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Introduction (1/2)

A necessary condition for an ideal assimilation is that the true
state should be statistically indistinguishable from any analysis
ensemble members that are randomly sampled from the posterior
(or analysis) pdf resulting from data assimilation.

A key shortcoming of ensemble filtering, due to its representation
of the posterior pdf with a limited number of analysis ensemble
members, is that the analysis error variance underestimates the
optimal analysis error variance estimated using an infinite number
of ensemble members (Sacher and Bartello, 2007).

Also, the sample covariance of forecast error P̃f is rank deficient
when K < n + 1, where K is the number of ensemble members
and n is the dimension of the state space. This implies that the
analysis increments can only belong to ran(P̃f ).
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Introduction (2/2)

It follows that ensemble filtering can lead to filter divergence ,
where the magnitude of the true analysis error becomes much
larger than its estimate, as a result of the fact that observations
are progressively ignored by the filter.

Sampling error may also lead to a misrepresentation of forecast
error covariance values between two different locations, and this
can be particularly detrimental when long-range spatial
correlations are overestimated, leading to spurious analysis
increments.

To minimize these shortcomings, ensemble filtering usually make
use of procedures such as covariance inflation and covariance
localization.
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Localisation and Inflation

Inflation methods aim to enlarge the spread of the forecast
ensemble either by multiplying the ensemble member
perturbations from the mean by α > 1 (Anderson and Anderson
1999) or by adding random perturbations to the ensemble
members (e.g., Whitaker et al. 2008; Houtekamer et al. 2009).
Adaptive multiplicative inflation schemes have also been
introduced (Anderson, 2007b; Anderson, 2009 and Li et al., 2009).

Localization techniques aim to eliminate long-range correlations
either via an element-wise multiplication (or Schur product) of P̃f

with compactly supported correlation matrix (see Houtekamer and
Mitchell 1998 and 2001; Janijc et al., 2011 for square-root filters)
or by estimating the analysis on a local domain (e.g., Ott et al.
2004, Hunt et al., 2007) using only observations within a given
radius of influence from each grid point.

Adaptive localization techniques have also been proposed
(Anderson, 2007a and Bishop and Hodyss (2009a,b))

S. Migliorini (Univerisity of Reading) 5 / 29



Observations and ensemble size (1/2)

Another consequence of using a rank-deficient forecast error
covariance matrix is that at most K − 1 degrees of freedom are
available to ensemble-based data assimilation schemes in order
to fit the observations (Lorenc, 2003).

Observations that are sensitive to components of the state vector
that do not belong to the range of P̃f do not improve the analysis
estimate.

Both distance-dependent or Schur-product localization procedures
ease the rank-deficiency problem as the localized P̃f is only
supposed to represent the covariance of the local forecast error.
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Observations and ensemble size (2/2)

However, the radius of influence should be large enough not to
disturb the balances that act at given spatial scales and that are
well represented by the ensemble error covariance (e.g., Lorenc,
2003).

The radius of influence should also be large enough to include
enough observations to constrain the analysis effectively. At the
same time, a radius of influence that is too large may not
substantially reduce the number of assimilated observations,
particularly over data-dense areas.

A data selection strategy based on the information content of the
measurements is here proposed, which ensures that only the
observational components that are able to constrain the analysis
are assimilated using ensemble filtering techniques.
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Characterisation of the measurements (1/2)

The relationship between a measurement vector yo ∈ R
q and the

true state xt ∈ R
n of a system (e.g., the atmosphere) can be

expressed as
yo = H(xt) + ǫ

o (1)

where H(xt) is the observation operator calculated in xt and
where ǫ

o ∈ R
q is the measurement error, assumed Gaussian,

unbiased and with covariance R ∈ R
q×q.

The observation operator can be linearised about a given xi and
write

yo ≃ H(xi) + H(i)(xt − xi) + ǫ
o (2)

where H(i) ≡ (∂H/∂x)x=xi ∈ R
q×n is the Jacobian matrix of H(x)

calculated in x = xi . We can also define y(i) as (e.g., Migliorini,
2011)

yo(i) ≡ yo − H(xi) + H(i)xi ≃ H(i)xt + ǫ
o. (3)
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Characterisation of the measurements (1/2)

R can be expressed in terms of its eigenvector decomposition as
R = LΛLT . When the number m of non-zero (or not too small)
eigenvalues is less than q, we can write E ≃ LmΛmLT

m. For m ≤ q
we define yo′ = Λ

−1/2
m LT

myo so that from (3) we can write

yo′ = Λ
−1/2
m LT

mHxt + Λ
−1/2
m LT

mǫ
o = H′xt + ǫ

o′ (4)

where H′ ∈ R
m×n is defined as H′ ≡ Λ

−1/2
m LT

mH′ and where the
covariance ǫ

o′ is the unit matrix of rank m.

