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The AROME system

� AROME model has completed the French NWP system since the end of 2008 :
– ARPEGE : global model (15 km over Europe)
– ALADIN-France : regional model (10km)
– AROME : meso scale model (2.5km)

� Aim : to improve local meteorological forecasts of potentially dangerous 
convective events (storms, unexpected floods, wind bursts...) and lower
tropospheric phenomena (wind, temperature, turbulence, visibility...). 

ARPEGE stretched grid 
and ALADIN-FRANCE domain

AROME France domain

1500 km

1200 km



The AROME system

� Model merges research outcomes and operational progress :
– physical package from  the Meso-NH research model
– Non-Hydrostatic version of the ALADIN software 

� A complete data assimilation system derived from the ALADIN-

FRANCE 3D-Var scheme (Fisher et al. 2005) operationally running at

Météo-France at regional scale since the end of 2005

� Developed in the frame of ARPEGE/IFS software (Courtier et al. 

1991), it inherits lots of its characteristics : 

– incremental formulation

– observation operators

– minimization technique

– data flow

� Efficient also at meso-scale, after some adaptations



Assimilation scheme

� Control variable : vorticity, divergence, temperature, 

specific humidity and surface pressure : 
� 2 wind components, temperature, specific humidity and surface pressure are 

analysed at the model resolution (2.5 km).

� Other model fields ( TKE, Non-hydrostatic and microphysics fields) are cycled 

from the previous AROME forecast used as background

Guess

Observations

3D-Var

Analysis

U, V, T, q and Ps

U, V, T, q and Ps analyzed fields

TKE, NH and microphysics fields
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Cycle strategy

� Idea :
� Forecasts initialized  with more recent observations will be more accurate

� Using high temporal and spatial frequency observations (RADAR measurements for 

example) to the best possible advantage

Use of  rapid forward intermittent assimilation cycle in order to compensate the 

lack of temporal dimension in the 3D-Var  (RUC/NCEP)

� The cycle strategy has to be investigated in order to :

� Choose the cycle frequency allowing  best performances 

� Prevent a potential drifting of such a system over a small domain due to the 

ignorance of a large scale analysis 



Cycle strategy : frequency

Temporal evolution of RMS of surface pressure tendency over a single

time step (60s). Data point taken every 5 min of integration 

� non meteorological values in the 
2-first-hour forecast range : 
spurious waves are present in 
the model solution

� This noise is substantially 
reduced at the 3-hour output 
time

� Need to filter those spurious 
waves (Incremental Digital 
Filter Initialisation) for cycle 
frequency lower than 3. Not yet  
implemented

� Risk of accumulating noises and imbalances through cycle decreasing 
system performances.



Cycle strategy : frequency

� Experiments with 1, 2 and 3-h frequency continuous cycle during a        
30-day-long period
– 1-h cycle : forecast crashed after 2 days 
– 2-h cycle : poorer performance than 3-h cycle

0.2    0.5 1     2    5     10
Threshold (mm/h)

Quantitative Precipitation Forecats scores for different thresholds for 
the total rain forecast between 0- and 12-h compared to rain-gauge 
measurements in November 2008



Cycle strategy : drifting risk

� Problem: a continuous cycle never sees large scale analysis except 
through lateral boundary conditions.  

� 2 experiments restarting from ALADIN analysis (spin-up mode) 
every day 

Assimilation time    

� Objective scores : no significant differences
� QPF scores : better performances for the continuous assimilation cycle  



Cycle strategy : Relaxation towards larger scales

With  JK

Aladin

�Var (Jk) (guidard 2008) :

J(δx) = Jb(δx) + Jo(δx) 

+ Jk(δx)

25-day experiment, 
relaxing towards large 
scale (>100 km) of ALADIN 
analyses above 250hPa: 

- neutral scores against 
conventional data 

- small improvements in 
QPF scores for small 
precipitating amounts 

- 1 case with significant 
improvement

00-24 cumulative rainfalls on 5 july 2008

Without JK

Rain gauges



Operational configuration

� AROME operational configuration uses a 3-h frequency continuous assimilation cycle 

and performs 30-hr forecasts at synoptic time (00, 06, 12 and 18 UTC).

� the ALADIN-FRANCE operational suite provides :

– Lateral boundary conditions

– Surface initial conditions : OI analysis (CANARI) at 00, 06, 12 and 18 UTC (the 

previous AROME forecast is used otherwise).

ALADIN cycle 

AROME cycle
time



Cycle strategy : future plans

� Implementation of an Incremental Digital Filter Initialisation in AROME 
framework in order to use 1-h frequency cycle.

