Model-reduced 4D-Var data assimilation in application to 1D ecosystem model

Joanna S. Pelc^{2,3}, Ehouarn Simon¹, Laurent Bertino¹, Ghada El Serafy^{2,3}, and Arnold W. Heemink²

Nansen Environmental and Remote Sensing Center, Bergen, Norway¹ Delft University of Technology, Delft, The Netherlands² Deltares, Delft, The Netherlands³

- 1D Ecological Model
- 3 Model Reduced 4D-Var

2

< ∃ >

Introduction

Main objective

Improve the predictions of a given ecological model

Approach

Use data assimilation to calibrate its parameters & initial conditions

/⊒ > < ≣ >

÷.

2

Outline

- Model Reduced 4D-Var
- Results
- Conclusions

State variables

- Nutrients (N)
- Phytoplankton (P)
- Herbivorous
 zooplankton (H)

Estimated parameters

- f grazing efficiency
- g loss to carnivores
- r plant metabolic loss

Evans and Parslow (1985) Eknes and Evensen (2002)

Model-reduced 4D-Var in ecological modeling

< ≣ >

< ∃⇒

æ

- < ≣ >

- ∢ ≣ →

● ▶ < ミ ▶

< ∃⇒

● ▶ < ミ ▶

- ∢ ≣ →

< ∃ >

< ∃⇒

< ∃ >

< ∃⇒

Outline

ID Ecological Model

Model Reduced 4D-Var

- Results
- Conclusions

2

< ∃ >

< E.

4D-Var: 4D Variational Data Assimilation

Cost function in 4D-Var

$$J(\alpha) = \sum_{i=1}^{n} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})^{T}}_{Distances} R_{i}^{-1} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})}_{Distances} + \underbrace{(\alpha - \alpha_{b})^{T} B^{-1}(\alpha - \alpha_{b})}_{Background \ term}$$

minimization with constraints:

$$x_i = \mathcal{M}_i(x_{i-1}, \alpha)$$

To minimize Jover α , we need: $\nabla_{\alpha}J(\alpha)$ B background error covariance matrix R_i observation error covariance matrix

Needed to get $abla_{lpha} J(lpha)$

- exact derivatives of the model
- approximate the derivatives of the model with finite differences

・ロン ・回と ・ヨン・

4D-Var: 4D Variational Data Assimilation

Cost function in 4D-Var

$$J(\alpha) = \sum_{i=1}^{n} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})^{T}}_{Distances} R_{i}^{-1} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})}_{Distances} + \underbrace{(\alpha - \alpha_{b})^{T} B^{-1}(\alpha - \alpha_{b})}_{Background \ term}$$

minimization with constraints:

$$x_i = \mathcal{M}_i(x_{i-1}, \alpha)$$

To minimize Jover α , we need: $\nabla_{\alpha}J(\alpha)$ B background error covariance matrix R_i observation error covariance matrix

Needed to get $\nabla_{\alpha} J(\alpha)$

- Complicated
- approximate the derivatives of the model with finite differences

・ロン ・回 と ・ ヨ と ・ ヨ と

イロト イポト イヨト イヨト

3

4D-Var: 4D Variational Data Assimilation

Cost function in 4D-Var

$$J(\alpha) = \sum_{i=1}^{n} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})^{T}}_{Distances} R_{i}^{-1} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})}_{Distances} + \underbrace{(\alpha - \alpha_{b})^{T} B^{-1}(\alpha - \alpha_{b})}_{Background \ term}$$

minimization with constraints:

$$x_i = \mathcal{M}_i(x_{i-1}, \alpha)$$

To minimize Jover α , we need: $\nabla_{\alpha}J(\alpha)$ B background error covariance matrix R_i observation error covariance matrix

Needed to get $abla_{lpha} J(lpha)$

- Complicated
- Time consuming

4D-Var: 4D Variational Data Assimilation

Cost function in 4D-Var

$$J(\alpha) = \sum_{i=1}^{n} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})^{T}}_{Distances} R_{i}^{-1} \underbrace{(\mathcal{H}_{i}(x_{i}) - y_{i})}_{Distances} + \underbrace{(\alpha - \alpha_{b})^{T} B^{-1}(\alpha - \alpha_{b})}_{Background \ term}$$

minimization with constraints:

$$\mathbf{x}_i = \mathcal{M}_i(\mathbf{x}_{i-1}, \alpha)$$

To minimize Jover α , we need: $\nabla_{\alpha}J(\alpha)$ B background error covariance matrix R_i observation error covariance matrix

