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Initial conditions and forecast lead timeInitial conditions and forecast lead time

Relevance of initial 
conditions

Ocean
Land

Atmosphere

Forecast lead time                                              [months]

Weather prediction limited by atmospheric chaos beyond two weeks.

Seasonal climate prediction must rely on slower moving components of the 
Earth’s system (ocean heat content, soil moisture, snow).

Land initialization relevant at 2 week – 2 month (sub-seasonal) time scale.



A simple view of landA simple view of land--atmosphere feedbackatmosphere feedback

…causing soil
moisture to
increase...

…which affects the overlying 
atmosphere (the boundary 
layer structure, humidity, etc.)...

Precipitation 
wets the
surface...

…which causes
evaporation to 
increase during
subsequent days
and weeks...

…thereby (maybe) 
inducing additional 
precipitation

Perhaps such feedback contributes to predictability?
Two things must happen:
1. A soil moisture anomaly must be “remembered” into the forecast period. 
2. The atmosphere must respond predictably to soil moisture anomalies.
In other words, need strong land-atmosphere coupling…



Soil moisture memory and “hot spots”Soil moisture memory and “hot spots”

Koster et. al, Science, 2004

“Hot spots" where soil moisture conditions affect summer rainfall
(multi-model consensus). 



NASA seasonal forecast initializationNASA seasonal forecast initialization

Operational system (since April 2004)
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Contribution of land moisture initialization Contribution of land moisture initialization 
to skill of oneto skill of one--month forecasts month forecasts 
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Koster et al., JHM, 2004



NASA seasonal forecast initializationNASA seasonal forecast initialization

Future system:  Assimilation uses satellite observations.
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Ensemble Kalman filter (EnKF)Ensemble Kalman filter (EnKF)

yk

Nonlinearly propagates 
ensemble of model trajectories. 
Can account for wide range of 
model errors (incl. non-additive).
Approx.: Ensemble size.

Linearized update.

xk
i state vector (eg soil moisture)

Pk state error covariance

Rk observation error covariance

Propagation tk-1 to tk:

xk
i+ = f(xk-1

i-) + wk
i

w = model error

Update at tk:
xk

i+ = xk
i- + Kk(yk

i - xk
i- ) 

for each ensemble member i=1…N
Kk = Pk (Pk + Rk)-1

with Pk computed from ensemble spread



Error structure in land data assimilationError structure in land data assimilation

The land model describes the water 
and energy balance at the land surface.

Trajectories of the (uncoupled) land 
model are determined by surface 
meteorological forcings, not initial 
conditions – no chaos/butterfly effect.

Dominant errors are “model errors” in 
(a) surface meteorological forcings (time-varying b.c.’s) and 
(b) model parameterizations.

⇒ Maintain ensemble spread through random fields that are 
(a) correlated in time (AR1), 
(b) correlated in space (Gaussian), and 
(c) cross-correlated.

© Hartmann, Global Physical Climatology



Error structure in land data assimilationError structure in land data assimilation
The (uncoupled) land model is a collection of 
identical “1d” models that are applied to each
land surface element (or catchment) independently.
Forcing/model errors are horizontally correlated.
EnKF can be applied 
(a) independently to each catchment (“1d-EnKF”) or 
(b) simultaneously to a set of catchments (“3d-EnKF”).

EnKF  EnKF  EnKF  EnKF  

“3d-EnKF”

“1d-EnKF”

EnKF  



1d1d--EnKF v. 3dEnKF v. 3d--EnKFEnKF

Satellite soil moisture is not available everywhere and always. Can data 
assimilation spread information horizontally?

1D EnKFPrior (no assim.) 3D EnKF

# SMMR data/month

0

10

5

15

3D-EnKF is better than 
1D-EnKF where 
satellite data are 
sparse.

Root zone soil moisture estimation errors

Taking horizontal error correlations into account 
in the 3D-EnKF improves soil moisture estimates 
over the local (or 1D) EnKF. 

