Importance of input error in reservoir simulations

Joanna S. Pelc Remus G. Hanea
Arnold W. Heemink Jan-Dirk Jansen

TU Delft
Delft University of Technology

The Eighth International Workshop on Adjoint Model Applications in Dynamic Meteorology, Tannersville 18-22 May 2009
Outline

1. Project Motivation
2. Reservoir Simulator
3. Accounting for input error in 4D-Var
4. Results
5. Summary
How is oil produced?

With primary recovery oil production is usually less than 30%.
How is oil produced?

Water is injected into the reservoir field to force more oil into production wells.
What mathematics has to do with oil?

A suitable reservoir rock must be porous and permeable
Reservoir Simulator

State vector

- Pressure at time 451.454 days
- Saturation at time 451.454 days

Parameters

- Permeability (log scale)

\[x_i = M_i(x_{i-1}) \]

where \(x_i = [p_i \ s_i]^T \)

Inputs: prescribed bottom hole pressures and prescribed flow rates
4D Variational Data Assimilation

Cost function in 4D-Var

\[
J(p) = \sum_{i=1}^{n} \left(\frac{(H_i(x_i) - y_i)^{T}}{R_i} \right) \frac{1}{R_i} \left(H_i(x_i) - y_i \right) + \left(p - p_b \right)^{T} B^{-1} \left(p - p_b \right) + \sum_{i=1}^{n} \left(M_i(x_{i-1}) - x_i \right)^{T} Q_i^{-1} \left(M_i(x_{i-1}) - x_i \right)
\]

minimization with constraints:

\[x_i = M_i(x_{i-1}) + \epsilon \]

CONTROL VARIABLES:
- parameters \(p \) (permeabilities)
- model error \(\epsilon \)
Twin Experiment

The Truth

One model simulation is generated, **SAVED** and called **THE TRUTH**.

Observations

Observations are generated with a chosen measurement error from **THE TRUTH**.
In reservoir simulator perturbing grid pressure is not effective and unrealistic.

White noise

Red noise

Perturbed grid pressure at the production wells
Imperfect truth construction

The Idea: perturb inputs instead of the state vector

Red noise

Bias

Perturbed prescribed bottom hole pressures at the producers
Imperfect truth construction

- Obtained model perturbation looks realistic
- 4D-Var can be applied adding the inputs to the control variable

Red noise

Bias

Effect of different input perturbations on the grid pressure at the producers

J.S. Pelc, R.G. Hanea, A.W. Heemink, J.D. Dirk

Input error in reservoir simulations
Accounting for input error in 4D-Var

Cost function in 4D-Var

\[J(p, u) = \sum_{i=1}^{n} (H_i(x_i) - y_i)^T R_i^{-1} (H_i(x_i) - y_i) + (p - p_b)^T B^{-1}(p - p_b) \]

minimization with constraints:

\[x_i = M_i(x_{i-1}) \]

CONTROL VARIABLES:
- parameters \(p \) (permeabilities)
- inputs \(u \)
Accounting for input bias - Results

- very good permeability estimation with accounting for input bias
- very bad permeability estimation without accounting for input bias
- very good estimation of inputs
Accounting for input bias - Results

- very good permeability estimation with accounting for input bias
- very bad permeability estimation without accounting for input bias
- very good estimation of inputs

J.S. Pelc, R.G. Hanea, A.W. Heemink, J.D. Dirk

Input error in reservoir simulations
Accounting for input bias - Results

Total flow rate

- **Production well: NW**
 - Truth (solid line), Prior (dash-dotted line), 4D-Var With Inputs (dashed line), 4D-Var Without Inputs (green line)
 - Obs 5%

- **Production well: NE**
 - Truth (solid line), Prior (dash-dotted line), 4D-Var With Inputs (dashed line), 4D-Var Without Inputs (green line)
 - Obs 5%

- **Production well: SW**
 - Truth (solid line), Prior (dash-dotted line), 4D-Var With Inputs (dashed line), 4D-Var Without Inputs (green line)
 - Obs 5%

- **Production well: SE**
 - Truth (solid line), Prior (dash-dotted line), 4D-Var With Inputs (dashed line), 4D-Var Without Inputs (green line)
 - Obs 5%

Revised permeability RMSE = 2.84442

Truth

Prior

4D-Var With Inputs

4D-Var Without Inputs

Obs 5%

J.S. Pelc, R.G. Hanea, A.W. Heemink, J.D. Dirk

Input error in reservoir simulations
Accounting for input bias - Results

Water break through time prediction:

Water saturation

- **NW − 1**
- **NE − 421**
- **SW − 21**
- **SE − 441**

<table>
<thead>
<tr>
<th>Truth</th>
<th>Prior</th>
<th>4D−Var</th>
<th>4D−Var strong</th>
</tr>
</thead>
</table>

- Graphs show water saturation over time for different grid blocks.
- The graphs compare truth, prior, and 4D-Var results.
- The 4D-Var strong results show improved agreement with the truth data.

J.S. Pelc, R.G. Hanea, A.W. Heemink, J.D. Dirk
Accounting for input bias - Results

Prior

Truth

With Inputs

Without Inputs
Accounting for input bias - Results

Prior

Truth

With Inputs

Without Inputs

J.S. Pelc, R.G. Hanea, A.W. Heemink, J.D. Dirk
Summary

- Perturbing the state vector in reservoir simulations is not effective neither realistic
- Model inputs have a big impact on the reservoir behavior
- Accounting for the input bias as control variable in 4D-Var gives very good estimations of the permeability, the outputs of the model, as well as the inputs themselves
Thank you for your attention!

Questions?