� 3D-FGAT version of the assimilation scheme : first encouraging results

Vertical profile of RMS of
observation-guess for wind
data from air plane
measurements using a 3-h
continuous cycle with :

3D-Var
3D-FGAT
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Background-error statistics : documentation

� Background-error statistics for AROME share the same multivariate 

formulation as in ALADIN-FRANCE (Berre 2000). This formalism uses 

errors of vorticity, divergence, temperature, surface pressure and 

humidity, with scale-dependant statistical regressions to represent 

cross-covariances.

� calculated using an ensemble-based method (Berre et al. 2006), with a 

six-member ensemble of AROME forecasts in spin-up mode carried out 

over two 15-day periods :

– Anticyclonic winter

– Convective summer

� Initial and lateral conditions are provided by an ARPEGE/ALADIN-

FRANCE assimilation ensemble



Background error statistics : AROME VS ALADIN (1)

� Greater σb for AROME than for ALADIN : The background is less to be trusted, 

mostly in the boundary layers, for small scales and for variables that are 

representative for these small scales

� Consistent with the explicit representation of small scale structures in AROME, which 

are either unrepresented or numerically dissipated by ALADIN

Arome                 Aladin
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Spectral average of σb for T Spectral average of σb for div Variance spectra for div at 500 hPa



Background error statistics : AROME VS ALADIN (2)
Horizontal correlation lengthscales

� Shorter correlation lengths for AROME than for ALADIN, which is coherent with the 
smaller domain and smaller horizontal resolution.

� The assimilation of one observation leads to a more localized increment.
� Dense observation networks (ground measurements, geostationary satellites, GPS, 

radars…) can be used with a higher horizontal resolution  (by paying attention to 
correlations between observation errors).

One obs experiment: 2K temperature innovation at 850 hPa. 
Vertical section of the analysis increment

AromeAladin

50 km



Background error statistics : winter/summer

Horizontal correlation length scales

Background error standard deviation

___ winter   

---- summer

� Background error statistics 

strongly depend on the 

meteorological situation . In 

summer :

– Higher standard deviation

– Shorter correlation lenghtscales

� Coherent with convective 

phenomena

� limitation of a  “climatological” B 

matrix : use of flow dependant 

statistics (Loïk Berre’s talk in  

session 9)    



Background error statistics : heterogeneous B matrix

Thibault Montmerle (Following an idea by Philippe Courtier (1998), and used by Mark Buenher 2008).   

� To use more suitable background error statistics in clear air and precipitating areas :
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� The increment is written:

⇒Which implies doubling the control variable χ and the gradient Jχ∇
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With: α = FMF-1 and β = F(1-M)F-1

M: grid point mask deduced from observed radar reflectivity.

Br and Bnr are separately computed by performing statistics on an assimilation 
ensemble of precipitating cases, considering a mask based on simulated precipitations.



Boper

Bp+np

Bp

Bnp

σσσσb

� In precipitating areas : 
–Smaller σb for q and T
–Smaller horizontal 
correlations

� Precipitating observations 
can be used with a greater 
density

Background error statistics : heterogeneous B matrix

Bnr

Br

Background error standard deviation

Horizontal correlation length scales



δx = α1/2Bnp1/2χ1+ β1/2Bp1/2χ2

δx = Bnp1/2χ

δx = Bp1/2χ

Innovations of – 30% RH
At 800 and 500 hPa

NO RAINRAIN
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Background error statistics : heterogeneous B matrix (3)

Two observations experiments : vertical 
section of humidity increment
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Observations 

� Same observations such as in ALADIN-France operational suite : 

conventional observations, CLS observations (T2m, HU2m, V10m), IR 

radiances from ATOVS and SEVIRI instruments, winds from AMV and

scatterometers, ground based GPS. 

� No specific spatial selection (thinning) appropriate to AROME resolution 

except for ground GPS. Studies on this topic are still  ongoing (plane 

measurements, IR radiances…) 

� Operational use of Doppler RADAR wind data in AROME since December 

2008 (Montmerle and Faccani, 2009)�



Observations

� Same observations such as in ALADIN-France operational suite + Doppler 

RADAR wind data

� The number of observation depends on the assimilation time 

� SYNOP, RADAR doppler winds, plane measurements and SEVIRI radiances 

are of great interest to supply the data assimilation system.  

Number per analysisObservation kind

150<Nobs<300SEVIRI

0<Nobs<55ATOVS

0<Nobs<80Scatterometers winds

15Cloud motion winds

0<Nobs<1600Plane

0<Nobs<20Radiosondes

170Ground GPS

0<Nobs<1000RADAR doppler winds

1500/8SYNOP+SHIP/BUOY 



Plans : RADAR reflectivities assimilation
(Wattrelot & al., 2008)

�Reflectivity observation operator needs a complete description of warm and 
cold hydrometeors : realistic simulation can be obtained with AROME. 