Reichle & Koster, JHM, 2003
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Soil moisture data sourcesSoil moisture data sources

“SMMR period”
1979-87 (~8.5 years)

“AMSR-E period”
2002-05 (~3.5 years)

Sensor SMMR (Nimbus 7) AMSR-E (Aqua)

Sampling depth ~1.25 cm ~1 cm
Horiz. Resolution ~150 km ~40 km
Equator crossing 12 am/pm 1:30 am/pm

Author Berg et al., 2005 GLDAS
Baseline Re-analysis (ERA-15) NASA GEOS NWP analysis

Air temp./humid. CRU (None)

Observations Monthly Daily/pentad
Precipitation GPCP satellite/gauge CMAP (5-day)
Radiation SRB (1983-87 only) AGRMET daily

Algorithm Owe et al., 2001 Njoku et al. (http://nsidc.org)

Soil 
moisture 
retrievals

Land surface model

Meteorol. 
forcing 
data 
(obs.-
based)

Frequency C-Band (6.6 GHz) X-Band (10.7 GHz)

NASA Catchment (~0.5°) (same w/ minor updates)

Horiz. resolution ~2 deg ~2 deg
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Satellite vs. satellite bias (time avg. soil moisture)Satellite vs. satellite bias (time avg. soil moisture)

SMMR retrievals much wetter 
than AMSR-E retrievals.

Magnitude of differences 
comparable to dynamic range.

Soil moisture [m3/m3]

Soil moisture [m3/m3]

SMMR (1979-87)

SMMR minus AMSR-E

AMSR-E (2002-05)



Satellite vs. satellite bias (time avg. soil moisture)Satellite vs. satellite bias (time avg. soil moisture)

Soil moisture [m3/m3]

SMMR (1979-87)

Maybe the 80’s were much wetter than 2002-05…?

Perhaps a little, but model estimates suggest much smaller differences.

SMMR minus AMSR-E Model (1979-87) minus (2002-05)

Soil moisture [m3/m3]

AMSR-E (2002-05)



We found strong biases between AMSR-E and SMMR.

For assimilation, we are really interested in the satellite vs. model biases.



Satellite vs. model bias (soil moisture)Satellite vs. model bias (soil moisture)
SMMR minus model (1979-87) AMSR-E minus model (2002-05)

Reichle et al.
JHM 2004 Soil moisture [m3/m3]

Bias in 
mean

Bias in 
std

Soil moisture std [m3/m3]



Satellite vs. model bias (soil moisture)Satellite vs. model bias (soil moisture)
SMMR minus model (1979-87) AMSR-E minus model (2002-05)

Reichle et al.
JHM 2004 Soil moisture [m3/m3]

Bias in 
mean

Bias in 
std

1. SMMR and AMSR-E exhibit large and very different global and 
regional biases in all moments relative to the model.

2. Absolute soil moisture from satellites and model agree equally well
(or poorly…) with ground observations ⇒ no agreed climatology.

3. For seasonal forecast initialization, need only normalized anomalies.

⇒ Scale satellite data before assimilation into a model.

Soil moisture std [m3/m3]



Soil moisture scaling for data assimilationSoil moisture scaling for data assimilation

Soil moisture cdf at 46N, 100W

1.  Find percentile of a given 
satellite measurement on the 
satellite’s local climatological
cumulative distribution 
function (CDF).

2.  Find soil moisture that 
produces the same CDF value 
on the corresponding model 
CDF ⇒ “scaled” satellite 
measurement for assimilation.

In short: Assimilate percentiles.



Soil moisture scaling for data assimilationSoil moisture scaling for data assimilation

Soil moisture cdf at 46N, 100W

For “new” sensors:
- cannot use time series 
from historic satellites, 
- long time series not 
immediately available!

Solution:
Approximate CDF from 
many 1-year time 
series at grid points 
within some distance 
from point of interest.

2º



Soil moisture scaling for data assimilation (mean)Soil moisture scaling for data assimilation (mean)

Soil moisture [m3/m3]

ORIGINAL multi-year data sets
(Satellite minus model)

SCALED multi-year data sets 
(Satellite minus model)

CDF scaling based 
on 1 year of 
satellite data

AMSR-E

SMMR

AMSR-E

SMMR

Reichle & Koster GRL 2004Reichle et al. JHM 2004

1 year of satellite data sufficient for considerable reduction in long-term bias.



