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Motivation
� Adjoint Method:

� POD Method:
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Proper Orthogonal De
omposition (POD)
� Statisti
al tool to analyze experimental data:The POD is used to analyze the set of realizations with a view to extra
t-ing dominant features and trends (
oherent stru
tures 
alled patterns inspa
e)
� Redu
ed Order Modeling (ROM):The POD is used to provide a relevant set of basis fun
tions with whi
hwe 
an identify a low-dimensional subspa
e on whi
h to 
onstru
t a modelby proje
tion of the governing equations
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POD
� A set of s snapshots E = fe1; e2; � � � ; esg � <n are 
olle
ted for somephysi
al pro
ess taken at position e.
� Constru
t the 
ovarian
e matrix Q � <n�nQ = EET (1)
� P = fp1; p2; p3; � � � g are eigenve
tors of a n�n eigenvalue problem witheigenvalues �1 � �2 � �3 � � �
� Sele
t the most dominant eigenmodes (patterns) based on the dominanteigenvalues �i
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Ensemble Approa
h

� An ensemble of snapshot ve
tors of the forward model simulations is
olle
ted.�The snapshots are perturbations with repe
t to estimated parameters 
k;
ek(ti) = �Mi [xb(ti�1); 
k℄�
k = Mi [xb(ti�1); 
k + �
k℄�Mi [xb(ti�1); 
k℄�
k (2)

� A redu
ed POD basis is obtained on the basis of this ensemble.
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Ensemble Approa
h
�The redu
ed basis P is used to obtain approximate obje
tive fun
tion:

J(�
) = �TB�1� + ∑i=1 [fy(ti)�H(xb(ti))g��H�(ti ;�
)℄TR�1[fy(ti)�H(xb(ti))g � �H�(ti ;�
)℄ (3)� is a redu
e time-varing state ve
tor;
( �(ti)�
 ) = ( M̃i M̃
0 I ) ( �(ti�1)�
 ) (4)M̃i and M̃
 are redu
ed dynami
s operators whi
h are 
omputed as:

M̃i = P T �Mi�xb(ti�1)P (5)
M̃
 = P T (�Mi�
1 ; � � � ; �Mi�
u ) (6)
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Ensemble Approa
h
�We 
ompute the ja
obian �Mi�xb by perturbing the nonlinear operator Mialong pattern dire
tion.�Mi�xb(ti�1)ph = Mi [xb(ti�1) + "ph; 
k℄�Mi [xb(ti�1); 
k℄" (7)
�Now the redu
ed dynami
s operator M̃i is obtained as:

M̃i = P T ( �Mi�xb(ti�1)p1; � � � ; �Mi�xb(ti�1)pr) (8)
�The dimension of redu
e model is smaller than that of original model.� Redu
ed model has linear 
hara
teristi
s. So it is easy to build a adjointmodel for the 
omputation of gradient.
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The DCSM(v5)
� Large part of the area lies below mean sea water level� 1 Feb 1953: severe storm surge, 
asualities in southwestern part�Delta proje
t: dikes, moveable surge barriers at the entran
e of Harbor�Water level predi
tion system
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Model Area
� Around 20; 000 grid points� Based on Shallow water equations
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DCSM(v5)
�One outer iteration(�) with POD based 
alibration method:
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Experiment
� Calibration run: 29 De
 2006 to 30 Jan 2007�Measurement data are used from : 01 Jan 2007 to 30 Jan 2007� in
ludes two spring-neap 
y
les.� Assimilation stations: 24 Validation stations: 12�No. of parameters: 13 Depth: 10 Bottom Fri
tion: 3
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Experiment
�Waterlevel timeseries at Den Helder
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Experiment
� Ensemble: based on forward model simulations of 1st four days : 01 Jan2007 to 04 Jan 2007� Ea
h snapshot ve
tor 
ontains the waterlevels h, velo
ities u and v.� Ensemble size: 390 snapshot ve
tors
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Results
� A redu
ed model is formed with 95% 
aptured energy (24 POD modes)�The redu
ed model operates on <24+13� A 10% redu
tion in the 
ost fun
tion after one outer iteration.
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Assimilation Results
� English 
hannel: 18 assimilation stations are used� An overall improvement of 1:2
m is found in the English Channel after2nd outer iteration
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Assimilation Results
� A signi�
ant improvement is found in the north and middle regions of theDut
h 
oast� A slight improvement in the southern region.
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Validation Results
� English 
hannel: 8 validation stations are used� An overall improvement of 1:0
m is found in the English Channel
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Validation Results
� A signi�
ant improvement is found in the middle region of Dut
h 
oast�No improvement in the northern region during 2nd outer iteration� Again a slight improvement in the southern region.
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results(
ontd)
� Computational 
ost of the algorithm:�Number of parameters: 13The 
omputational 
ost is given in terms of No. of simulationsof the original DCSM model.ba
kground 
ost fun
tion : 3Ensemble 
olle
tion(only on
e): 3Redu
ed model formulation: 1/2Optimization :negligible( 1/20)� So the 
omputational 
ost of the entire optimization is < 7 model sim-ulations.
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Con
lusions and Future Work
�Negligible Optimization 
ost with the POD based model redu
tion te
h-nique.� Classi
al method, adjoint of tangent linear model� POD based method gives adjoint of linear redu
e forward model� Adjoint method gives exa
t gradient, more a

urate� POD based method gives approximate gradient.�The POD method is dependent on the number of parameters. If thenumber of parameters are too large, the size of ensemble is too big andit is diÆ
ult to �nd a good approximate model.�The 
ost of ensemble in ea
h outer iteration 
an be redu
ed by using thesame ensemble.
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