Observing System Simulation Experiments (OSSEs) as tools for the investigation of data assimilation systems

> Nikki Privé Ronald Errico King-Sheng Tai

## What is an OSSE?

An OSSE is a modeling experiment used to evaluate the impact of new observing systems on operational forecasts when actual observational data is not available.

- A long free model run is used as the "truth" the Nature Run
- The Nature Run fields are used to back out "synthetic observations" from all current and new observing systems.
- The synthetic observations are assimilated into a different operational model
- Forecasts are made with the second model and compared with the Nature Run to quantify improvements due to the new observing system

### How OSSEs Work



# GMAO OSSE Setup

- Nature Run: 13 month run of the ECMWF operational model, T511/91L
- Synthetic Observations
  - Replicate archived observations from May 2005-May 2006
  - Includes conventional, satwind, HIRS2, HIRS3, AMSU-A, AMSU-B, AIRS, MSU types
  - Correlated errors added to 'perfect' observations
- Forecast Model
  - DAS: NCEP/GMAO GSI 3DVAR
  - Forecasts: GMAO GEOS-5 model with 0.5° x0.625° resolution, 72 levels

## Experiments

- Three cases:
  - Archived real data (Control)
  - Synthetic observations without error (Perfect)
  - Synthetic observations with added error (OSSE)
- Cycling from 10 Dec 2005 to 5 Feb 2006
- 120 hour forecasts launched daily at 00Z
- Comparison of Perfect and OSSE cases will show the impact of observation errors
- Comparison with Control case shows relative behavior of the OSSE system to reality

#### **OSSE vs Real Data: Forecasts**



Anomaly correlations for January 2006

Control (Real) OSSE (with Errors) Perfect (without Errors)









#### Adjoint-based observation impacts



#### AMSU-A combined adjoint observation impact





Mean analysis error vs Nature Run, U at 413 hPa



Mean 24 hour forecast error vs Nature Run, U at 413 hPa



Mean 72 hour forecast error vs Nature Run, U at 413 hPa



Mean 120 hour forecast error vs Nature Run, U at 413 hPa

Spatial correlation of analysis error verified against the Nature Run "truth":

Perfect case error correlated with OSSE case error

Analysis error

Lower correlation => greater proportional influence of observation error

