Preconditioning of conjugate-gradients in observation space for 4D-VAR

S. $Gratton^1$ S. $Gurol^2$ Ph.L. $Toint^3$

¹ENSEEIHT, Toulouse, France ²CERFACS, Toulouse, France ³FUNDP, Namur, Belgium

The 9th Workshop on Adjoint Model Applications in Dynamic Meteorology

Outline

Introduction

- Problem Formulation
- Krylov subspace methods
- Algorithms for primal space

2 Dual Approach

- Algorithms for dual space
- Results on realistic systems
- Preconditioning
- Convergence Properties

3 Conclusions

4D-Var problem: Formulation

 $\rightarrow\,$ Large-scale nonlinear weighted least-squares problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||x - x_b||_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^N ||\mathcal{H}_j(\mathcal{M}_j(x)) - y_j||_{R_j^{-1}}^2$$

where:

- $x \in \mathbb{R}^n$ is the control variable
- The observations y_j and the background x_b are noisy
- \mathcal{M}_j are model operators
- \mathcal{H}_j are observation operators
- B is the covariance background error matrix
- R_j are covariance observation error matrices

4D-Var problem: Formulation

 \rightarrow Large-scale nonlinear weighted least-squares problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||x - x_b||_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^N ||\mathcal{H}_j(\mathcal{M}_j(x)) - y_j||_{R_j^{-1}}^2$$

Typically solved by a standard Gauss-Newton method known as Incremental 4D-Var in data assimilation community

(1) Solve linearized subproblem at iteration k

$$\min_{\delta x \in \mathbb{R}^n} J(\delta x) = \frac{1}{2} \|\delta x - [x_b - x]\|_{B^{-1}}^2 + \frac{1}{2} \|H\delta x - d\|_{R^{-1}}^2$$

Sequence of quadratic minimization problems

2 Perform update
$$\mathbf{x}^{(k+1)}(t_0) = \mathbf{x}^{(k)}(t_0) + \delta \mathbf{x}^{(k)}$$

• From optimality condition

$$(\mathbf{B^{-1}} + \mathbf{H^T R^{-1} H})\delta \mathbf{x} = \mathbf{B^{-1}}(\mathbf{x_b} - \mathbf{x}) + \mathbf{H^T R^{-1} d}$$

- The aim is to solve sequences of this linear system.
- Solution algorithms: Krylov subspace methods
- Exact solution writes:

$$\mathbf{x}_{b} - \mathbf{x}_{0} + \left(\mathbf{B}^{-1} + \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\left(\mathbf{d} - \mathbf{H}(\mathbf{x}_{b} - \mathbf{x}_{0})\right)$$

Krylov subspace methods

$$\underbrace{(B^{-1} + H^T R^{-1} H)}_{A} \delta x = \underbrace{B^{-1}(x_b - x) + H^T R^{-1} d}_{b}$$

• Krylov subspace methods searchs for an approximate solution δx_l from a subspace $\delta x_0 + \mathcal{K}^l(A, r_0)$ where

$$\mathcal{K}^{l}(A, r_{0}) = span\left\{r_{0}, Ar_{0}, A^{2}r_{0}, ..., A^{l-1}r_{0}\right\}, r_{0} = b - A\delta x_{0}$$

• Krylov subspace methods impose the Petrov-Galerkin condition

 $r_k \perp \mathcal{L}^l(A, r_0).$

- A is symmetric and positive definite
- $\mathcal{L}^{l}(A, r_{0}) = \mathcal{K}^{l}(A, r_{0}) \rightarrow \text{Lanczos, Conjugate Gradient (CG)}$ $\rightarrow \text{FOM (unsymmetric case for further reference)}$ $\rightarrow \text{minimizes } ||r_{k}||_{A^{-1}}$
- $\mathcal{L}^{l}(A, r_{0}) = A\mathcal{K}^{l}(A, r_{0}) \rightarrow \mathsf{MINRES}$ $\rightarrow \mathsf{minimizes} ||r_{k}||_{2}$

Krylov subspace methods

Which one to use when A is symmetric and positive definite?

