The Predictability of North

iy

American Land-falling
Cyclones

Brian Ancell, Texas Tech University
Lynn McMutrdie, University of Washington k ‘
Rolf Langland, Naval Research Laboratory ‘

9t Adjoint Workshop, Cefalu, Sicily, Italy October 10, 2011

Office of Naval Research

ce of Naval Research



Background

m Atmospheric predictability has been shown to
depend on different flow regimes on a variety of
scales:

- Forecast error sensitivity varies with ENSO
cycle (Reynolds and Gelaro 2001)



Background

m Atmospheric predictability has been shown to
depend on different flow regimes on a variety of
scales:

- Forecast error sensitivity varies with ENSO
cycle (Reynolds and Gelaro 2001)

- ETKF targeting regions vary with synoptic
case (Majumdar et al. 2002)



Background

m Atmospheric predictability has been shown to
depend on different flow regimes on a variety of
scales:

- Forecast error sensitivity varies with ENSO
cycle (Reynolds and Gelaro 2001)

- ETKF targeting regions vary with synoptic
case (Majumdar et al. 2002)

- SLLP errors vary with large-scale, 500-hPa flow
regime (McMurdie and Casola 2009)
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m This work aims to examine the predictability of
a specific high-impact event - land-falling North

American cyclones

- Wind

- Precipitation intensity and type (flooding,
water resources, recreation, road

weather...)
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Research Questions

1) What are the general predictability characteristics of
land-falling North American cyclones?

2)  Are certain levels of cyclone predictability related to

synoptic/mesoscale flow patterns or cyclone
characteristics?

3) Why is the cyclone predictability for different flow
patterns/cyclone characteristics the way it is?
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Research Questions

The “Why” of Cyclone Predictability

- Predictability assessed with forecast uncertainty

(ensemble forecast spread)

Ensemble Forecast Spread

N

Potential for perturbation growth Initial ensemble spread

(Intrinsic predictability) \ /

(Forecast sensitivity!) Eventual links to data assimilation...
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Methodology - EnKF

B 80-member WRF-ARW
EnKF

m (-hr update cycle

m FExtended forecasts to 48
hours when a cyclone makes

landfall

m Fxtended forecast times
chosen from deterministic

GEFS-WRF forecasts

m Assimilates cloud-track
36-km Domain winds, ACARS, radiosonde,
and surface data
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Methodology

m Dataset contains EnKF 48-hr forecasts of land-
falling cyclones over 3 winters (2008/2009 to
2010/2011) - only 2009/2010 so far...

m Tools used

1) Ensemble sensitivity of the response function R

»  Characterizes the intrinsic predictability of R

2) Ensemble forecast spread of the response function R

»  Characterizes the real predictability of R



Methodology

Covariance b/w response

/ function and initial conditions

VIC \
Variance of initial conditions

m Ensemble sensitivity:

Response functions: Average SLP, Average U
wind, Average V wind, SLP gradient

Sensitivity w.r.t.. GPH and Temperature at 300,
500, 700, 850, 925-hPa, and SLLP




2009/2010 Season

Red line denotes the
“coastal zone”

27 Cyclones (cyclones can be in coastal zone at multiple times)



Cyclone Sensitivity Examples —
Deepening
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Initialized 2009111900 - 00hr Forecast
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Deepening
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Initialized 2009111900 - 12hr Forecast
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Deepening
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Cyclone Sensitivity Examples —
Deepening
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Model Infe: ¥3.0.1.1 KF =
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Initialized 2009111900 - 24hr Forecast




Cyclone Sensitivity Examples —
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Initialized 2010020806 - 00hr Forecast




Cyclone Sensitivity Examples —

Decaying
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Cyclone Sensitivity Examples —
Decaying
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______________________________________________________________________
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Initialized 2010020806 - 18hr Forecast



Cyclone Sensitivity Examples —
Decaying

Init: 06 UTC Mon 08 Feb 10
Valid: 06 UTC Tue 09 Feb 10 (22 PSET Mon 08 Feb 10)
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Ensemble Sensitivity —
Deepening

WRF 26—KM ENEF Init: 00 UTC Thu 19 Nov 089
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Ensemble Sensitivity —
Decaying

WRF 26—KM ENEF Init: 06 > Mon 08 Feb 10
Fest: 0 h ) ~ ¥alid: 06 UTC Momn 08 Feb 10 (22 PST Sun 07 Feb 10)
g itivityR1 to SLP hPa (
-a—level Pressure (m

HIGH= 1042.0 INTERVAL=

HIGH= 0.58000 INTERVAL= 0O

Medel Info: V3.0.1.1 EF
1L¥: RRTM




24-hr Sensitivity vs. Deepening Rate

2009 — 2010 Cases of 12-h tracking all storms
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24-hr Spread vs. Deepening Rate

2009 — 2010 data with linear fitall storms
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Spread/Sensitivity vs. Deepening Rate

Average Variance and Sensitivity for 12h tracking of all storms

I Deepening
I Decaying

Variance




Spread/Sensitivity vs. Storm Track

Average variance and sensitivity for different 12—h storm tracks forall storms
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Sensitivity to GPH vs. Level

Average geopotential sensitivities at different heights24—-h tracking forall storms

[ deepening
B decaying




24-hr Spread vs. Sensitivity

2009 —2010 Cases of 12-h trackingall storms
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24-hr Spread vs. Sensitivity

2009 —2010 Cases of 12-h trackingall storms

High spread, high sensitivity
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Composite 500-hPa Flow

Composite 500 hghts for high spread high sens 2009-2010. Num of cases = 40 and storm initial locations ‘omposite 500 hghts for high spread low sens 2009-2010. Num of cases = 15 and storm initial locations
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High spread, high sensitivity High spread, low sensitivity

Red stars = cyclone initial position




Composite SLP

Composite SLP for high spread high sens 2009-2010. Num of cases = 40 and storm final locations Composite SLP for high spread low sens 2009-2010. Num of cases = 15 and storm final locations

High spread, high sensitivity High spread, low sensitivity

Green stars = cyclone final position



Summary

m We aim to assess the “what”, the “how”’, and the “why” of
North American land-falling cyclone predictability over 3
winters

What: General characteristics of forecast uncertainty
How: Link between uncertainty and flow regime
Why: Intrinsic unpredictability vs. initial condition

uncertainty



Summary

m We aim to assess the “what”, the “how”, and the “why” of
North American land-falling cyclone predictability over 3

winters
What: General characteristics of forecast uncertainty
How: Link between uncertainty and flow regime
Why: Intrinsic unpredictability vs. initial condition
uncertainty
m The tools we are using to do this are:
- Ensemble sensitivity
- Adjoint sensitivity (upcoming)

- Ensemble forecast spread
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Summary

m Harly results using an SLP 24-hr response function over a
single winter suggest:

- Least predictable = Deepening cyclones from W /SW

- Low predictability, small sensitivity = Large, deep Gulf of
Alaska occluded systems

- Low predictability, large sensitivity = Occluded Gulf of
Alaska system present, but secondary development
apparent with stronger upstream jet (frontal waves?)

- Sensitivity to GPH maximizes in lower troposphere just

like adjoint sensitivity



Future Work

Add other 2 winters to dataset, finish analysis
Expand results to other response functions, forecast times
Include adjoint sensitivity in analysis

Include forecast error in analysis