Solution

POD Model-reduced 4D-Var (Vermeulen and Heemink, MWR, 2006)

POD Model Reduced 4D-Var

Incremental cost function in 4D-Var

$$J(\delta\alpha) = \sum_{i=1}^{n} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i})^{T} R_{i}^{-1} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i}) + \delta\alpha^{T} B^{-1} \delta\alpha$$

minimization with constraints

$$\delta x_i = \frac{\partial \mathcal{M}_i(x_{i-1}^b, \alpha^b)}{\partial x_{i-1}} \ \delta x_{i-1} + \frac{\partial \mathcal{M}_i(x_{i-1}^b, \alpha^b)}{\partial \alpha} \ \delta \alpha$$

POD Model Reduced 4D-Var

Incremental cost function in 4D-Var

$$J(\delta\alpha) = \sum_{i=1}^{n} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i})^{T} R_{i}^{-1} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i}) + \delta\alpha^{T} B^{-1} \delta\alpha$$

minimization with constraints

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \ \delta x_{i-1} + \boxed{\frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha}} \delta \alpha$$

With a small number of parameters, the finite differences method is feasible

POD Model Reduced 4D-Var

Incremental cost function in 4D-Var

$$J(\delta\alpha) = \sum_{i=1}^{n} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i})^{T} R_{i}^{-1} (\mathbf{H}_{i}(\delta x_{i}, \delta\alpha) + d_{i}) + \delta\alpha^{T} B^{-1} \delta\alpha$$

minimization with constraints

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \ \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \ \delta \alpha$$

If the size of the state x is huge, the finite differences would be too expensive

- 4 同 2 4 三 2 4 三 2 4

- 4 回 2 - 4 □ 2 - 4 □

POD Model Reduced 4D-Var

Incremental equation

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

Project the increments into smaller subspace

$$\mathbf{P}^{\mathsf{T}} \delta x_{i} = \mathbf{P}^{\mathsf{T}} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \mathbf{P}^{\mathsf{T}} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

・ 回 ト ・ ヨ ト ・ ヨ ト

2

POD Model Reduced 4D-Var

Incremental equation

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

Project the increments into smaller subspace

$$P^{T} \delta x_{i} = P^{T} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} P P^{T} \delta x_{i-1} + P^{T} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

伺 と く ヨ と く ヨ と

2

POD Model Reduced 4D-Var

Incremental equation

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

Project the increments into smaller subspace

$$\underbrace{P^{T}\delta x_{i}}_{\delta z_{i}} = P^{T} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial x_{i-1}} P}_{\delta z_{i-1}} \underbrace{P^{T}\delta x_{i-1}}_{\delta z_{i-1}} + P^{T} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial \alpha} \delta \alpha$$

POD Model Reduced 4D-Var

Incremental equation

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

Project the increments into smaller subspace

$$\underbrace{P^{\mathsf{T}}\delta x_{i}}_{\delta z_{i}} = P^{\mathsf{T}} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial x_{i-1}} P}_{\delta z_{i-1}} \underbrace{P^{\mathsf{T}}\delta x_{i-1}}_{\delta z_{i-1}} + P^{\mathsf{T}}\frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial \alpha}\delta\alpha$$

 $\delta z_i = P^T \delta x_i$ increment of the state in the reduced space

<ロ> (四) (四) (三) (三) (三)

POD Model Reduced 4D-Var

Incremental equation

$$\delta x_{i} = \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial x_{i-1}} \delta x_{i-1} + \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b}, \alpha^{b})}{\partial \alpha} \delta \alpha$$