�Reflectivities can provide useful information about the atmosphere water 
cycle (rain, snow, graupel, primary ice), but in the context of variational
assimilation, assimilation of rain is very difficult because:

– The direct observation operator involves physical processes which are 
characterized by discontinuities and nonlinearities, and there is need of 
simplification in the linearized versions to get some good results…

– “rain” is not a variable which is in the “control variable” of the analysis

� Rainfalls have a short shelf life in the atmosphere. Therefore, it’s better to 
try to modify only the humidity field  : need of a 1D method to get some 
relative humidity retrievals from reflectivities before using the 3D-Var 
scheme



Radar reflectivities assimilation: inversion method

( ) ( )dxy=y|x=xPx=xE 0true∫∫∫ .

The « best » estimate of atmosphere x given the observation y0 and using 
Bayses's theorem (Lorenc, 1986)

( ) ( ) ( )dxx=xPx=x|y=yPx=xE truetrue0 ..∫∫∫Bayses's

Olson, 1996 (Gaussian 
and uncorrelated errors) 
and xj database of 
atmospheric profiles
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Radar data assimilation : Inversion method of 
reflectivities profiles

Caumont, 2006:  use of model profiles in 
the vicinity of the observation as 
representative database

� Consistency between the retrieved profile and clouds/precipitations  that the
model is able to create
� Possibility of wrong solution if model too far from the reality… needs checking



Reflectivities

Elevation 0.44°

Radar Arome (guess)

Relative humidity

Radar data assimilation : one radar assimilated

Pseudo-observations Arome (guess)



Specific humidity
increment

Radar data assimilation : case study

With reflectivities Without reflectivities 

Simulated reflectivities

3h forecast range

Radar at 6h UTC

Radar at 9h UTC
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� The general benefit of the AROME 
analysis  appears during the first 
12-h forecast ranges, then lateral 
conditions mostly take over the 
model solution

� Subjective evaluation shows longer 
impact on some situations, 
depending on meteorological 
conditions

Objective scores : analysis and forecast compared to radiosondes

� Analysis from the AROME RUC compared to ALADIN analysis show an 
important reduction of Root Mean Square Error and Bias for all parameters all 
over the troposphere

� AROME 12-h forecasts initialized with an analysis from the AROME RUC and 
an ALADIN analysis (spin-up mode) seem very close compared to radiosonde. 

1 °K
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200
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es
su
re
 (
h
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)

Bias

rmse

Analysis           12-h forecasts
T(°K)

Vertical profiles of rmse and biais for 
temperature compared to radiosonde
measurements



Objective scores : forecast compared to synop

� The same feature is observed regarding scores compared to SYNOP 
observations

2m relative humidity (%)

2m temperature (°K)

0                                         12                    24              30                          

Forecast range (hr)

Bias

rms

2

1

0

10

5

0

-5

Temporal evolution of 
rmse and biais 
compared to SYNOP 
measurements

assimilation
spin-up mode



Quantitative Precipitation Forecast scores

� QPF scores for different thresholds for the total rain forecast 
between 0- and 12-h compared to raingauge measurements in
november 2007. With AROME analysis :
– 20 % increase of POD
– 2 % increase of FAR

0.2           1      3               7             15
Threshold (mm/12h)



Precipitating event, 5 october 2007

RADAR 

MEASUREMENT AROME ASSIM

AROME SPIN-UP ALADIN 80 mm

� 24-h cumulative 
rainfalls

� Better location 
of the maximum 
of precipitation



Fog event, 7 february 2008 

assimilation

Spin-up

� AROME low cloud cover at 9-h UTC
� Fog is not simulated in spin-up mode



Conclusion

� AROME and its data assimilation system is operationally running at
Météo-France on the meso scale since the end of 2008 using a 3-h 
continuous assimilation cycle.

� This system is supplied by the same kind of observation as the 
ALADIN-FRANCE operational suite and radial velocities from doppler 
RADAR of the french network 

� The  background-error statistics for AROME have been calculated by 
an ensemble method using the same multivariate formulation as in
ALADIN-France.  Compared to the ALADIN-FRANCE ones
– background-error standard deviations are increased
– horizontal correlation lenghtscales are much shorter 

Analysis increments are  stronger and narrower.

� This system shows its ability to improve analysis and forecasts, giving 
a more realistic depiction of initial conditions.

� The general benefit of the analysis appears during the first 12-hour 
forecast ranges, then lateral conditions mostly take over the model 
solution.



Outlook
� Works currently in progress on :

– the assimilation of RADAR reflectivities (in pre-operational suite this 
summer).

– the use of observations at a higher spatial resolution  (airep, IR 
radiances,…).

– A surface assimilation coherent with the model’s surface scheme and 
resolution.