- Less computational cost and memory
- Efficient preconditioning
- Efficient re-orthogonalization
- Convergence behaviour
- ...

We focus on Lanczos and CG

- They are implemented in the realistic applications.
- It is possible to use preconditioners. It is possible to avoid $B^{1/2}$.
- It is possible to use re-orthogonalization.
- CG is globally convergent when using the Steihaug-Toint truncated conjugate gradient trust region method

Preconditioned Lanczos algorithm ($F^{1/2}$ is not required!)

For $i = 1, 2, \ldots, l$

1	$w_i = (B^{-1} + H^T R^{-1} H) z_i \rightarrow$ Construction of the Krylov sequence	
2	$w_i = w_i - \beta_i v_{i-1}$	
3	$\alpha_i = \langle w_i, z_i \rangle$	\rightarrow Orthogonalization
4	$w_{i+1} = w_i - \alpha_i v_i$	
6	$z_{i+1} = Fw_{i+1}$	\rightarrow Apply preconditioner
6	$\beta_{i+1} = \langle z_{i+1}, w_{i+1} \rangle^{1/2}$	
0	$v_{i+1} = w_{i+1} / \beta_{i+1}$	\rightarrow Normalization
8	$z_{i+1} = z_{i+1} / \beta_{i+1}$	
9	$V = [V, v_{i+1}] \longrightarrow Orthor$	normal basis for Krylov subspace
10	$T_{i,i} = \alpha_i; T_{i+1,i} = T_{i,i+1} =$	$\beta_{i+1} \rightarrow Generate$ the tridiagonal matrix

Solution

1	$y_l = T_l^{-1} \beta_0 e_1$	\rightarrow Impose the condition $r_k \perp \mathcal{K}^l(A, r_0)$
2	$\delta x_l = F V_l y_l$	\rightarrow Find the approximate solution
_		

Gratton, Gurol, Toint The 9th Adjoint Workshop

Preconditioned CG algorithm ($F^{1/2}$ is not required!)

Initialization

• $r_0 = A\delta x_0 - b$, $z_0 = Fr_0$, $p_0 = z_0$

For $i = 0, 1, \ldots$

2 $\alpha_i = \langle r_i, z_i \rangle / \langle q_i, p_i \rangle$ \rightarrow Compute the step-length \rightarrow Update the iterate \rightarrow Update the residual **5** $r_{i+1} = r_{i+1} - RZ^T r_{i+1}$ \rightarrow Re-orthogonalization **6** $z_{i+1} = Fr_{i+1}$ \rightarrow Update the preconditioned residual $\beta_i = \langle r_{i+1}, z_{i+1} \rangle / \langle r_i, z_i \rangle \rightarrow \text{Ensure A-conjugate directions}$ $R = [R, r/\beta_i]$ \rightarrow Re-orthogonalization $\bigcirc Z = [Z, z/\beta_i]$ \rightarrow Re-orthogonalization $p_{i+1} = z_{i+1} + \beta_i p_i$ \rightarrow Update the descent direction

Alternative Methods: Dual Approaches

Can we reduce the computational cost?

Dual Approaches!

While using the dual approaches is it possible to

- keep the convergence behaviour?
- apply efficient preconditioners?
- apply re-orthogonalization?

Exact solution writes

$$x_{b} - x + \underbrace{\left(B^{-1} + H^{T}R^{-1}H\right)^{-1}H^{T}R^{-1}\left(d - H(x_{b} - x)\right)}_{\delta v \in \mathbf{R}^{n}, n \approx 10^{7}}$$

or equivalently using the Sherman-Morrison-Woodbury formula or duality theory

$$x_{b} - x + BH^{T} \underbrace{(R^{-1}HBH^{T} + I)^{-1}R^{-1}(d - H(x_{b} - x))}_{\lambda \in \mathbf{R}^{m}, m \approx 10^{5}}$$

• Performing inner minimization in \mathbf{R}^m hopefully reduces memory and computational cost !