Project the increments into smaller subspace

$$\underbrace{P^{T}\delta x_{i}}_{\delta z_{i}} = P^{T} \frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial x_{i-1}} P}_{\delta z_{i-1}} \underbrace{P^{T}\delta x_{i-1}}_{\delta z_{i-1}} + P^{T}\frac{\partial \mathcal{M}_{i}(x_{i-1}^{b},\alpha^{b})}{\partial \alpha}\delta \alpha$$

$$\begin{split} \delta z_i &= \mathcal{P}^T \delta x_i & \text{increment of the state in the reduced space} \\ \frac{\partial \mathcal{M}_i(x_{i-1}^b, \alpha^b)}{\partial x_{i-1}} p \simeq \frac{\mathcal{M}_i(x_{i-1}^b + \epsilon p, \alpha^b) - \mathcal{M}_i(x_{i-1}^b, \alpha^b)}{\epsilon} & \text{directional derivative} \\ \textbf{approximation} \end{split}$$

A (10) × (10) × (10) ×

How to get matrix P?

We want to project into a smaller subspace, such that the most important dynamics of the system are kept

How to get matrix P?

We want to project into a smaller subspace, such that the most important dynamics of the system are kept

 $\mathbf{STEP}\ 1:$ Generate ensemble of perturbed model simulations

$$\begin{array}{rcl} \alpha^b + \Delta \alpha_1 & \rightarrow & x_1^{\Delta 1}, & x_2^{\Delta 1}, & \ldots & x_n^{\Delta 1} \\ \alpha^b + \Delta \alpha_2 & \rightarrow & x_1^{\Delta 2}, & x_2^{\Delta 2}, & \ldots & x_n^{\Delta 2} \end{array}$$

How to get matrix P?

We want to project into a smaller subspace, such that the most important dynamics of the system are kept

 ${\rm Step}\ 1:$ Generate ensemble of perturbed model simulations

$$\begin{array}{rcl} \alpha^b + \Delta \alpha_1 & \rightarrow & x_1^{\Delta 1}, & x_2^{\Delta 1}, & \dots & x_n^{\Delta 1} \\ \alpha^b + \Delta \alpha_2 & \rightarrow & x_1^{\Delta 2}, & x_2^{\Delta 2}, & \dots & x_n^{\Delta 2} \end{array}$$

STEP 2: Create a covariance matrix

$$C_X = \Delta X \ \Delta X^T / (n-1)$$

・ 同下 ・ ヨト ・ ヨト

How to get matrix P?

We want to project into a smaller subspace, such that the most important dynamics of the system are kept

 ${\rm Step}\ 1:$ Generate ensemble of perturbed model simulations

$$\begin{array}{rcl} \alpha^b + \Delta \alpha_1 & \rightarrow & x_1^{\Delta 1}, & x_2^{\Delta 1}, & \dots & x_n^{\Delta 1} \\ \alpha^b + \Delta \alpha_2 & \rightarrow & x_1^{\Delta 2}, & x_2^{\Delta 2}, & \dots & x_n^{\Delta 2} \end{array}$$

STEP 2: Create a covariance matrix

$$C_X = \Delta X \ \Delta X^T / (n-1)$$

STEP 3: Decompose C_X with eigenvalue decomposition

$$\Delta X \ \Delta X^T / (n-1) = PDP^T$$

P - eigenvectors, D - diagonal matrix with eigenvalues

イロン 不同と 不同と 不同とう

3

How to get matrix P?

 $\operatorname{STEP}\ 1:$ Generate ensemble of perturbed model simulations

$$\begin{array}{rcl} \alpha^{b} + \Delta \alpha_{1} & \rightarrow & x_{1}^{\Delta 1}, & x_{2}^{\Delta 1}, & \dots & x_{n}^{\Delta 1} \\ \alpha^{b} + \Delta \alpha_{2} & \rightarrow & x_{1}^{\Delta 2}, & x_{2}^{\Delta 2}, & \dots & x_{n}^{\Delta 2} \end{array}$$

STEP 2: Create a covariance matrix

$$C_X = \Delta X \ \Delta X^T / (n-1)$$

STEP 3: Decompose C_X with eigenvalue decomposition

$$\boldsymbol{\Delta X} \; \boldsymbol{\Delta X}^\mathsf{T} / (\mathsf{n} - 1) = \mathsf{P} \mathsf{D} \mathsf{P}^\mathsf{T}$$

