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Modelling the B-matrix

The B matrix can be modelled via a Control Variable transform (CVT)

δx = Uδχ. (1)

Substituting this into the incremental background term :

Jb(δχ) = δχT
U

T
B

−1
Uδχ, (2)

then by choosing U such that:

U
T
B

−1
U = I, (3)

results in a simplified background term:

Jb(δχ) = δχTδχ. (4)

Implied B matrix is
B

i = UU
T (5)

Ruth Petrie (University of Reading) Modelling B 13th October 2011 2 / 24



How B is represented in reality

Typical structure of U

Parameter transform decorrelates multivariate relationships.

Spatial transforms decorrelates univariate relationships.

Variance scaling ensures B is the identity in control space.

Multivariate aspects

Typically transform to variables which are assumed to be uncorrelated.

Assume errors in balanced variables are uncorrelated from errors in
unbalanced variables

A mass-wind relationship is used to described balanced flow.
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CVTs at the convective scale

At the convective scale:

the Rossby number is not small and the geostrophic relationship may
not be valid.

the flow is non-hydrostatic and acoustic modes are present.
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CVTs at the convective scale

At the convective scale:

the Rossby number is not small and the geostrophic relationship may
not be valid.

the flow is non-hydrostatic and acoustic modes are present.

An alternative is to use the normal modes of the linearized equations.

NMs are independent by definition.

NMs have been used to describe forecast error covariances in the
tropics. (Žagar et al, 2004)
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Model equations
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Model equations

Starting from the standard Euler equations:

∂u

∂t
+ u · ∇u +

1

ρ
∇p + gk + f × u = 0, (6a)

∂ρ

∂t
+ ∇ · (ρu) = 0, (6b)

∂θ

∂t
+ u · ∇θ = 0, (6c)

p = ρR

(

p

p00

)

κ

θ. (6d)

Assume:

laterally periodic,

no slip, and rigid lid for the vertical boundary conditions,

homogeneity in the y -direction,

f -plane,

φ = φ0(z) + φ′(x , z) and θ = θR + θ0(z) + θ′(x , z).
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Approximations

Impose basic state satisfies hydrostatic balance and the equation of
state:

∂p0

∂z
= −ρ0g , p0 = ρ0R

(

p0

p00

)

κ

(θR + θ0). (7)

Define the Brunt Väisälä frequency:

N2 =
g

θR

dθ0

dz
. (8)

Define buoyancy:

b = b0(z) + b′ =
g

θR

(

θ0(z) + θ′
)

. (9)

Make the Boussinesq approximation (i.e. neglect density
perturbations except when multiplied by g).
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Simplifications
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Simplifications

Let N2 be a tuneable parameter A2.

Multiply all advective terms by B (another tuneable parameter).

Approximate:
θ′

θR

= −
ρ′

ρ0
. (10)

Adopt simplified equation of state:

p = Cρ where C is a constant. (11)

Scale density: ρ = ρ0(z) + ρ′

(1) by ρ0(z) → ρ̃ = 1 + ρ̃′

(2) by C → p̃ = C + p̃′

drop the ∼ notation.
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Toy model equations

∂u

∂t
+ Bu · ∇u +

∂p′

∂x
− fv = 0, (12a)

∂v

∂t
+ Bu · ∇v + fu = 0, (12b)

∂w

∂t
+ Bu · ∇w +

∂p′

∂z
− b′ = 0, (12c)

∂p′

∂t
+ B∇ · (pu) = 0, (12d)

∂b′

∂t
+ Bu · ∇b′ + A2w = 0. (12e)

Model conserves energy analytically.

360 longitudinal points, δx = 1.5km.

60 vertical levels, δz ∼ 260m.

Centered-in-time, forward-backward (Cullen and Davies, 1991).
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Linear analysis results

Acoustic wave speed sensitivity to
BC ; A2 = 4 × 10−4

s
−2
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Convective-like behaviour

w - vertical component of wind

A2 = 4 × 10−4,
B = 10−2, C = 104

A2 = 4 × 10−5,
B = 10−2, C = 104
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Geostrophic adjustment

Ruth Petrie (University of Reading) Modelling B 13th October 2011 11 / 24



Structure of NMCVT

δχ = U
−1
I

U
−1
E

U
−1
S

U
−1
V

U
−1
M

U
−1
H

δx (13)

U
−1
H

is a horizontal Fourier transform.

U
−1
M

is a Helmholtz variable transform.

U
−1
V

is a vertical Fourier transform.

U
−1
S

is a symmetric scaling.

U
−1
E

is a projection on to eigenvectors.

U
−1
I

is a scaling to ensure unit variance.
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Normal modes
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Covariance spectrum
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Implied covariances: including all modes
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Ensemble derived covariances
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Implied covariances: balanced mode only
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Implied covariances: gravity modes only
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Implied covariances: comparison
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Implied covariances: acoustic modes only
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Future work

Investigate the degree to which the linearised normal modes are
uncorrelated in the non-linear system.

Compare the NMCVT with a standard approach.

Assess the impact of the NMCVT inside an assimilation system.

Hybrid methods.

What covariances are appropriate at the convective scale?
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Summary

A non-hydrostatic toy model has been developed as a tool to
investigate the convective scale data assimilation problem.

A normal mode approach to covariance modelling has been adopted.

Both the model and the covariance model should be a useful tool in
further investigating the convective scale data assimilation problem.
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Thank you for your attention,
any questions/comments?
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Eigenvectors
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