Minimization in dual space

Iteratively solve

$$(I_m + R^{-1}HBH^T)\lambda = R^{-1}(d - H(x_b - x))$$

2 Set $\delta x = x_b - x + BH^T \lambda$

- PSAS algorithm (Courtier 1997): PCG on this linear system with *R* inner product
- RPCG algorithm (Gratton and Tschimanga 2009): PCG on this linear system with HBH^T inner product
- RLanczos algorithm: Lanczos on this linear system with HBH^T inner product

Dual Approach: RPCG and PSAS algorithm

Initialization

$$egin{aligned} \lambda_0 &= 0, \ \widehat{r}_0 = R^{-1}(d-H(x_b-x)), \ \widehat{z}_0 &= m{G}\widehat{r}_0, \ \widehat{p}_1 = \widehat{z}_0, \ k = 1 \end{aligned}$$

$\mathsf{Loop} \, \, \mathsf{on} \, \, k$

 $\begin{aligned} & \widehat{q}_{i} = \widehat{A}\widehat{p}_{i} \\ & 2 \quad \alpha_{i} = <\widehat{r}_{i-1}, \widehat{z}_{i-1} >_{M} / <\widehat{q}_{i}, \widehat{p}_{i} >_{M} \\ & 3 \quad \lambda_{i} = \lambda_{i-1} + \alpha_{i}\widehat{p}_{i} \\ & 3 \quad \widehat{r}_{i} = \widehat{r}_{i-1} - \alpha_{i}\widehat{q}_{i} \\ & 3 \quad \beta_{i} = <\widehat{r}_{i-1}, \widehat{z}_{i-1} >_{M} / <\\ & \widehat{r}_{i-2}, \widehat{z}_{i-2} >_{M} \\ & 0 \quad \widehat{z}_{i} = G\widehat{r}_{i} \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & &$

- $\hat{A} = R^{-1}HBH^T + I_m$
- *G* is the preconditioner.
- *M* is the inner-product.
- PSAS Algorithm: M = R cheap matvec
- RPCG Algorithm: M = HBH^T expensive matvec (model integration is required)
- G should be symmetric w.r.t. to M

Dual Approach: Precond. RLanczos algorithm and PSAS

For i = 1, 2, ..., l

- $\widehat{w}_i = (I + R^{-1} H B H^T) z_i$
- $\widehat{w}_i = \widehat{w}_i \beta_i \widehat{v}_{i-1}$
- $a_i = \langle \widehat{w}_i, z_i \rangle_{\boldsymbol{M}}$
- $\widehat{w}_{i+1} = \widehat{w}_i \alpha_i \widehat{v}_i$
- $\widehat{z}_{i+1} = \widehat{G}\widehat{w}_{i+1}$
- $\widehat{v}_{i+1} = \widehat{w}_{i+1} / \beta_{i+1}$

3
$$\widehat{z}_{i+1} = \widehat{z}_{i+1} / \beta_{i+1}$$

$$\widehat{V} = [\widehat{V}, \widehat{v}_{i+1}]$$

 $T_{i,i} = \alpha_i; \ T_{i+1,i} = T_{i,i+1} = \beta_{i+1}$

- $M = HBH^T$
- G is the preconditioner
- When M = R, the iterates are mathematically equivalent to that of PSAS

Solution

$$y_l = T_l^{-1} \beta_0 e_1$$

$$\delta x_l = B H^T V_l y_l$$

Assume that

 $r_0 \in \mathsf{range}(H^T)$ $FH^T = BH^TG$

where F is the preconditioner in primal space and G is the preconditioner in dual space.

