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Initial conditions and forecast lead time

4 Relevance of initial

conditions
A Land
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| | | | |
Forecast lead time [months]

Weather prediction limited by atmospheric chaos beyond two weeks.

Seasonal climate prediction must rely on slower moving components of the
Earth’s system (ocean heat content, soil moisture, snow).

Land initialization relevant at 2 week — 2 month (sub-seasonal) time scale.




A simple view of land-atmosphere feedback
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Perhaps such feedback contributes to predictability?

Two things must happen:

1. A soil moisture anomaly must be “remembered” into the forecast period.
2. The atmosphere must respond predictably to soil moisture anomalies.
In other words, need strong land-atmosphere coupling...




Soil moisture memory and “hot spots”

Land-atmosphere coupling strength (JJA), averaged across AGCMs
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Koster et. al, Science, 2004

“Hot spots" where soil moisture conditions affect summer rainfall
(multi-model consensus).




NASA seasonal forecast initialization

Operational system (since April 2004)
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Contribution of land moisture initialization
to skill of one-month forecasts

Actual contribution to skill Maximum possible contribution
(Idealized skill w/ perfect init and model)
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NASA seasonal forecast initialization

Future system: Assimilation uses satellite observations.
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Ensemble Kalman filter (EnKF)

update ensemble
EnKF members x!
: observatlon yk
X1
|
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' ensemble of :
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' states and compute :

| sample covariance P

Nonlinearly propagates
ensemble of model trajectories.

Can account for wide range of
model errors (incl. non-additive).

Approx.: Ensemble size.
Linearized update.

Xx,! state vector (eg soil moisture)

P, state error covariance

=
Vet by Vv R, observation error covariance
[\ J \
Y
Propagation t,_, to t,: Update at t,:

X+ = f(x, ") + w]

w = model error

X = x, "+ K (v - x, )
for each ensemble member i=1...N
K =P, (P, + Ry)"
with P, computed from ensemble spread




Error structure in land data assimilation

The land model describes the water
and energy balance at the land surface. ol N Tow

Trajectories of the (uncoupled) land
model are determined by surface
meteorological forcings, not initial
conditions — no chaos/butterfly effect.

© Hartmann, Global Physical Climatology

Dominant errors are “model errors” in

(a) surface meteorological forcings (time-varying b.c.’s) and
(b) model parameterizations.

= Maintain ensemble spread through random fields that are
(a) correlated in time (AR1),
(b) correlated in space (Gaussian), and
(c) cross-correlated.




Error structure in land data assimilation

The (uncoupled) land model is a collection of
identical “1d” models that are applied to each
land surface element (or catchment) independently.

Latitude

Forcing/model errors are horizontally correlated.

EnKF can be applied
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(a) independently to each catchment (“1d-EnKF”) or
(b) simultaneously to a set of catchments (“3d-EnKF”).
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1d-EnKF v. 3d-EnKF

Satellite soil moisture is not available everywhere and always. Can data
assimilation spread information horizontally?

Taking horizontal error correlations into account # SMMR data/month
in the 3D-EnKF improves soil moisture estimates s W15
over the local (or 1D) EnKF. " % I
] ’ :’
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Reichle & Koster, JHM, 2003
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Soill moisture data sources

“*SMMR period” “AMSR-E period”
1979-87 (~8.5 years) 2002-05 (~3.5 years)
Sensor SMMR (Nimbus 7) AMSR-E (Aqua)
Frequency C-Band (6.6 GHz) X-Band (10.7 GHz)
Soll Sampling depth ~1.25 cm ~1 cm
moisture : :
retrievals | f70riz. Resolution ~150 km ~40 km
Equator crossing 12 am/pm 1:30 am/pm
Algorithm Owe et al., 2001 Njoku et al. (http://nsidc.org)

Land surface model

NASA Catchment (~0.5°)

(same w/ minor updates)

Author Berg et al., 2005 GLDAS

Baseline Re-analysis (ERA-15) | NASA GEOS NWP analysis
]Ic\gi?r?ém- Observations Monthly Daily/pentad
data Precipitation GPCP satellite/gauge CMAP (5-day)
(obs.- Radiation SRB (1983-87 only) AGRMET daily
based)

Air temp./humid. CRU (None)

Horiz. resolution ~2 deg ~2 deg




Soill moisture data sources

“*SMMR period” “AMSR-E period”
1979-87 (~8.5 years) 2002-05 (~3.5 years)

Soil
moisture
retrievals

Land surfac

Meteorol.
forcing
data
(obs.-
based)




Satellite vs. satellite bias (time avg. soil moisture)
__ SMMR (1979 87) AMSR E (2002 05)
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SMMR retrievals much wetter
than AMSR-E retrievals.

