

Towards a longer assimilation window in 4D-Var

Yannick Trémolet

Thanks to Paul Poli

ECMWF

October 2011

1) What we want to do

2 What we can do

3 Results

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

What we want to do

What we can do

3 Results

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

Weak Constraint 4D-Var

• For Gaussian, temporally-uncorrelated model error, the weak constraint 4D-Var cost function is:

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_b)$$

+ $\frac{1}{2} \sum_{i=0}^n [\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i]^T \mathbf{R}_i^{-1} [\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i]$
+ $\frac{1}{2} \sum_{i=1}^n [\mathbf{x}_i - \mathcal{M}_i(\mathbf{x}_{i-1})]^T \mathbf{Q}_i^{-1} [\mathbf{x}_i - \mathcal{M}_i(\mathbf{x}_{i-1})]$

- Do not reduce the control variable using the model and retain the 4D nature of the control variable.
- Account for the fact that the model contains some information but is not exact by adding a model error term to the cost function.
- This problem can be solved in parallel (saddle-point algorithm, no need for inverse of covariances, preconditioning is being investigated).

Longer is better

- Theory says: long window weak constraint 4D-Var is equivalent to a full rank Kalman smoother (Fisher *et al.*, 2005, Ménard and Daley, 1996).
- Long window weak constraint 4D-Var works for simple systems (Lorenz 95, QG):

CECMWF

Long Window Weak Constraint 4D-Var

- This implementation is an approximation of weak contraint 4D-Var with an assimilation window that extends indefinitely in the past...
- ...which is equivalent to a (full rank) Kalman smoother that has been running indefinitely.
- And **B** is a problem of the past! Only the error characteristics of the fundamental ingredients of the DA problem remain.

Y. Trémolet

Long window 4D-Var

What we want to do

2 What we can do

3) Results

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

4D-Var with Model Error Forcing

- In practice, weak constraint 4D-Var is still difficult to implement (in the IFS).
- Change of variable:

$$J(\mathbf{x}_{0}, \eta) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]^{T} \mathbf{R}_{i}^{-1} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]$$

+
$$\frac{1}{2} (\mathbf{x}_{0} - \mathbf{x}_{b})^{T} \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{b}) + \frac{1}{2} \sum_{i=1}^{n} \eta_{i}^{T} \mathbf{Q}_{i}^{-1} \eta_{i}$$

with $\mathbf{x}_{i} = \mathcal{M}_{i}(\mathbf{x}_{i-1}) + \eta_{i}$

- η_i represents model error in a time step,
- η_i has the same dimension as a 3D state.

EFCM^M

4D-Var with Constant Model Error Forcing

• Approximation: model error is constant.

$$J(\mathbf{x}_{0}, \eta) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]^{T} \mathbf{R}_{i}^{-1} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]$$

+
$$\frac{1}{2} (\mathbf{x}_{0} - \mathbf{x}_{b})^{T} \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{b}) + \frac{1}{2} \eta^{T} \mathbf{Q}^{-1} \eta$$

with $\mathbf{x}_{i} = \mathcal{M}_{i} (\mathbf{x}_{i-1}) + \eta$

- η represents model error in a time step,
- η has the same dimension as a 3D state.
- The number of degrees of freedom doubles.

Weak Constraints 4D-Var for Systematic Model Error

• For random model error, the 4D-Var cost function is:

$$J(\mathbf{x}_{0},\eta) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]^{T} \mathbf{R}_{i}^{-1} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}] + \frac{1}{2} (\mathbf{x}_{0} - \mathbf{x}_{b})^{T} \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{b}) + \frac{1}{2} \eta^{T} \mathbf{Q}^{-1} \eta$$

• For systematic model error:

$$J(\mathbf{x}_{0},\eta) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]^{\mathsf{T}} \mathbf{R}_{i}^{-1} [\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}]$$

+
$$\frac{1}{2} (\mathbf{x}_{0} - \mathbf{x}_{b})^{\mathsf{T}} \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{b}) + \frac{1}{2} (\eta - \eta_{b})^{\mathsf{T}} \mathbf{Q}^{-1} (\eta - \eta_{b})$$

• Test case: model bias in the stratosphere.

ECFCN

Model Error Covariance Matrix

- Currently, tendency differences between integrations of the members of an ensemble are used as a proxy for samples of model error.
- Statistics of model drift (for systematic model error).
- Use results from stochastic representation of uncertainties in EPS.
- It is possible to derive an estimate of HQH^T from cross-covariances between observation departures produced from pairs of analyses with different length windows (R. Todling).
- Is it possible to extract model error information using the relation $\mathbf{P}^{f} = \mathbf{M} \mathbf{P}^{a} \mathbf{M}^{T} + \mathbf{Q}$?
- \bullet Model error is correlated in time: ${\bf Q}$ should account for time correlations. How?
- How to account for flow dependence?