- Rlanczos, RPCG, CONGRAD, **PCG and Lanczos method in the primal space** are mathematically equivalent to each other.
- MINRES is not equivalent, it minimizes $||r_k||_2!$

Results for ROMS

- Observations: SST (Sea Surface Temperature) and SSH(Sea Surface Height) observations from satellites. Sub-surface hydrographic observations from floats.
- Number of observations (m): 10⁵
- Number of state variables (n): 10⁶ for strong constraint and 10⁷ for weak constraint.
- Computation: 64 CPUs

Results for 3D-VAR FGAT NEMOVAR

- Observations: Temperature, unbalanced salinity, unbalanced sea surface height
- Number of observations (m): 2×10^5
- Number of state variables (n): 8×10^6
- Computation: 8 processors are used

Second level preconditioning

Use an approximation of the Hessian of the quadratic problem
 → Limited Memory preconditioning (Fisher (1998), Morales
 and Nocedal (2000), Tschimanga, Gratton, Sartenaer, Weaver
 (2008))

The idea is:

- Formulate the limited memory Quasi-Newton matrix
- Generate the preconditioner using the information from CG iterations.
 - For equivalence with the primal method, find G that satisfies

$$\mathbf{F}H^T = BH^T \mathbf{G}$$

for a given F

• For now, assume that H is not changing for each outer loop.

G as a Quasi-Newton warm-start preconditioner

Formulation of F as a Quasi-Newton Limited Memory Preconditioner

$$F_{k+1} = (I - \tau_k p_k q_k^T) F_k (I - \tau_k q_k p_k^T) + \tau_k p_k p_k^T$$

 $\begin{aligned} p_k \text{ is the search direction} \\ \tau_k &= 1/(q_k^T p_k) \\ q_k &= (B^{-1} + H^T R^{-1} H) p_k \end{aligned}$

Formulation for G as a Quasi-Newton Limited Memory Preconditioner

$$G_{k+1} = (I - \hat{\tau}_k \hat{p}_k (M \hat{q}_k)^T) G_k (I - \hat{\tau}_k \hat{q}_k \hat{p}_k^T M) + \hat{\tau}_k \hat{p}_k \hat{p}_k^T M$$

$$\begin{split} M &= HBH^T, \\ \widehat{p}_k \text{ is the search direction,} \\ \widehat{\tau}_k &= 1/(\widehat{q}_k^T HBH^T \widehat{p}_k) \\ \widehat{q}_k &= (I_m + R^{-1} HBH^T) \widehat{p}_k \end{split}$$

Computationally efficient RPCG algorithm using Quasi-Newton Preconditioner

Loop: WHILE

$$\hat{\mathbf{q}}_{i-1} = \mathbf{R}^{-1}\mathbf{t}_{i-1} + \hat{\mathbf{p}}_{i-1}
\hat{\mathbf{q}}_{i-1} = \mathbf{w}_{i-1}^{\mathrm{T}}\hat{\mathbf{r}}_{i-1}/\hat{\mathbf{q}}_{i-1}^{\mathrm{T}}\mathbf{t}_{i-1}
\hat{\boldsymbol{\lambda}}_{i} = \hat{\boldsymbol{\lambda}}_{i-1} + \alpha_{i-1}\hat{\mathbf{p}}_{i-1}
\hat{\boldsymbol{\lambda}}_{i} = \hat{\mathbf{r}}_{i-1} - \alpha_{i-1}\hat{\mathbf{q}}_{i-1}
\hat{\mathbf{r}}_{i} = \hat{\mathbf{r}}_{i-1} - \alpha_{i-1}\hat{\mathbf{q}}_{i-1}
\hat{\mathbf{r}}_{i} = \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}\hat{\mathbf{r}}_{i}
\hat{\mathbf{r}}_{i} = \mathbf{G}\hat{\mathbf{r}}_{i}
\hat{\mathbf{r}}_{i} = \mathbf{G}\hat{\mathbf{r}}_{i}
\hat{\mathbf{r}}_{i} = \mathbf{G}\hat{\mathbf{r}}_{i}
\hat{\mathbf{r}}_{i} = \hat{\mathbf{r}}_{i-1}^{\mathrm{T}}\hat{\mathbf{r}}_{i-1}
\hat{\mathbf{r}}_{i} = \hat{\mathbf{r}}_{i} + \beta_{i}\hat{\mathbf{p}}_{i-1}
\hat{\mathbf{r}}_{i} = \hat{\mathbf{r}}_{i} + \beta_{i}\hat{\mathbf{r}}_{i-1}
\hat{\mathbf{r}}_{i} = \mathbf{w}_{i} + \beta_{i}\mathbf{t}_{i-1}
\hat{\mathbf{r}}_{i} = \mathbf{w}_{i} + \beta_{i}\mathbf{t}_{i-1}
\hat{\mathbf{r}}_{i-1} = (\mathbf{l}_{i-1} - \mathbf{l}_{i-2})/\alpha_{i-1}$$