Magnitude of differences
comparable to dynamic range.
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Satellite vs. satellite bias (time avg. soil moisture)
__ SMMR (1979 87) AMSR-E (2002 05)

20 2 Maybe the 80 s were much wetter than 2002- 05 ’? |
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We found strong biases between AMSR-E and SMMR.

For assimilation, we are really interested in the satellite vs. model biases.




Satellite vs. model bias (soil moisture)
SMMR mlnus model (1979 87) AMSR E mlnus model (2002 05)

Reichle et al. -02 -01 0
JHM 2004 Soil moisture [m3/m3]

std
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Soil moisture std [m3/m3]



Satellite vs. model bias (soil moisture)
SMMR mmus model (1979 87) AMSR E mmus model (2002 05)

—30 7 1, SMMR and AMSR E exhlblt Iarge and very dlfferent global and ,,a-
_6 regional biases in all moments relative to the model.

2. Absolute soil moisture from satellites and model agree equally well
Reicl (or poorly...) with ground observations = no agreed climatology.

JHY 3. For seasonal forecast initialization, need only normalized anomalies.

:> Scale satelllte data before aSS|m|Iat|on into a model

-006 -004 -0.02 0 002 004 006
Soil moisture std [m3/m3]



Soil moisture scaling for data assimilation

Soil moisture cdf at 46N, 100
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1. Find percentile of a given

2. Find soil moisture that satellite measurement on the
produces the same CDF value satellite’s local climatological
on the corresponding model cumulative distribution

CDF = “scaled” satellite function (CDF).

measurement for assimilation.

In short: Assimilate percentiles.




Soil moisture scaling for data assimilation

Soil moisture cdf at 46, 100W i
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Soil moisture scaling for data assimilation (mean)

ORIGINAL multi-year data sets SCALED multi-year data sets
(Satellite minus model) (Satellite minus model)

CDF scaling based
on 1 year of
satellite data

-

-~ SMMR
A model
L 4

01 X 02 X 03 0.4
surface soil moisture [m-im-]

0 01

1 year of satellite data sufficient for considerable reduction in long-term bias.




Soil moisture scaling for data assimilation (std)

ORIGINAL multi-year data sets SCALED multi-year data sets
(Satellite std minus model std) (Satellite std minus model std)
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1 year of satellite data sufficient for considerable reduction in long-term bias.




Assimilation of SMMR soil moisture



Impact of SMMR assimilation — July 1982
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Assimilation
product lies
“between”
SMMR and
model.

There are
interesting
dynamical
effects.

Reichle & Koster, GRL 2005
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Validation against in situ data
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Assimilation product has
improved phase of annual
cycle.

Reichle & Koster, GRL 2005




Validation of SMMR products against in situ data

Time series correlation coeff. Confidence levels:
with in situ data [-] Improvement of
(with 95% confidence interval) assimilation over
N SMMR Model Assim. SMMR Model
Surface soil 77 44+.03 43+.03 .50%.03 99.7% 99.9%
moisture
Surface 66 .32+.03 .36%.03 43+.03 99.9% 99.9%
anomalies
Root zone soil 59 n/a 46%.03 .50£.03 n/a 97%
moisture
Root zone 33 n/a 32+.05 35+.05 n/a 80%
anomalies

Assimilation product agrees better with ground data than SMMR or model alone.

Modest increase may be close to maximum possible with imperfect in situ data.

Reichle & Koster GRL 2005




Assimilation of SMMR soil moisture

SMMR assimilation successful, but...




Variance of normalized innovations

-

B0 o0 l80 0 607 1207 180
0 0.5 1 1.5 2 2.5

Variance deficiency in dry climates, excess variance in wetter climates.

Potential for improvement by (adaptively) tuning model error parameters.