What we want to do

2 What we can do

3 Results

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

What we want to do

2 What we can do

3 Results

Model Error Aspects

- 24h Window: Operational System
- 24h Window: Re-analysis System

CECMWF

Weak Constraints 4D-Var with Cycling Term

Weak constraints 4D-Var can correct for seasonal bias (partially).

Observation Error or Model Error?


```
Y. Trémolet
```


Weak Constraint 4D-Var

Temperature zonal means, December 2010

CECMWF

Weak Constraint 4D-Var

Mean (K/day)

Temperature zonal means, December 2010

Model error estimates vary rapidly in NH stratosphere.

Long window 4D-Var

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

24h 4D-Var: Forecast Scores

Forecast scores for overlapping 24h 4D-Var with respect to 12h 4D-Var.

CECMWF

Long Window 4D-Var Cycling

CECMWF

12-hour 4DVAR

00		03	0	6	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21
H	Н	+		++	+++	+++	++	+++	++*				15	+++			+++	+++	+++	+++	+++	+++	+++	+++	++++
00		03	0	6	09	12	15	18	21	. 00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21
H	Н	+	++-	++	+++	+++		+++	+++	+++	++++		+03				+15	+++	+++	+++	+++	+++	+++	+++	++++
00		03	0	6	09	12	15	18	21	. 00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21
	<u> </u>	1															+03				+10				
1					1 1 1													_		_					1 1 1 1 2
00		03	0)6	09	12	15	18	21	. 00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21
1		1			1.1.1										1.1.1					1.1.1	+03	_	-	_	+15
		1			1 1 1				111										111					_	

24-hour 4DVAR

00		03		06	09	Ļ	12	15		18	2	1	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
н	+	+	+	++												· · ·	+++	+++	+++	+++	+++	+++	+++	+++			+ +	+++	≁►
00		03		06	09)	12	15		18	2	1	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
Н	+	++	H	++	++	+	+++	++-	H		+	+	+++	+++	+++	+ 0.2								+2/				+++	≁►

24-hour overlapping 4DVAR

00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
- H-	+++	++++									T21	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++
00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
- H-	+++						+ 403								±21			+++					+++	++
00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
- H-	+++		+++	+++	+++		+++		+++		- TV3								T 2 /				+++	++
00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	
H	+++	\mapsto	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+								+2/	++

CECMWF

24h 4D-Var: Forecast Scores

- With overlapping analysis windows, there are several analyses to start the forecast from and to verify against!
- Warning: too few cases to draw conclusions from this figure.

CECMWF

24h 4D-Var: Observation Statistics

Y. Trémolet

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

Ps-only Re-analysis

Background and Analysis fit to Observations 2004-07-01 to 2005-04-09

Ps-only Re-analysis

CECMWF

Forecast scores vs. operational analysis Z500, NH, 2004-07-01 to 2005-04-09

Ps-only Re-analysis

- Verification against independent (unused) observations:
 - confirms positive results with overlapping windows,
 - shows that 24h 4D-Var without overlap is slightly better than 12h 4D-Var.
- 24h 4D-Var system has not been tuned.
 - Results should improve.
- Why is 24h 4D-Var better in Ps-only re-analysis context?
 - Model error is small relative to other errors,
 - Kalman smoother rather than Kalman filter (in part),
 - Not enough observations to fully constrain the analysis in 12h 4D-Var,
 - Full observing system constrains the analysis so tightly that the assimilation algorithm is not as important.

What we want to do

2 What we can do

3 Results

- Model Error Aspects
- 24h Window: Operational System
- 24h Window: Re-analysis System

24h Weak Constraint 4D-Var

- In the current formulation of weak constraints 4D-Var (model error forcing):
 - Background term to address systematic error,
 - 24h assimilation window.
- Observation biases can be an issue.
 - Experiment with bias corrected aircraft observations is starting.
- Investigate physical meaning of model error estimates.
 - For the first time, we might be looking at model error!
- Weak Constraints 4D-Var requires better knowledge of the statistical properties of model error.
- Very good results in Ps-only experiments (re-analysis).
- Kalman smoother is better at least for re-analysis.

Long Window Weak Constraints 4D-Var

• Weak constraint 4D-Var with a 4D state control variable:

- Four dimensional problem with a coupling term between sub-windows is a smoother over the whole assimilation period.
- Practical implementation is very difficult in current ECMWF system (code, scripts, archiving...).
- We are re-designing our data assimilation system to make it all possible: Object Oriented Prediction System (OOPS).
 - High level algorithms in C++,
 - Improved scalability, reliability, flexibility,
 - New algorithms are implemented (saddle point).