Finally, an alternative definition of yo′ that preserves the nonlinear
relationship with xt (when applicable) is given by

yo′ = Λ
−1/2
m LT

mH(xt) + Λ
−1/2
m LT

mǫ
o = H ′(xt) + ǫ

o′. (5)
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Ensemble square-root filtering (1/3)

The ensemble transform Kalman filter (ETKF, Bishop et al., 2001),
which is the ensemble square root filter we will concentrate on,
provides an approximation of Xa by means of the analysis
perturbations matrix X′a, calculated as

X′a = X′f T̃ ∈ R
n×K (6)

where

X′f =
1

√
K − 1

(xf
1−xf , xf

2−xf , · · · , xf
i −xf , · · · , xf

K −xf ) ∈ R
n×K (7)

with K being the number of ensemble forecast members xf
i , and

where T̃ is a suitable approximation of T.

In this way, approximations of Pf and Pa are given by P̃f = X′f X′fT

and P̃a = X′f T̃T̃T X′fT , respectively.
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Ensemble square-root filtering (2/3)

The analysis error covariance Pa is related to the forecast error
covariance Pf according to the Kalman filter solution of the cycling
problem for a linear stochastic-dynamic system and given by

Pa = Pf − Pf H′T (H′Pf H′T + Im)−1H′Pf (8)

To determine an expression for T̃, we define S̃ ≡ H′X′f ∈ R
m×K so

that P̃a ≃ Pa can be written as

P̃a = X′f (IK − S̃T (S̃S̃T + Im)−1S̃)X′fT . (9)

Note that it is possible to avoid linearising the observation
operator as in (3) if we define yo′ and H ′(xt) as in (5) and

S̃ =
1

√
K − 1

(H ′(xf
1)−H ′(xf ), · · · , H ′(xf

i )−H ′(xf ), · · · , H ′(xf
K )−H ′(xf ))

H ′(xf ) ≡
1
K

K
∑

i=1

H ′(xf
i ).

S. Migliorini (Univerisity of Reading) 11 / 29



Ensemble square-root filtering (3/3)

It is possible to express S̃ as S̃ = ẼΓ̃ṼT , where Ẽ ∈ R
m×m, Γ̃ ∈ R

m×K

and Ṽ ∈ R
K×K . In this way, (9) can be expressed as

P̃a = X′f Ṽ(ỸK + IK )−1ṼT X′fT (10)

where

Γ̃ =

(

Γ̃p̃ 0p̃×(K−p̃)

0(m−p̃)×p̃ 0(m−p̃)×(K−p̃)

)

(11)

and

ỸK ≡

(

Γ̃
2
p̃ 0p̃×(K−p̃)

0(K−p̃)×p̃ 0K−p̃

)

(12)

with p̃ = rank(S̃) ≤ min(K − 1, m). From (6) it follows that T̃ can be
written as

T̃ = Ṽ(ỸK + IK )−1/2ṼT ∈ R
K×K (13)

where we have chosen a symmetric form of the ensemble transform
matrix T̃ so as to ensure that X′a is unbiased (e.g., Wang et al., 2004;
Sakov and Oke, 2008; Livings et al., 2008).
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Information considerations (1/2)

When S is approximated by S̃ there are only p̃ ≤ min(m, K − 1)
measurements that provide information, i.e., with γ̃i > 0, so that
the effective number of degrees of freedom for signal d̃s resulting
from the use of a reduced-rank forecast error covariance can be
written as (Rodgers, 2000; D. Zupanski et al., 2007)

d̃s = tr(S̃T (S̃S̃T + Im)−1S̃) =

p̃
∑

i=1

γ̃2
i

1 + γ̃2
i

(14)

It follows that for a given number of ensemble members K , there
are at most K − 1 components of the measurement vector yo′ that
can provide information. Note that the above result is consistent
with the discussion provided in Lorenc (2003), where the special
case of a perfect observation is considered.
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Information considerations (2/2)

The importance of this consideration is that it is now possible to
decide whether a given observational component is worth
assimilating, according to whether one of these equivalent
conditions are met:

◮ its signal-to-noise ratio γ̃i is greater than about 1,
◮ its information content Hi = 1

2 log2(1 + γ̃2
i ) is greater than about 0.5

or
◮ it provides more than about half a degree of freedom for signal.