Reichle & Koster, GRL 2005



Validation of SMMR products against in situ data

Time series correlation coeff. Confidence levels:
with in situ data [-] Improvement of
lel
Surfac¢ We are still working on a similar result for AMSR-E assimilation. |%
moistul Success is perhaps more difficult to achieve because:
)
:ﬁgﬁg - we have only 3.5 years of AMSR-E (vs. 8.5 years of SMMR), .
- AMSR-E retrievals based on X-band (vs. C-band for SMMR),
Root z¢ fo
moistul - GLDAS (2002-05) forcing data (vs. “Berg” 1979-87) might lead to
Root 24 improved (benchmark) model soil moisture. 7
anoma
Assimila alone.

data.

Reichle & Koster, GRL 2005




Conclusions (soil moisture)

Results:
Analyzed AMSR-E, SMMR, and model biases.

Soil moisture assimilation system must be capable of dealing with large
biases.

SMMR assimilation improves land initialization.

Outlook:

Continue assessment of soil moisture estimates.
Further tuning and validation of AMSR-E assimilation.

Impact of SMMR and AMSR-E assimilation on seasonal predictions.
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Soil temperature assimilation

Good news: Abundance of satellite-based skin temperature from infrared and
microwave sensors on geostationary and polar-orbiting platforms
(NOAA-xx, MODIS, GOES, METEOSAT, GMS,...)

Problem 1: Satellite skin temperature and model surface temperature may be
inherently inconsistent (vertical).

Satellite sees
“skin” temperature
in thin layer...

...whereas model “surface”
temperature is typically a
mixture of temperatures of
thicker layers.

T

canopy

T

surface




Soil temperature assimilation

Problem 2: Satellite skin temperature and model surface temperature may be
inherently inconsistent (horizontal).

Satellite “sees” a great variety ...whereas a model is limited
of spatial heterogeneity... in the spatial variability it can
represent.

Bare soil
Ice

Shadows




Soil temperature assimilation

Problem 3: Satellite skin temperature may be sensor- or algorithm-specific.

GAPP - ARM SGP 5Km (July - Sept, 2001)
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CEOP Site (station data)




Three strategies for dealing with the inconsistency

1. Work on model and satellite algorithm until they are “perfect”.
Problems include:

=
&= ..,659 N

Thin layers create numerical

stability issues. Even with perfect model, lack

complete spatial distribution of
“correct” parameter values.



Three strategies for dealing with the inconsistency

Thin layers create numerical

stability issues. Even with perfect model, lack

complete spatial distribution of
“correct” parameter values.



Three strategies for dealing with the inconsistency

2. Ignore the inconsistencies and hope for the best.



Three strategies for dealing with the inconsistency

2. Ignore the inconsistencies and hope fg




Three strategies for dealing with the inconsistency

3. Accept inconsistencies, scale the data prior to assimilation.

satellite satellite

Instead of this... Qata data

) | Assimilate |EEEEED | Assimilate

integrate integrate
model model
forward forward
...do this:
satellite satellite
‘ data ‘ data

Scale satellite Scale satellite

data to model- data to model-

consistent values consistent values
B> | Assimilate |EEEEED | Assimilate
integrate integrate
model model

forward forward



Three strategies for dealing with the inconsistency

3. Accept inconsistencies, scale the data prior to assimilation.

1) Get time series mean u and standard deviation o for satellite Tskin
(“T_sat”) and for model-based synthetic Tskin observations (“T_mod”),
broken down by diurnal cycle and month.

Jan | Feb | Mar | Apr | May [ Jun | Jul | Aug | Sep | Oct | Nov | Dec

0z Mo | MO | MO | MO (MO |[MO | MO | MO | MO | MO [ Ho |[yo

3z MO | MO | MO | MO (MO |[MO | MO | MO | MO | MO [ Mo | M0

6z MO |Mo | MO |MO | MO | MO |[MO | MO |[HO | MO | MO | MO

9z MO | MO | MO | MO (MO |[MO | MO | MO | MO | MO [ Yo | Mo

12z | p,o M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0

15z |yo | Yo |(po |(pyo | yyo | Yo | Yo | Yo (Yo (Yo | Yo | Yo

18z | p,o M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0 M,0

21z | u,0 M,O | MO M,0 M,0 M,0 M,0 M,O | M,0 M,O | M,0 M,0

2) Scale satellite Tskin (“T_sat”) into model climatology (std normal
deviates):

T _sat _scaled = o0_mod/o_sat - (T_sat — p_sat) + yp_mod

3) Assimilate scaled satellite Tskin (“T_sat_scaled”).



