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Introduction

Non-incremental 4D-Var cost function is

i M;(x0 +6x))) Ry H;(M@(Xg—i—éx)))—i—%éxl‘B_léx (1)

i=1

[\.'J|l—l

where xq is the background state at time ty, M;, H; are respectively the full model
evolution to time ¢; and the observation operator at time ¢;, y; is a vector of obser-
vations at t;, and B, R; are background and observation error covariance matrices.
Suppose for present that observation operators H; are linear
Tangent linear approximation is to replace M;(xg + 0x) by M;(x) + M. (xq)x
Can we do better? - ie, can we find M (xg), £(xg) so that £(xq) + M(xq)0x

(a) better approximates M;(xp + 0x) than M;(xy) + M (x0)dx does, or

(b) ‘performs better’ in Eqn (1) than M;(xq) + M/’ (x)dx does
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Best linear approximation for functions

On a functional level certainly better choices to make than tangent linear, so long
as we know what distribution of increments is.

Seek i i
f(x+9d) =~ f(x) + T(x)d

in such as way as to minimise
E{[f(x + &) — f(x) — T(x)8]" A[f(x + &) — £(x) — T(x)d]}

where the expectation is over 0.
This is achieved by choosing f(x), T(x) to solve the simultaneous equations

e

f(x) = E[f(x + ) — T(x)d]

T(x) = E[(f(x + &) — £(x))§"|{E[§6"]}

T = [E{f(x + 6)6"} — E{f(x + 6)} E{6}"][E{66"} — E{6}E{8}"]™"
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Data assimilation cycle

We will consider the cycled system (where subscript ¢ denotes true state) the ith
stage of which has the form

h g

xt — X - xH — ith cycle

with observations valid at intermediate point in cycle
y' =%+ € =h(x}) + €

The non-incremental 4D-Var cost function for the ith stage of this system then is

J = %(yi —h(x! +0x))' R7Y(y* — h(x! + 6x)) + %5){1'3_15){

We could apply the above improved approximation to
h(x] + 0x)

so that our linear version of h is ‘closer’ to true h and therefore our incremental J is
closer to full J than using the TL approximation would give. (This regularisation of
the model will be called ‘Reg-M’.)
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Issue 1 — Is the conditional mode what we want? =

e

By using Reg-M we are coming closest to minimising full J, ie we are finding the
maximum of posterior distribution (conditional mode), but is this what we want?

Suppose

x; — X, =¢€,~N(0,B), y— H(h(x;)) =€, ~ N(0,R)

The posterior pdf of x given y is

e—J(x)
'p(X|y) = [n (0 Jxg
where J(x) is
J(x) = £y ~ HB(0)T Ry — H(b(0)) + +(x— 3B~ (x — )

)01 for x<0, Hix}=10' for x>0

Small example: 3D-Var in 1D, with observation operator

) Al wfw=0
H(E){ 01z  ifz<0
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Posterior pdf

x ~ N(=5,1)

=
I
(|

P(xly)
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4D-Var strategies

Now suppose forecast model is logistic map h(z) =4x(1 —z), g = 1I.
o, = 0.2 and choose g, by ensemble method (using 4D-Var with TL).
At each cycle adopt one of three strategies:

Strategy 1: Global Minimum of J (Conditional Mode)
Strategy 2: Incremental 4D-Var with TL Model

fﬁn xe 7 (%) dx

Strategy 3: Conditional Mean x¢ = E[x|y| = [r. xp(x|y)dx = : e

Ellx, — x|

Minimise J (Conditional Mode) 0.098
Incremental 4D-Var with TL Model 0.081
Conditional Mean 0.069  x\.p.~

i I
.

|

.. S0 minimising true .J is the worst thing to do!

5
¥
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Reg-A: Optimising linear model for analysis ===

Recall that in incremental 4D-Var
Xq = Xp + 0

where é is obtained in the inner loop by minimising, for some R, B

| 1 -
J((S) — E(Si B_l(s 4 i(y = E(Xb) — iplfif(Xg})(S)i R_l(y G E(Xb) = iﬂlff(XgJ)(S)
where £(x;) + M(x,)d approximates h(x;, + &)
- eg in TL have £(x;) = H(M(xy)) and M (x;)0 = (HM) (x3)

What about instead choosing M (x;), £(x;) to improve analysis directly?
- might do this by choosing analysis (i) to best approximate truth
or

(ii) to best approximate conditional mean (cf how successful this was in example
above)
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Reg-A: Optimising linear model for analysis

X, minimising J on previous slide is
X, = Xp + K(Xp)(y — £(xp))
where
K(xp) = (B +M'R'M)*M*R™!
so choosing M (x3), £(x;) is equivalent to choosing K (x;), £(x;).