P - eigenvectors, D - diagonal matrix with eigenvalues

$$\mathsf{P}^\mathsf{T} \Delta \mathsf{X} \; (\mathsf{P}^\mathsf{T} \Delta \mathsf{X})^\mathsf{T} / (\mathsf{n} - 1) = \Delta \mathsf{Z} \; \Delta \mathsf{Z}^\mathsf{T} / (\mathsf{n} - 1) = \mathsf{D}$$

Outline

- ID Ecological Model
- Model Reduced 4D-Var

Results

Conclusions

2

∢ ≣ ▶

< E.

Twin Experiment Setup

Perfect Initial Condition

The spin up starts with

- prior par. for prior sol.
- prior par. for true sol.

Perturbed Initial Condition

< □ > < □ >

→ Ξ →

The spin up starts with

- prior par. for prior sol.
- true par. for true sol.

Experiment 1 - Estimate: Parameters

Parameters Setup						
	f	g	r			
Prior	0.50	0.07	0.07			
Truth	0.90	0.11	0.11			
	80%	57%	57 %			

Observation Setup					
Observe					
What	surface Phyto				
When	every 4 days				
Error	30 %				

(1) マン・ション・

Experiment 1 - Estimate: Parameters

	Parameter Estimation			Cost Function	
	f	g	r		
Prior	0.5	0.07	0.07	Prior	3.91e+6
Truth	0.9	0.11	0.11	$\frac{1}{2}$ Obs	364
4DVar	0.9223	0.1127	0.1099	4DVar	340.45

Experiment 1 - Estimate: Parameters

Phytoplankton within time shown at the surface layer and at the 10th laver of the water column.

Experiment 2 - Parameters & Initial Condition

Parameters Setup						
	f	g	r			
Prior	0.50	0.07	0.07			
Truth	0.90	0.11	0.11			
	80%	57%	57 %			

Observation Setup					
Observe					
What surface Phyto					
When	every 4 days				
Error	30 %				

・ 同 ト ・ ヨ ト ・ ヨ ト

Experiment 2 - Parameters & Initial Condition

F	Parameter Estimation			Cost Function	
	f	g	r		
Prior	0.5	0.07	0.07	Prior	5.49e+6
Truth	0.9	0.11	0.11	$\frac{1}{2}$ Obs	433
4DVar	0.8304	0.0976	0.1098	4DVar	611.02

Experiment 2 - Parameters & Initial Condition

Phytoplankton within time shown at the surface layer and at the 10th laver of the water column.

Experiment 2 - Parameters & Initial Condition

Joanna S. Pelc Model-reduced 4D-Var in ecological modeling

Experiment 3 - Unrealistic Setup

Paramet	ters Setup			Observa	tion Setup
	f	g	r	Observe	
Prior	0.50	0.07	0.07	What	surf Phyto
Truth	0.5444	0.0766	0.0766	When	every 4 days
	9%	9%	9 %	Error	1 %

Experiment 3 - Unrealistic Setup

Initial Condition estimation

Joanna S. Pelc

Model-reduced 4D-Var in ecological modeling

Outline

- ID Ecological Model
- Model Reduced 4D-Var

Results

Occurrent Conclusions

2

문어 주문

Model Reduced 4D-Var for 1D Ecosystem Model

- the parameter estimation works fine when a good quality initial condition is available
- the combined parameter and initial condition estimation needs an improvement

Model Reduced 4D-Var for 1D Ecosystem Model

- the parameter estimation works fine when a good quality initial condition is available
- the combined parameter and initial condition estimation needs an improvement
- Model Reduced 4D-Var is a potential tool in ecosystem applications

Model Reduced 4D-Var for 1D Ecosystem Model

- the parameter estimation works fine when a good quality initial condition is available
- the combined parameter and initial condition estimation needs an improvement
- Model Reduced 4D-Var is a potential tool in ecosystem applications

Future Work

- improve the combined parameter and initial condition approach
- apply the method to a large ecosystem model

2

3

Thank you for your attention!

Questions?