Soil moisture scaling for data assimilation (std)Soil moisture scaling for data assimilation (std)

Soil moisture std [m3/m3]

ORIGINAL multi-year data sets
(Satellite std minus model std)

SCALED multi-year data sets 
(Satellite std minus model std)

CDF scaling based 
on 1 year of 
satellite data

AMSR-E

SMMR

AMSR-E

SMMR

Reichle & Koster GRL 2004Reichle et al. JHM 2004

1 year of satellite data sufficient for considerable reduction in long-term bias.



Assimilation of SMMR soil moisture Assimilation of SMMR soil moisture 



Impact of SMMR assimilation Impact of SMMR assimilation –– July 1982July 1982

Assimilation 
product lies 
“between” 
SMMR and 
model.

There are 
interesting 
dynamical 
effects.

Satellite anomaly minus model anomaly

EnKF anomaly minus model anomaly

Reichle & Koster, GRL 2005



Validation against in situ dataValidation against in situ data
Illinois (89.5W, 38.6N)

modelsatellite

ground
assimilation

assimilation
ground

model

Assimilation product has 
improved phase of annual 
cycle.

Reichle & Koster, GRL 2005



Validation of SMMR products against in situ dataValidation of SMMR products against in situ data
Time series correlation coeff. 
with in situ data [-] 
(with 95% confidence interval)

Confidence levels: 
Improvement of 
assimilation over

N SMMR Model Assim. SMMR Model

Surface soil 
moisture

77 .44±.03 .43±.03 .50±.03 99.7% 99.9%

Surface 
anomalies

66 .32±.03 .36±.03 .43±.03 99.9% 99.9%

Root zone soil 
moisture

59 n/a .46±.03 .50±.03 n/a 97%

Root zone 
anomalies

33 n/a .32±.05 .35±.05 n/a 80%

Assimilation product agrees better with ground data than SMMR or model alone.

Modest increase may be close to maximum possible with imperfect in situ data. 

Reichle & Koster GRL 2005



Assimilation of SMMR soil moisture Assimilation of SMMR soil moisture 

SMMR assimilation successful, but…



Variance of normalized innovationsVariance of normalized innovations

Variance deficiency in dry climates, excess variance in wetter climates.

Potential for improvement by (adaptively) tuning model error parameters.

Reichle & Koster, GRL 2005



Validation of SMMR products against in situ dataValidation of SMMR products against in situ data

Assimilation product agrees better with ground data than SMMR or model alone.

Modest increase may be close to maximum possible with imperfect in situ data. 

Time series correlation coeff. 
with in situ data [-] 
(with 95% confidence interval)

Confidence levels: 
Improvement of 
assimilation over

N SMMR Model Assim. SMMR Model

Surface soil 
moisture

77 .44±.03 .43±.03 .50±.03 99.7% 99.9%

Surface 
anomalies

66 .32±.03 .36±.03 .43±.03 99.9% 99.9%

Root zone soil 
moisture

59 n/a .46±.03 .50±.03 n/a 97%

Root zone 
anomalies

33 n/a .32±.05 .35±.05 n/a 80%

We are still working on a similar result for AMSR-E assimilation.

Success is perhaps more difficult to achieve because:

- we have only 3.5 years of AMSR-E (vs. 8.5 years of SMMR),

- AMSR-E retrievals based on X-band (vs. C-band for SMMR),

- GLDAS (2002-05) forcing data (vs. “Berg” 1979-87) might lead to 
improved (benchmark) model soil moisture.

Reichle & Koster, GRL 2005



Conclusions (soil moisture)Conclusions (soil moisture)

Results:

Analyzed AMSR-E, SMMR, and model biases.

Soil moisture assimilation system must be capable of dealing with large 
biases.

SMMR assimilation improves land initialization.

Outlook:

Continue assessment of soil moisture estimates. 

Further tuning and validation of AMSR-E assimilation.