We first consider two problems where the objective is to choose K(xy), £(x3) in such
a way as to minimise the expected error in the analysis.

(Reg-A) Find matrix K(x;) and vector ¢(x,) which minimise the expected analysis
error

Ellxa — x¢[|*] = Blllxs + K (%) (h(xs + €5) + €6 — €(xs)) — x¢]|"]

where the expectation is over €, €, and ||.|| denotes some norm.
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Solution to Reg-A

For the norm (on analysis error etc) we will use
|x||* = x' Ax

where A is some positive definite matrix. In Reg-A we seek to find vector £(x;) and
matrix K (x,) which minimises

El(x; —x,)t A(xy — x,)]
where
X, =Xp+ K(y — £)
The solution to Reg-A is independent of the matrix A:

K = E[{x; — x» — E[x; — x3)}y7 | El{y — E[y]}y"]™?

KL(xy) = KE[y] — E[x: — x3)]
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As mentioned earlier, a popular single-value choice for the analysis is the conditional
mean

x;, = Blx|y] = [ xp(x]y)dx

as this is also the minimum variance solution. Note that unlike the maximum
likelihood estimate the conditional mean is a function of the whole pdf

This suggests the second problem

(Reg-A’) find matrix K (x;) and vector £(x;) which minimise the expected error
Ell|xa — XiHQ] = El||x, + K(xp) (h(x, + €,) + €, — £(xp)) — quz]

where the expectation is again over €, €,.
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Solution to Reg-A’

Note that Reg-A" has the identical formulation to Reg-A but with the conditional
mean x;

X, = Blxily] = [ xp(xly)dx

replacing x;. The solution to Reg-A depended on x; only through the terms FE[x;]
and E[x;y']. However

(i) Since x¢ is a function of y only,
Elx;] = E[E[x|y]] = E[x]
(1)
Elxy'] = f f xy” p(y)p(xly)dxdy
and since by Baye’s theorem

p(x|y)p(y) = p(x,y)

it follows that
Elxiy'] = / f xy' p(x,y)dxdy = E[xy"]

oc 1t follows that Reg-A and Reg-A’ have exactly the same solution!
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Reg-A applied to Vis op

Out of interest we apply this strategy to our 3D-Var problem described above
To compute Reg-A need
Elx; — xp] and B[(x; — x3)y" |
but would not normally have access to these quantities, so instead use
Elx, — 3] and E[(x, — %)y ]
Applied to 3D-Var vis problem impact of Reg-A is a minute improvement:

Ellxp — x4|?]

Minimise J (Conditional Mode) 0.098
Incremental 4D-Var with TL Model 0.081
Incremental 4D-Var using Reg-A 0.079
Conditional Mean 0.069

Expect larger impact using Reg-A on model
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Issue 2: Will improving analysis improve forecasts?

Eg, 4D-Var cycled system in 1D, the ith stage of which has the form

h q
i+l

Ty — T — T}

h and g both logistic map # — 4x(1 — z) on [0, 1]. Observations valid at
intermediate point in cycle ¢ = &t + ¢, = h(z}) + €,

Iterate DA cycle using 4D-Var with TL map; use this to compute distribution of
background errors x, — a;

Use this distribution to compute for each 3 gain K'(xp) and ‘obs equivalent’ £(zy)
which minimise mean analysis error

Mean Square analysis error using TL (black) and Reg-A (blue)
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Short forecast error

Using this K (x;) and ¢(a3) to calculate

To =5 + K(zp)(y — £(xs))

and hence background for next cycle

7} = gh(za)

Mean Square short forecast error using TL (black) and Reg-A (blue)
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Applying Reg-A improves analysis but can degrade next background and therefore
subsequent analysis, so overall impact can be negative!
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Schematic of why improving analysis may not =

prove short forecast

*TRU

* "M

* AN

I'TH

FORECAST MODEL

IPROVED ANALYSIS"