Convergence Properties

• If FA has eigenvalues $\mu_1 \leq \mu_2 \leq ... \leq \mu_n$, PCG algorithm satisfies the inequality:

$$||x_{k+1} - x^*||_A \le 2\left(\frac{\sqrt{\mu_n} - \sqrt{\mu_1}}{\sqrt{\mu_n} + \sqrt{\mu_1}}\right)^k ||x^*||_A$$

• If $G\widehat{A}$ has eigenvalues $\nu_1 \leq \nu_2 \leq ... \leq \nu_m$, RPCG satisfies the inequality:

$$||x_{k+1} - x^*||_A \le 2(\frac{\sqrt{\nu_m} - \sqrt{\nu_1}}{\sqrt{\nu_m} + \sqrt{\nu_1}})^k ||x^*||_A$$

$$\|x_{k+1} - x^*\|_A \le 2\left(\frac{\sqrt{\nu_m} - \sqrt{\nu_1}}{\sqrt{\nu_m} + \sqrt{\nu_1}}\right)^k \|x^*\|_A \le 2\left(\frac{\sqrt{\mu_n} - \sqrt{\mu_1}}{\sqrt{\mu_n} + \sqrt{\mu_1}}\right)^k \|x^*\|_A$$

- Same iterates, but tighter bound on convergence rate with the dual approach
- Improvement of tightness can be arbitrarily large on purposely chosen problems

When H changes!

• When H changes in nonlinear iterations, $FH^T = BH^TG$ is not satisfied. The preconditioner is not symmetric anymore wrt HBH^T and perturbed CG is in trouble.

Expression for G

$$G_{k+1} = (I - \hat{\tau}_k \widehat{p}_k (M \widehat{q}_k)^T) G_k (I - \hat{\tau}_k \widehat{q}_k \widehat{p}_k^T M) + \hat{\tau}_k \widehat{p}_k \widehat{p}_k^T M$$

 $M = HBH^T, \ \widehat{\tau}_k = 1/(\widehat{q}_k^T HBH^T \widehat{p}_k), \ \widehat{q}_k = (I_m + R^{-1} HBH^T) \widehat{p}_k$

• Straigthforward approach: re-generate G by using the recent p_k and HBH^T : costs one matvec per preconditioning pair

Accept to handle non symmetry : use FOM algorithm

Solutions (2/2)

- Use FOM with Quasi-Newton preconditioner G where approximated M is used.
- Approximation with the Davidon Fletcher Powell (DFP) formula.

- We have dual space methods RPCG and RLanczos that generate the same iterates as PCG and Lanczos in primal space
- $B^{1/2}$ operator is not required with the proposed primal solvers for B preconditioning
- RPCG and RLanczos were implemented in realistics systems: NEMOVAR thanks to Anthony Weaver and Andrea Piacentini, ROMS thanks to Andy Moore.
- Preconditioning is possible: find G such that $FH^T = BH^TG$

Conclusions

Thank you for your attention !