It follows that when m ≫ K , only the r < K leading singular values
and vectors of S̃ need to be determined for assimilation.
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Data selection strategy (1/2)

Let us define yo′′ ∈ R
r as yo′′ ≡ ẼT

r yo′, where Ẽr ∈ R
m×r is the

matrix whose columns are the r left singular vectors
corresponding to the r positive singular values of S̃ that are
greater than about unity, with r ≤ p̃. From (4) we can write

yo′′ = ẼT
r H′xt + ẼT

r ǫ
o′ = H′′xt + ǫ

o′′ (15)

where H′′ ∈ R
r×n is defined as H′′ ≡ ẼT

r H′. Note that the
covariance of ǫ

o′′ is Ir , the unit matrix of rank r .

From (9), the analysis error covariance can now be written as

P̃a = X′f (IK − S̃′T (S̃′S̃′T + Ir )−1S̃′)X′fT (16)

where S̃′ ∈ R
r×K is defined as S̃′ ≡ H′′X′f = ẼT

r S̃.
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Data selection strategy (2/2)

it follows that the analysis perturbation matrix can be written as

X′a = X′f Ṽ(Ỹ′

K + IK )−1/2ṼT (17)

where, in analogy with (12), ỸK is defined as

Ỹ′

K ≡

(

Γ̃
2
r 0r×(K−r)

0(K−r)×r 0K−r

)

. (18)

The analysis ensemble mean can be calculated as

xa = xf + X′f S̃′T (S̃′S̃′T + Ir )−1(yo′′ − H′′xf ) (19)

= xf + X′f Ṽr Γ̃r (Γ̃
2
r + Ir )−1(yo′′ − H′′xf ). (20)
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Discussion

The data selection strategy presented here is compatible with any
existing localisation procedure that may be used for ensemble
data assimilation. When localisation is used, the data selection
procedure will result in a further data reduction over the local
domain or over the domain where the compactly-supported
correlation function is different from zero.

Localization procedures can then have a larger ROI or correlation
functions whose support spans a larger part of their domain, while
always keeping the number of measurements to be considered for
assimilation below K .

Appropriate dimension of the local domain from trade off between
the need of reducing the rank deficiency of the forecast error
covariance matrix for a given K and of avoiding shortening the
natural correlation length scales that may lead to unbalanced
initial conditions.
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Numerical experiments

Two-dimensional linear temperature advection model on a circle of
latitude. Constant zonal-only advection speed u = 1, ∆x = 1 and
∆t = 1 (C = 1). Forward-upstream finite difference scheme (no
model error). The zonal length of the domain is 1000, with 43
vertical levels (0.1 – 1013.25 hPa), 150 time steps.

Initial condition for the truth from random field with Gaussian
horizontal correlation function (σ = 10

√
2) and an exponential

vertical correlation with 50 km de-correlation length.

Initial conditions for the “background” trajectory are defined from
the same random field, but with expectation given by the true state
at initial time. The K members of the initial ensemble are then
created in a similar manner, with expectation given by the
background state.
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Assimilation strategy

Each initial condition propagated forward in time until observation
time, when an analysis scheme based either on a standard or on
the data-selective ensemble square-root method (Evensen, 2004)
generates a new set of initial conditions.

8 regularly-spaced vertical temperature profiles with 43 elements,
5∆t observation frequency.

All observations are simulated from the truth and zero-mean
random noise with given standard deviation σo

Tj
= 0.1%T f

j at initial
time.
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Results with data selection

n = 1001 × 43 = 43043, K = 300, no localisation, SNR > 1,
43 × 8 = 344 obs every 5 ∆t , T = 150∆t
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Results without data selection

n = 1001 × 43 = 43043, K = 300, no localisation, 43 × 8 = 344
obs every 5 ∆t , T = 150∆t
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Results at a model level

SNR > 1 (left), all data (right), K = 300, no localisation, ∼ 500
hPa
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RMSE

SNR > 1 (left), SNR > 1 − SNR > 0 (right), K = 300, no
localisation
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Data selection rate

SNR > 1, K = 300, no localisation, 344 obs
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Results with data selection

n = 1001× 43 = 43043, K = 100, SNR > 1, localisation ROI=200
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Results at a model level

SNR > 1 (left), all data (right), K = 100, ∼ 500 hPa, localisation
ROI=200
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RMSE

SNR > 1 (left), SNR > 1 − SNR > 0 (right), K = 100, localisation
ROI=200

N=100; ROI=200, SNR>1
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Data selection rate

SNR > 1, K = 100, localisation ROI=200
number of local obs: (172, 129, 172, 129, 129, 129, 129, 129,
172, 129, 172)

obs with SNR>1
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Conclusions

A effective and physically-based method to address the ensemble
filtering shortcomings in the case when m ≫ K is described.

Results with an idealized model show that it is possible to use only
about 30% of the components of the observation vector from the
first assimilation cycle without significantly affecting the results.

Can be used with both in situ and remote sounding data, and is
particularly suited for operational NWP applications.

QJ paper about to be submitted.
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