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The ensemble square root filter (Tippett et al.
2003)

Ensemble : {xi : xi ∈ Rn}i=1,...,m

Ensemble
mean:

x = 1
m
∑m

i=1 xi

Perturbation
matrix:

X = 1√
m−1

(
x1 − x x2 − x . . . xm − x

)
.

Covariance: P = XXT = 1
m−1

∑m
i=1(xi − x)(xi − x)T .

size n × n, low rank
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Ensemble forecast

Each member is forecast using a nonlinear model

x(tk+1) = f(x(tk )),

to the time of an observation yk ∈ Rp.

yk = H(x(tk )) + εk ,

where
H is an observation operator such that H : Rn → Rp

εk is a stochastic variable with mean zero and
covariance Rk .
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Observation update

Update mean: xa = xf + K(y− yf )

Update perturbations: Xa = Xf T

where
Forecast obs ensemble yf

i = H(xf
i )

Perturbation matrix Yf = 1√
m−1

(
yf

i − yf
)
.

as columns

Gain matrix K = Xf (Yf )T D−1

D = Yf (Yf )T + R.
TTT = I− (Yf )T D−1Yf .

We never have to compute P = XXT !
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Known problems with under-sampling (1)

Under-estimation of variance (e.g. Anderson and Anderson, 1999; Hamill et
al., 2001; Furrer and Bengtsson, 2007)

Background is too strongly weighted compared with the
observation.

Covariance inflation
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Known problems with under-sampling (2)

Spurious long range correlations

xa = xf + Pf HT (HPf HT + R)−1(y− yf )

= xf + HT (HPf HT + R)−1(y− yf )

⇒ unphysical analysis increments far from the location of
the observation

Covariance localization
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Feedback form

Combine the forecast and observation update steps to write
the filter in feedback form:

xa(tk+1) = f(xa(tk )) + Kk+1(yk+1 − H(f(xa(tk )))).
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Error equation

Let ei(tk ) = xa
i (tk )− xt(tk ), i.e., the error in i-th analysis

ensemble member at time tk .

Seek an approximate error evolution equation by linearizing
about the true state . . .

Error equation

e(tk+1) = (I− Kk+1H) Fe(tk ) + higher order terms.

Here F and H are the Jacobians of f and H respectively,
evaluated at xt

xa
k will converge to the true state if |ek | → 0 as tk →∞.

We expect that the eigenvalues of (I− Kk+1H) F lie
within the unit circle.
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What can go wrong? An example

Suppose F = αI and p = n, H = I.

The gain matrix becomes

K = Xf (Xf )T D−1,

an n × n, square matrix with rank at most m − 1.

Writing K in its Jordan normal form,

K = E
(

J0 0
0 0

)
E−1,

we have

(I− KH) F = αE
(

I− J0 0
0 I

)
E−1.

Thus we have a set of eigenvalues equal to α that do not lie
within the unit circle. Errors in the analysis will grow over
time!
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What can we do about it?

The problem in this example arose because Pf
k was not

full rank.
Clearly it would be desirable if we could modify the
algorithms so that the approximation to this matrix is full
rank.
Although it would not necessarily guarantee that the
algorithms are not unstable for some other reason!
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The Schur product

The Schur product (Schur, 1911) is defined as an
elementwise product between two matrices of the same
size, thus, if A,B ∈ Rk×l then the i , j-th element of their
Schur product may be written

[A ◦ B]ij = [A]ij [B]ij .

Example(
1 2
3 4

)
◦
(

5 6
7 8

)
=

(
1× 5 2× 6
3× 7 4× 8

)
.
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Properties of the Schur product (1)

Theorem (Schur’s theorems)
1 If A is strictly positive definite and B is positive

semi-definite with all its main diagonal diagonal entries
positive, then A ◦ B is postive definite.

2 The Schur product of two covariance matrices is a
covariance matrix.

Now P = XXT so, for non-degenerate cases, its main
diagonal entries will be strictly positive.

Hence, if we choose a positive definite covariance matrix ρ,

ρ ◦ P

is a full rank covariance matrix!
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Localization

If we pick ρ to be the matrix to be a positive definite banded
covariance matrix, then we can also use ρ to remove
spurious correlations (e.g. Hamill et al, 2001).

ρ ◦ P =

◦ =



Stability and
Localization in

the SRF

Dance et al.

Ensemble
SRF

Under-
sampling

Stability

Localization

The
Khatri-Rao
product

Conclusions

Localization in a square root filter

For a SRF, it is not obvious how to apply the localization
technique consistently using the Schur product.
Firstly, the calculation of ρ ◦ P in the Kalman gain
requires the calculation of P = XXT

How can you compute a consistent ensemble
perturbation update?
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The Khatri-Rao product (Rao and Rao, 1998)

The Khatri-Rao product provides us with a factorization of
the Schur product equation:

Theorem (Factorization of the Schur product)

If P is an n × n matrix such that P = XXT with X of size
n×m, and ρ is also an n× n matrix, such that ρ = CCT with
C of size n × k, then

ρ ◦ P = (CT � XT )T (CT � XT ).

But what is �?
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The Khatri-Rao product

Let A and B be a matrices with r columns. Let αi be the i-th
column of A and βi be the i-th column of B. The Khatri-Rao
product of A and B is the partitioned matrix

A� B = (α1 ⊗ β1|α2 ⊗ β2| . . . |αr ⊗ βr ) ,

where ⊗ indicates the well-known Kronecker product.

Example

(
1 2
3 4

)
�

 5 6
7 8
9 10

 =


1×

 5
7
9

 2×

 6
8

10


3×

 5
7
9

 4×

 6
8

10



 .
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Applying the product to the SRF

We would like to replace X with (CT � XT )T in the SRF
algorithm.
But X is n ×m and (CT � XT )T is n ×mn, so we need
to reduce the size of this matrix again at the end of the
analysis step
Bishop and Hodyss (2009) have done something
similar for ETKF, using a different approach to reduce
the ensemble size.
Future work to compare these approaches, and apply
the K-R product to different SRFs
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Conclusions

The ensemble SRF suffers from problems with
under-sampling
It is well known that this causes under-estimation of
variance and spurious correlations
New examples show that low rank may lead to filter
divergence
Rank problem can be corrected using Schur product, or
Khatri-Rao product for an SRF
We are working on implementing the K-R product for a
number of filters
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