Demonstration of scaling approach

Model:
NASA Catchment land surface model on 1 degree lat-lon grid.
(“off-line” — not coupled to atmospheric model)

Surface meteorological forcing data:
y 4 - Global Soil Wetness Project (GSWP-2; 1986-95)

Satellite skin temperature:

- Int’l Satellite Cloud Climatology Project (ISCCP; 1983-2004)
(NOAA-xx, GOES, METEOSAT, GMS,...)

- 3-hourly, mapped to 1 deg lat-lon grid

- clear-sky only!

@ il
members x|
E o
|
|

observation Yy
I

Assimilation:
Ensemble Kalman Filter
(developed at NASA/GMAO)

i

I integrate

| ensemble of
| states and compute

P

1 sample covariance P :

Tt i i




A few DAYS in July 1986 at Ft Peck, MT, USA

tsurf in [K] at Ft_Peck (lat=48.50,lo0n=-105.50)

o T T

il (s) Q
i\ S @
510 r_-l ,l 'q :i 'l

T .
; N

Tsi<in [K]

no assim
----- assim w/o scaling
assim w/ scaling

O ISCCP
%X scaled ISCCP

400
Latent heat flux [W/m2]
300 -

200

AAAA A

1986/07/23 07/25

Tskin mean and
dynamic range from
satellite and model
differ. Assimilation
w/o scaling increases
peak TsKkin.

When assimilating w/o
scaling, model
produces excessive
sensible heat flux.

Latent heat flux also
increases when soil
moisture is available.




“Assimilation flux”

Surface energy balance:
G =Rnet - LE - H - “assimilation flux”

G = Ground heat flux Assimilation flux =
Rnet = Net radiation Added energy flux such that model pulls close
LE = Latent heat flux to Tskin observations.
H = Sensible heat flux Ideally small and white noise in time.

Assimilation flux [W/m2] at Ft_Peck (lat=48.50,lon=-105.50)

! ! no assim %
400 r N - assim wlo scaling : II
300 assim w/ scaling |5 1
[
T

200
100
0

1986/07/23 07125 07{27 07129

Excessive, non-white “assimilation flux” when assimilating w/o scaling.




MONTHLY average assimilation flux (1986-1995)

energybal in [W.-“mz] at C2_Atqgasuk (lat=70.50,lon=-157.50) energybal in [W.sz] at Old_Black_Spruce (lat=53.50,lo0n=-105.50)

20
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60
40 -
20

0
20
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Impact on root zone moisture (Bondville, IL, USA, 1986-1995)

Tskin [K]
300 T . T | ; T ' T B
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----- assim w/o scaling 290 - |
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280 -

270
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scaling impacts —> 100 L4¥ !
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50 |
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Conclusions (land surface temperature)

1.) Differences between satellite skin and model surface temperatures are
due to errors in, and inconsistencies between:

- satellite retrieval algorithm,

- model physics and parameterization,

- representation of spatial heterogeneity,

- vertical resolution, ...

2.) Assimilation of Tskin retrievals must consider differences between
satellite and model climatologies.

Otherwise, excessive assimilation fluxes are required to force the model Tskin
towards the retrievals, and excessive and unrealistic sensible and latent
heat fluxes are generated.

3.) Avoid such negative effects by scaling the satellite Tskin into the
model climatology prior to assimilation.

Because of the strong diurnal and seasonal cycles of Tskin, scaling statistics
must be broken down by month and hour of day.




Conclusions

Land surface conditions may contribute to predictability at sub-seasonal
time scales.

EnKF is suitable for estimating land surface conditions.

Large biases between satellite and model estimates can be addressed
with a scaling approach (“assimilate percentiles”).

Assimilation of SMMR soil moisture retrievals provides superior soil
moisture estimates when compared to the model or the satellite alone.

Much is left to be done...

... demonstrate skill with AMSR-E & Tskin assimilation,
... develop snow assimilation,

... assimilation in the coupled land-atmosphere system,




The End



