Intercomparison of variational, EnKF, and ensemble-4D-Var data assimilation approaches in the context of deterministic NWP

Project Team:
Mark Buehner
Cecilien Charette
Bin He
Peter Houtekamer
Herschel Mitchell

Mark Buehner
Data Assimilation and Satellite Meteorology Section
Meteorological Research Division
May 21, 2009

The 8th Workshop on Adjoint Model Applications in Dynamic Meteorology
May 18-22, 2009, Tannersville, PA
Introduction

• **Goal**: compare 4D-Var and EnKF approaches in the context of producing *global deterministic analyses for operational NWP*

• 4D-Var and EnKF:
 – both operational at CMC since 2005
 – both use GEM forecast model
 – both assimilate similar set of observations using mostly the same observation operators and observation error covariances

• 4D-Var is used to initialize medium range global deterministic forecasts

• EnKF (96 members) is used to initialize global Ensemble Prediction System (20 members)
Contents

• Brief description of operational systems
• Configurations used for the intercomparison
• Idealized experiments:
 – effect of covariance localization
 – effect of covariance evolution
• Full analysis-forecast experiments (February 2007)
 – scores from analyses and 56 6-day deterministic forecasts (vs. radiosondes and analyses)
 – precipitation scores against GPCP analyses

• Conclusions
Operational Systems

• 4D-Var
 – operational since March 2005
 – incremental approach: ~35km/150km grid spacing, 58 levels, 10hPa top

• EnKF
 – operational since January 2005
 – 96 ensemble members: ~100km grid spacing, 28 levels, 10hPa top

• Dependence between systems
 – EnKF uses 4D-Var bias correction of satellite observations and quality control for all observations
Experimental Configurations
Modifications relative to operational systems

• Same observations assimilated in all experiments:
 – radiosondes, aircraft observations, AMVs, US wind profilers, QuikSCAT, AMSU-A/B, surface observations
 – eliminated AIRS, SSM/I, GOES radiances from 4D-Var
 – quality control decisions and bias corrections extracted from an independent 4D-Var experiment

• Increased number of levels in EnKF to match 4D-Var
• Increased horizontal resolution of 4D-Var inner loop to match EnKF (but 4D-Var uses Gaussian Grid, EnKF uniform lat-lon)
• Other minor modifications in both systems to obtain nearly identical innovations (each tested to ensure no degradation)
Experimental Configurations

• 3/4D-Var:
 – 3D-FGAT and 4D-Var with B matrix nearly same as operational system (NMC method)
 – 3D-FGAT and 4D-Var with flow-dependent B matrix from EnKF at middle or beginning of assimilation window (same localization parameters as in EnKF)
 – Ensemble-4D-Var (En-4D-Var): use 4D ensemble covariances to produce 4D analysis increment without TL/AD models (most similar to EnKF approach)

• EnKF:
 – Deterministic forecasts initialized with EnKF ensemble mean analysis (requires interpolation from ~100km to ~35km grid)
Experimental Configurations

Remaining differences between two systems

• Differences in spatial localization (most evident with radiance obs):
 – 4D-Var: \(K = (\rho \circ P)H^T \left(H(\rho \circ P)H^T + R \right)^{-1} \) (also En-4D-Var approach)
 – EnKF: \(K = \rho \circ (P H^T) \left(\rho \circ (PH^T) + R \right)^{-1} \)

• Differences in temporal propagation of error covariances:
 – 4D-Var: implicitly done with TL/AD model (with NLM from beginning to middle of assimilation window)
 – EnKF: explicitly done with NLM in subspace of background ensemble (also En-4D-Var approach)

• Differences in solution technique:
 – 4D-Var: limited convergence towards global solution (30+25 iterations)
 – EnKF: sequential-in-obs-batches explicit solution (not equivalent to global solution)

• Differences in time interpolation to obs in assimilation window:
 – 4D-Var: 45min timestep, nearest neighbour (NN) interpolation in time
 – EnKF: 90min timestep, linear interpolation in time
 – En-4D-Var: 45min, NN for innovation, 90min, linear interp. for increment
Single observation experiments
Difference in vertical localization between 3D-Var and EnKF

- AMSU-A ch9
- peak sensitivity near 70hPa
- with same B, increment **slightly** larger & less local with 3D-Var than EnKF
- without localization increments nearly identical
Single observation experiments
Difference in vertical localization between 3D-Var and EnKF

- all AMSU-A channels (4-10)
- with same B, largest differences near model top

- entire temp. profile of nearby raob
- all experiments give more similar increments
- same general shape as with AMSU-A in layer 150hPa-700hPa
4D error covariances
Temporal covariance evolution

