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Filtering problem

Framework

Assimilation (filtering) for non linear and high-dimensional systems.

State-space model:

• Continuous stochastic dynamical model

dx(t) = f(x(t))dt+ σdB(t)

• Discrete-time observations (images)

y(tk) = g(x(tk)) + γtk



Filtering problem

Filtering problem

Filtering aims at estimating p(xtk |yt1:tk) for all tk.

Sequential Monte Carlo techniques:

• Ensemble Kalman filter:
p̂(xtk |yt1:tk) = N (µtk ,Σtk) =

∑N
i=1 δx(i)

tk

(xtk)

• Particle filter:
p̂(xtk |yt1:tk) =

∑N
i=1w

(i)
tk
δ
x
(i)
tk

(xtk)

Both are based on prediction and correction:

• EnKF: ensemble prediction (model), Kalman correction (Gaussian);

• Particle filter: importance sampling, particles weights correction.
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Filtering problem

Particle filter

• Prediction : importance sampling

x
(i)
tk
∼ π(x

(i)
tk
|xt0:tk−1

,yt1:tk)

• Correction : computation of importance weights

w
(i)
tk
∝ w(i)

tk−1

p(ytk |x
(i)
tk

)p(x
(i)
tk
|x(i)
tk−1

)

π(x
(i)
tk
|x(i)
t0:tk−1

,yt1:tk)

• Resampling



Filtering problem

Particle filter

Advantages of particle filter:

• no Gaussian or linear hypotheses;

• theoretical convergence towards optimal Bayesian filter.

But particle filter in its simplest form:

• uses the transition p(xtk |xtk−1
) as importance distribution

• ⇒ not efficient for high-dimensional problems.

⇒ Weighted EnKF: tries to combine the efficiency of EnKF methods with
the good properties of particle filters.
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Weighted ensemble Kalman filter

Weighted ensemble Kalman filter

• Idea of WEnKF: the importance distribution of the particle filter is
given by the EnKF.

π(xtk |xt0:tk−1
,yt1:tk) = π(xtk |xtk−1

,ytk) = N (µtk ,Σtk)

• One WEnKF iteration, from p̂(xtk−1
|yt1:tk−1

) to p̂(xtk |yt1:tk):

• Start with particles x
(i),f
tk−1

and weights w
(i)
tk−1

for i = 1, . . . , N

• Prediction step of EnKF ⇒ x
(i),f
tk

• Analysis step of EnKF ⇒ x
(i),a
tk

• Computation of weights w
(i)
tk

• Resampling
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Weighted ensemble Kalman filter

Weighted ensemble Kalman filter

⇒ The WEnKF can be seen as:

• a particle filter with EnKF as importance distribution: guides particles
towards observation, contrary to standard particle filters;

• an EnKF with ensemble weights w
(i)
tk

for i = 1 : N : relaxation of the
Gaussian assumption.

Data assimilation with the weighted ensemble Kalman filter. Tellus Series
A: Dynamical Meteorology and Oceanography, 2010 (N. Papadakis, E. Mémin, A.
Cuzol, N. Gengembre)
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Weighted ensemble Kalman filter

Weighted ensemble Kalman filter

• Theoretical result: EnKF and particle filter do not have the same limit
distribution (LeGland et al 2011).

• This can be observed in small dimension for a non linear model:

σQ = 0.2,σR = 0.2 σQ = 1, σR = 0.2



Weighted ensemble Kalman filter

Weighted ensemble Kalman filter

• High dimension: harder to highlight a difference in limit distributions.

• But WEnKF seems to converge faster than EnKF:

σR = 0.1, σQ = 0.01 σR = 0.1,σQ = 0.05 σR = 0.1,σQ = 0.1
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SST image assimilation

Practical application: assimilation of sea surface temperature images (El
Niño phenomenon, January 2008).
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Practical application

SST image assimilation - Model

• 2D velocity-vorticity dynamical model:

dξt = −∇ξt ·wtdt+ ν∆ξtdt+ σdBt

• Model perturbations:
Gaussian random fields with covariance Σ = σσT (exponential

covariance Σ(xi,xj) = η exp(− ||xi−xj ||
2

λ ))
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Practical application

SST image assimilation - Model

• Observation models:

• Linear (external estimator ξ̃) :

ξ̃tk = ξtk + γtk

• Non linear (directly from image data I) :

I(x, tk) = I(x+ d(x), tk+1) + γtk
(x)



Practical application

SST image assimilation - Details

• ETKF is used as proposal step

• Non linear observation: Hxk replaced by H(xk)

• 48 images 256*256 (spatial resolution: 10km)

• Temporal resolution: one day

• Missing data ⇒ high observation noise

Analysis of SST images by weighted ensemble transform Kalman filter.
IGARSS’11(S.Beyou, S. Gorthi, E. Mémin)
Weighted ensemble transform Kalman filter for image assimilation. In
preparation (S.Beyou, A. Cuzol, S. Gorthi, E. Mémin)
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Practical application

SST image assimilation - Results

SST and velocity - Day 1

Vorticity and velocity - Day 1

Day 10

Day 10

Day 39

Day 39

Day 48

Day 48
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Trajectories smoothing

Filtering discontinuities

WEnKF (as EnKF) leads to temporal discontinuities (correction at
observation times only):



Trajectories smoothing

Filtering discontinuities

Illustration for a given time interval between two observations:



Trajectories smoothing

Sequential trajectories smoothing

• Using conditional simulation of diffusions (Delyon et al 2006), one can
sample new trajectories between tk−1 and tk, once ytk is known.

⇒ For each pair {x(i)
tk−1

,x
(i)
tk
}, i = 1, . . . , N , compute:

p(xt|x(i)
tk−1

,x
(i)
tk

) for all t ∈ [tk−1, tk]

• The smoothing distribution writes:

p̂(xt|yt1:tk) =
N∑
i=1

w
(i)
tk
p(xt|x(i)

tk−1
,x

(i)
tk

) for all t ∈ [tk−1, tk]

• Based on WEnKF trajectories weights;
• No linearization or Gaussian assumption;
• Respects the state model.

Monte Carlo fixed lag smoothing in state-space models. To be submitted

(A. Cuzol, E. Mémin)
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Trajectories smoothing

Sequential trajectories smoothing

Illustration for a given time interval between two observations:
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