� Works are planned in order to
– take a better advantage of high-frequency observations using :

• 3D-FGAT (First Guess at Appropriate Time) assimilation scheme 
• Incremental Digital Filter Initialization allowing 1-h cycle

– introduce flow dependence in forecast error statistics using an ensemble 
assimilation
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Assimilation scheme

� Derived from the ALADIN-FRANCE 3D-Var scheme (Fisher et al. 2005) 

operationally running at Météo-France on the regional scale since the end of 

2005

� Developed in the frame of ARPEGE/IFS software (Courtier et al. 1991), it 

inherits lots of its characteristics :  

� incremental formulation,

� observation operators,

� minimization technique,

� data flow …

� Efficient also on the meso-scale, after some adaptations



24 radars: 16 in C 

band (yellow circles) + 

8 in S band (green 

circles). Volumes 

reflectivities (from 2 to 

13 elevations).

22 Doppler radars (red 

circles), 2 planned 

(dashed red circles)

Radar data assimilation : French network



To evaluate the 1D-method, use of a « pseudo-analysis of 

reflectivity »

Easy to compute by use of the 

weights of the 1D inversion…

guess
pseudo-analysis

Reflectivity 

field 

radar

If ||Zps – Zobs ||  low =>

1. good convergence of the 1D method. (RMS deviation can be a measurement of 

the quality of the retrieved profiles: useful for monitoring)

2. good consistency between the pseudo-observations and  the model (because of 

use of model information in the 1D-inversion). Used for the quality control in the 

screening

3. Possibility to take into account this value in the choice made in the thinning of 

the observations (tests are underway)



Assimilation window

1 x 6h assimilation window

Instrument a Instrument b

3 x 2h assimilation windows
time

� 3D-Var : short and numerous assimilation windows = more 
observations assimilated in a more realistic way



Background error statistics : heterogeneous B matrix

Thibault Montmerle (Following an idea of Philippe Courtier (1998), and used by Mark 
Buenher 2008).   

� To use more suitable background error statistics in clear air and 
precipitating areas :
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With: α = FMF-1 and β = F(1-M)F-1

M: grid point mask deduced from observed radar reflectivity.

Bp and Bnp are separately computed by performing statistics on an assimilation 
ensemble of precipitating cases, considering a mask based on simulated precipitations.
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The increment writes:

⇒Which implies to double the control variable χ and the gradient Jχ∇



Cross correlations

Bp Bnp( )qbσ
Vertical profile of spectral averages of the 
percentage of explained humidity variance

⇒ Br and Bnr are characterized by very different structure functions,  which is coherent 
with the model’s physics in both  precipitating and non-precipitating areas.

Multivariate formulation of errors:

Brain Bno rain
total         balanced geopotential

unbalanced divergence             unbalanced mass field

In precipitating areas, σb(q) is 

mostly explained by ηu at 
mesoscale, whereas it is almost 
univariate and linked to the mass 
field in clear air

pr
es
su
re

pr
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Background error statistics : heterogeneous B matrix (2)



⇒ Bp et Bnp are characterized by 

very different structure functions 

that are coherent with the 

model’s physic in precipitating 

and non-precipitating areas 

respectivelly

Bp Bnp( )qbσ

Cross correlations

Multivariate formulation of errors:

In precipitating areas, σb(q) is 

mostly explained by ηu at 

mesoscale, whereas it is almost 

univariate and linked to the

mass field in clear air

Comparisons between structure functions



δx = α1/2Bp1/2χ1+ α1/2Bp1/2χ2δx = β1/2Bnp1/2χ1+ β1/2Bnp1/2χ2

δx = α1/2Bnp1/2χ1+ β1/2Bp1/2χ2

2 obs experiment

δx = Bnp1/2χ δx = Bp1/2χ

Innovations of – 30% RH

At 800 and 500 hPa



Cycle strategy : frequency

� Experiments with 1, 2 and 3-h frequency continuous cycle during a        
30-day-long period
– 1-h cycle : forecast crashed after 2 days 
– 2-h cycle : poorer performance than 3-h cycle

Scores against surface pressure 
observations : 

rmse                biais

1 hPa

0 hPa

0.2       0.5 1     2    5     10
Threshold (mm/h)

QPF scores for different thresholds 
for the total rain forecast between 
0- and 12-h compared to rain-gauge 
measurements in November 2008

0                      12  24  30

Forecast range (hr)



Objective scores : 12-h forecast scores compared to radiosonde

� AROME 12-h forecasts initialized with an analysis from the AROME RUC 
and an ALADIN analysis (spin-up mode)  seem very close compared to
radiosonde. 

T(K)             wind (m/s)           HU(%)
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Objective scores : forecast scores compared to AROME analysis

� Differences of score compared to AROME analysis (spin-up minus assim) 
show forecast differences up to 12-h forecast. For longer forecast 
ranges, the two forecasts are very close.

T(K)             wind (m/s)           HU(%)