3D-Var-Benkf:
96 NLM integrations

EnKF (and En-4D-Var):
96 NLM integrations

4D-Var-Benkf:
96 NLM
55 TL/AD integrations, 2 outer loop iterations
Single observation experiments
Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at beginning of assimilation window (-3h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)
Single observation experiments
Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at middle of assimilation window (+0h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)

Contour plots at 500 hPa
Single observation experiments
Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at end of assimilation window (+3h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)
Analysis and Forecast Verification Results – 4D-Var, EnKF and 4D-Var with EnKF covariances

EnKF (ensemble mean) vs. 4D-Var-Bnmc and 4D-Var-Benkf vs. 4D-Var-Bnmc
Analysis Results (O-A) – global

EnKF mean analysis vs. 4D-Var-Bnmc

4D-Var-Benkf vs. 4D-Var-Bnmc

stddev & bias relative to radiosondes

T - T_d
Forecast Results:
EnKF (ens mean) vs. 4D-Var-Bnmc

Difference in stddev relative to radiosondes:

Positive \Rightarrow EnKF better

Negative \Rightarrow 4D-Var-Bnmc better
Forecast Results: EnKF (ens mean) vs. 4D-Var-Bnmc

Significance level of difference in stddev relative to radiosondes:

Positive → EnKF better

Negative → 4D-Var-Bnmc better

Computed using bootstrap resampling of the individual scores for the 56 cases (28 days, twice per day).

Shading for 90% and 95% confidence levels

Environnement Canada

Environment Canada
Forecast Results: 4D-Var-Benkf vs. 4D-Var-Bnmc

Difference in stddev relative to radiosondes:

- **Positive →** 4D-Var-Benkf better
- **Negative →** 4D-Var-Bnmc better
Forecast Results:
4D-Var-Benkf vs. 4D-Var-Bnmc

Significance level of difference in stddev relative to radiosondes:

Positive →
4D-Var-Benkf better

Negative →
4D-Var-Bnmc better

Computed using bootstrap resampling of the individual scores for the 56 cases (28 days, twice per day).

Shading for 90% and 95% confidence levels.
Results – 500hPa GZ anomaly correlation
Verifying analyses from 4D-Var with Bnmc
Forecast Results – Precipitation
24-hour accumulation verified against GPCP analyses

Equitable Threat Score for Tropics

EnKF (ens mean)
4D-Var-Bnmc

4D-Var-Benkf
4D-Var-Bnmc

threshold (mm)
Analysis and Forecast Verification Results – Differences in covariance evolution

En-4D-Var vs. 3D-Var-Benkf
and
En-4D-Var vs. 4D-Var-Benkf
Temporal covariance evolution

3D-Var-Benkf:
- 96 NLM integrations

En-4D-Var:
- 96 NLM integrations

4D-Var-Benkf:
- 96 NLM
- 55 TL/AD integrations, 2 outer loop iterations
Forecast Results: En-4D-Var vs. 3D-Var-Benkf

Difference in stddev relative to radiosondes:

Positive ⇒ En-4D-Var better

Negative ⇒ 3D-Var-Benkf better
Forecast Results: En-4D-Var vs. 3D-Var-Benkf

Significance level of difference in stddev relative to radiosondes:

Positive → En-4D-Var better

Negative → 3D-Var-Benkf better

Shading for 90% and 95% confidence levels
Forecast Results:
En-4D-Var vs. 4D-Var-Benkf

Difference in stddev relative to radiosondes:
- **Positive**: En-4D-Var better
- **Negative**: 4D-Var-Benkf better

- **Zonal Wind**
 - North
 - Tropics
 - South

- **Temperature**
 - North
 - Tropics
 - South

- **Height**
 - North
 - Tropics
 - South
Forecast Results: En-4D-Var vs. 4D-Var-Benkf

Significance level of difference in stddev relative to radiosondes:

Positive → En-4D-Var better

Negative → 4D-Var-Benkf better

Shading for 90% and 95% confidence levels
Results – 500hPa GZ anomaly correlation
Verifying analyses from 4D-Var with Bnmc

Northern hemisphere

Southern hemisphere

3D-Var Benkf
En-4D-Var
4D-Var Benkf

3D-Var Benkf
En-4D-Var
4D-Var Benkf
Conclusions

Based on 1-month data assimilation experiments

• Deterministic forecasts initialized with 4D-Var with operational B and EnKF (ensemble mean) analyses have comparable quality (4D-Var better in north, EnKF better in tropics and south but with spin-up problem in tropics)

• Largest impact (~10h gain at day 5) in southern extra-tropics for 4D-Var with flow-dependent EnKF B vs. 4D-Var with operational B (also better in tropics)

• Use of 4D ensemble B (i.e. En-4D-Var) improves on 3D-Var, but inferior to 4D-Var (both with 3D ensemble B) and least sensitive to covariance evolution in tropics