

Generic parallelization strategies for data assimilation

Nils van Velzen, Martin Verlaan

Outline

- OpenDA
- Coupling of model to DA method
- Parallelism of model and EnKF
- Parallelism for black box models

Generic parallelization strategies for data assimilation

Conclusions

- What is OpenDA?
 - A generic toolbox for data-assimilation
 - Set of interfaces that define interactions between components
 - Library of data-assimilation algorithms
 - Open source
- Why OpenDA?
 - More efficient than development for each application

Generic parallelization strategies for data assimilation

- Shared knowledge between applications
- Development of algorithms with e.g. universities
- Easier to test

- Object oriented design
 - Classes, software building blocks

Interface (set of functions suitable for all models, observations,

etc)

Formal form of a model

$$\frac{dx}{dt} = M(x(t), u(t), p, w(t))$$

- State of model instance x(t), u(t), p, w(t)
- Instance state cannot be directly changed only through the methods like:

GetState, AxpyState, Compute...

Algorithm has no knowledge on model internals

EnKF semi parallel

Only parallelize model steps:

Not scalable, often sufficient

$$\xi_{i}^{f}(t_{k}) = M(\xi_{i}^{a}(t_{k-1})) + w_{i}(t_{k})$$

$$\begin{split} x^{f}(t_{k}) &= \frac{1}{N} \, \xi_{i}^{f}(t_{k}) \\ E^{f}(t_{k}) &= \left[\xi_{1}^{f}(t_{k}) - x^{f}(t_{k}), \xi_{2}^{f}(t_{k}) - x^{f}(t_{k}), \dots, \xi_{N}^{f}(t_{k}) - x^{f}(t_{k}) \right] \\ &\vdots \end{split}$$

Generic parallelization strategies for data assimilation

$$\xi_{i}^{a}(t_{k}) = \xi_{i}^{f}(t_{k}) + K(t_{k})[y(t_{k}) - H(t_{k})\xi_{i}^{f}(t_{k}) + v_{i}(t_{k})]$$

Semi parallel Communication volume

$$C_m + n N$$

0

n N

EnKF semi parallel

Lotos-euros air quality model

EnKF semi parallel

Generic semi parallel due to OO concepts

Stochastic model time steps

$$\xi_i^f(t_k) = M(\xi_i^a(t_{k-1})) + w_i(t_k)$$

$$x^f(t_k) = \frac{1}{N} \xi_i^f(t_k)$$

Generic parallelization strategies for data assimilation

$$\xi_{i}^{a}(t_{k}) = \xi_{i}^{f}(t_{k}) + K(t_{k})[y(t_{k}) - H(t_{k})\xi_{i}^{f}(t_{k}) + v_{i}(t_{k})]$$

06-10-11

\sim				4.5
$(\Box \cap$	lıımn	MICA	distrib	il ition
	IUIIIII	WISC	GIOTIN	uuon

Separate	Combined
$\frac{nN}{p}$	0
$n\log_2(p)$	$n\log_2(p)$
$\frac{n N}{p} + n N \log_2(p-1)$	$n N \log_2(p-1)$

Row wise distribution

Separate	Combined
$C_m + \frac{nN}{p}$	C_{m}
0	0
$\frac{n N}{p}$	0

Column wise distribution				
Separate	Combined			
$\frac{n N}{p}$	0			
$n\log_2(p)$	$n\log_2(p)$			
$\frac{n N}{p} + n N \log_2(p-1)$	$n N \log_2(p-1)$			

Row wise distribution				
Separate	Combined			
$C_m + \frac{n N}{p}$	C_m			
0	0			
$\frac{n N}{p}$	0			

- WAQUA shallow water model
- Comparison of parallelization strategies for RRSQRT (Roest et al.)

- Full parallel using OO concepts:
 - All filters run same code
 - State vectors are distributed (parallel vector)
 - Operations on parallel vectors by a parallel vector implementation
 - NO need to change the model and filter code
 - All complexities hidden in generic support layers/implementations

14

Parallel computing with black box models

- Black box models
 - No change to model code
 - Data exchange using files

Note: disk can be slow/more data written than

Generic parallelization strategies for data assimilation

needed

Parallel computing with black box models

- Swan model for wind generated waves
 - Operational model + DA for the north sea

Generic parallelization strategies for data assimilation

- Black box model
- 1 hour, 8 cpu's 10 min50% IO
- EnKF implementation (?)
- Parallelization of filter

Parallel computing with black box models

Generic parallelization strategies for data assimilation

- Black box model is normal model
 - Semi parallel+full parallel
 - Note disk speed,
 - Use local disks:
 - Faster
 - No sequential bottleneck

Conclusions

- Generic parallelization stragegies due to object oriented programming concepts.
- Single filter implementation for sequential as parallel computing
- EnKF like algorithms need combination of parallel strategies
- Black box models and IO can be parallelized as well

