of the linearized balance operator to ε: K−1ε = ϵ.
Assume that the covariance function of ϵ is twice differentiable and
that the correlation function C ( r̃ ) is homogeneous.
Letting Hxx , Hyy and Hxy be the elements of H = − ∇∇TC

∣∣
r̃=0 then

it can be shown (e.g. Belo Pereira and Berre 2006),

Hxx =
E [(∂ϵ̃/∂x)2]− (∂σ/∂x)2

σ2 ,

Hyy =
E [(∂ϵ̃/∂y)2]− (∂σ/∂y)2

σ2 ,

Hxy =
E [(∂ϵ̃/∂x) (∂ϵ̃/∂y)]− (∂σ/∂x) (∂σ/∂y)

σ2

where ϵ̃ = ϵ− E [ϵ] and σ2 = E [ϵ̃ 2].
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Estimating the correlation Hessian from ensemble statistics

These formulae will be a good approximation of the Hessian tensor
when the correlation function is approximately locally homogeneous.
In compact form, the Hessian tensor estimated at each grid point x
from sample statistics is

H(x)=
∇ϵ̃(x) (∇ϵ̃(x))T −∇σ̂(x) (∇σ̂(x))T

(σ̂(x))2

where

∇ϵ̃(x) (∇ϵ̃(x))T =
1

Ne − 1

Ne∑
l=1

∇ϵ̃(x) (∇ϵ̃(x))T ,

(σ̂(x))2 = (ϵ̃(x))2 =
1

Ne − 1

Ne∑
l=1

(ϵ̃(x))2 .
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Estimating the Hessian tensor from statistics: remarks

From the local estimate of H(x), we invert it to obtain D(x), and
specify the rescaled (2D) diffusion tensor according to

L(x) =
1

2M
D(x) (explicit) or L(x) =

1
2M − 4

D(x) (implicit).

The number of elements to estimate is 3N (or 6N in 3D), where N is
the number of grid points, so sampling errors will be similar to those of
the variance estimation problem.
As for the variance estimation problem, spatial averaging can be used
to increase the effective sample size (Raynaud et al. 2009; Berre and
Desroziers 2010).
The approach has similarities to the ‘hybrid’ aspect tensor proposed at NCEP
within the context of recursive filters (Purser et al. 2003; Sato et al. 2009):

A−1
ani(x) = αA−1

iso (x) + β
∇ϵ̃(x) (∇ϵ̃(x))T

(σ̂(x))2
.

A−1
ani(x) is equivalent to H(x) when α = 0, β = 1 and σ̂ is constant.
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Examples from an idealized numerical experiment

Generate a set of random vectors ϵl , l = 1, . . . ,Ne , such that

ϵ ∼ N(0,B⋆)

where B⋆ is the ‘true’ covariance matrix.
B⋆ is Gaussian and constructed using a 2D explicit diffusion operator.
The ‘true’ variances are spatially varying with a cosine dependence on
x = (x , y).
The ‘true’ anisotropic tensor of the diffusion operator is formulated as

D⋆(x) = R D(x)R−1

where R is a constant rotation matrix and D(x) is a diagonal tensor.
The elements of D(x) are spatially varying with a cosine dependence
on x.
The objective here is to try to reconstruct the tensor (and variances)
of B⋆ given the ‘ensemble’ perturbations ϵl .
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Accuracy of the Hessian tensor elements versus ensemble size
Hxx bias

Hxx rmse

Hxy bias

Hxy rmse

—— H

- - - - H, local avg

—— A−1
ani, α = 0, β = 1

- - - - A−1
ani, α = 0, β = 1, local avg
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Sample correlations: estimated versus truth

Truth

Estimated with Ne = 100

Estimated - Truth
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Sample correlations: estimated versus truth

Truth

Estimated with Ne = 10 and local averaging

Estimated - Truth
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Summary

Increasing interest in using ensembles to improve the estimation of B
in VarDA.
The diffusion equation can be used to synthesize correlation
information contained in an ensemble.
Choice of explicit or implicit diffusion solver depends on the desired
correlation function (Gaussian or Matérn) as well as computational
issues.

▶ Implicit schemes are more robust with general tensors, but require
efficient solvers (CG, multigrid,...).

The diffusion tensor and variance estimation problems are both O(N).
Local spatial or temporal averaging is beneficial with small ensemble
sizes.
These techniques are being explored with the NEMOVAR system.
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Final remarks

Negative-lobe or oscillatory correlations can be accounted for using
generalized diffusion approaches but new parameters must be
introduced and estimated.
Other applications of the diffusion operator:

▶ Grid-point covariance localization in hybrid En-Var.
▶ Spatial filtering of ensemble-estimated variance and tensor elements.
▶ Spatial filtering of randomized estimates of the normalization factors

required by the diffusion-based correlation operator.

The 9th Workshop on Adjoint Model Applications in Dynamic Meteorology, Cefalu, Sicily, 10-14 October 2011


	Using enembles to specify the background-error covariances in VarDA
	Representing correlation functions via a diffusion equation
	Estimating the diffusion tensor from ensemble statistics
	Summary