ALYSIS

© Crown copyright 2009

b

BACKGROUI

*BAC OUND FROM
"IMPROXED ANALYSIS"

NL)*

*TRUTH

Page 16



Reg-B: Optimising linear model for short forecast

Foregoing suggests the alternative optimization problem:

Find £ and gain K (x;), so that the next background best estimates the true state at
that time, which since

X, =%Xp+ K(y — £)
means we seek to minimise
E[|lgh{x;, + K(x,)(h(x, + €,) + €, — £(x;))} — gh(x,)]|’]

over K, £.

Unlike Reg-A this is in general a non-quadratic minimisation problem (potentially
with more than one local minimum) which is solved numerically.

It is numerically more stable to use as independent variables { K, K¢} rather than

{K,f}. We have used a conjugate-gradient method with iterative line searches (that
is, non-exact line searches using cubic interpolation/extrapolation).
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Reg-B applied to logistic map

Reg-B harder and more expensive to compute

Very effective even for cases for which TL well-suited (ie when increments small
compared with scale of nonlinearites)

Eg, 4D-Var in 1D on [0, 1| with
h(z) =g(x) =4z(1 —x), H=1
(this example computed using true background errors)
TL  Reg-B

Mean Square Analysis Error 0.039  0.010
Mean Square short forecast Error 0.045 0.020

Table 1: Mean square errors for cycled forecast-analysis system using logistic map
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More Issues

What pdf to use: x, — x; or x; — x, etc

What to do about variable obs network: strictly Reg-A or Reg-B would need to be
recomputed every analysis
Lack of chain rule

Choice of B. To calculate B = E[(x, — x3)(x; — %3)?] need DA system for which
need B.
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o™ on z-axis versus oY

7 on y-axis for left shift and right logistic maps.
The blue curve is the leading diagonal of"“* = o}".
Background covariance matrix B and linear model are inextricably intertwined.
Reg-A and Reg-B effectively also determine B. For other methodologies for linear
model conclusion may depend on how we choose B.
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Reg-M revisited

Notwithstanding the many issues, if TL is poor enough then even our simplest
regularisation, Reg-M, is very effective

Recall Reg-M uses best linear approximation of model directly (not requiring
solution of matrix equation) and cheap to compute as gives rise to quadratic
minimisation problem

Use x, — X3 in place of x4 — X,
(Reg-M) Find PF Model M(x;) and vector £(x;) which minimise the expected error
Ellh(x + 6) — M(x3)d — £(x3)]|"]

where the expectation is over analysis increments d = X, — X3, the analysis being
that produced by a TL model (one could then iterate).

Following the above the solution is

M (x;) = {E[h(x, + 6)8"] — E[h(x, + 6)|E[6]" H{E[66"] — E[8]E[8]"}
E(Xb) = E[h(xb + 6)] - M (XFJ)E['S]
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TL versus Reg-M applied to modified logistic map ==

Example
h(z) = 4|z](1 — [z]) + ysin(Kn|z]) where [x] =z, mod 1
g(x) = H(x) =1
y ~ N (h(x),0.04)
x — xp ~ N(0,0.034)
¢ using TL (black) and Reg-M (blue) PF using TL (black) and Reg-M (blue)
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TL versus Reg-M with many outer loops

eror  Mean square background error using TL (black)
017——and Reg-M (blue) for many outer loops —
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Summary

As an alternative to the TL approach we have considered other ways of formulating
M,¢ (ie the methods we have termed Reg-M,A,A’,B) which are obtained by solving
optimisation problems in advance of the assimilation

Some issues need to be borne in mind:

non-incremental 4D-Var does not necessarily outperform incremental 4D-Var with a
TL model, with the implication that finding a better approximation to the full
model may not always be beneficial;

choosing the linear model to reduce analysis error may increase short forecast error
and so be self-defeating

Reg-B will in practice always outperform TL but is very hard to implement
Reg-M is the simplest methodology and makes several approximations/assumptions.
It is still quite hard to implement in realistic systems, but at least has a simple

analytic form and is the same cost as TL in running.

Reg-M can be extremely effective if TL approximation poor
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