Impact of SMMR and AMSR-E assimilation on seasonal predictions.
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Soil temperature assimilationSoil temperature assimilation

Good news: Abundance of satellite-based skin temperature from infrared and 
microwave sensors on geostationary and polar-orbiting platforms 
(NOAA-xx, MODIS, GOES, METEOSAT, GMS,…)

Problem 1: Satellite skin temperature and model surface temperature may be 
inherently inconsistent (vertical).

…whereas model “surface” 
temperature is typically a 
mixture of temperatures of 
thicker layers.

Satellite sees 
“skin” temperature 
in thin layer…

Tsurface

Tcanopy



Soil temperature assimilationSoil temperature assimilation

…whereas a model is  limited 
in the spatial variability it can 
represent.

Satellite “sees” a great variety 
of spatial heterogeneity…

TreesWater

Ice
Bare soilShadows

Problem 2: Satellite skin temperature and model surface temperature may be 
inherently inconsistent (horizontal).



Soil temperature assimilationSoil temperature assimilation

GAPP - ARM SGP 5Km (July - Sept, 2001)
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Problem 3: Satellite skin temperature may be sensor- or algorithm-specific.



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

1. Work on model and satellite algorithm until they are “perfect”. 

Problems include:

Thin layers create numerical 
stability issues. Even with perfect model, lack 

complete spatial distribution of 
“correct” parameter values.



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

Problems include:

1. Work on model and satellite algorithm until they are “perfect”. 

In many ways,

IMPRACTICAL!

Thin layers create numerical 
stability issues. Even with perfect model, lack 

complete spatial distribution of 
“correct” parameter values.



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

2. Ignore the inconsistencies and hope for the best.



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

2. Ignore the inconsistencies and hope for the best.

Questionable results!

(as will be shown)



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

3. Accept inconsistencies, scale the data prior to assimilation.

integrate
model
forward

satellite
data

Assimilate
integrate
model
forward

satellite
data

…Assimilate

Instead of this…

…do this:

integrate
model
forward

satellite
data

Assimilate
integrate
model
forward

satellite
data

…Assimilate

Scale satellite 
data to model-
consistent values

Scale satellite 
data to model-
consistent values



Three strategies for dealing with the inconsistencyThree strategies for dealing with the inconsistency

3. Accept inconsistencies, scale the data prior to assimilation.
1) Get time series mean µ and standard deviation σ for satellite Tskin
(“T_sat”) and for model-based synthetic Tskin observations (“T_mod”), 
broken down by diurnal cycle and month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

3z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

6z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

9z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

12z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

15z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

18z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

21z µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ µ,σ

2) Scale satellite Tskin (“T_sat”) into model climatology (std normal 
deviates):

T_sat_scaled = σ_mod/σ_sat · (T_sat – µ_sat) + µ_mod

3) Assimilate scaled satellite Tskin (“T_sat_scaled”).



Demonstration of scaling approachDemonstration of scaling approach
Model: 
NASA Catchment land surface model on 1 degree lat-lon grid.
(“off-line” – not coupled to atmospheric model)

Surface meteorological forcing data:
- Global Soil Wetness Project (GSWP-2; 1986-95) 

Satellite skin temperature:
- Int’l Satellite Cloud Climatology Project (ISCCP; 1983-2004)
(NOAA-xx, GOES, METEOSAT, GMS,…)

- 3-hourly, mapped to 1 deg lat-lon grid
- clear-sky only!

Assimilation:
Ensemble Kalman Filter
(developed at NASA/GMAO)

ykyk



A few DAYS in July 1986 at Ft Peck, MT, USAA few DAYS in July 1986 at Ft Peck, MT, USA

Tskin mean and 
dynamic range from 
satellite and model 
differ.  Assimilation 
w/o scaling increases 
peak Tskin.

When assimilating w/o 
scaling, model 
produces excessive 
sensible heat flux.

Latent heat flux also 
increases when soil 
moisture is available.

Sensible heat flux [W/m2]

Latent heat flux [W/m2]

Tskin [K]



““Assimilation flux”Assimilation flux”

Surface energy balance:
G = Rnet - LE - H - “assimilation flux”

G = Ground heat flux

Rnet = Net radiation

LE = Latent heat flux

H = Sensible heat flux

Assimilation flux = 
Added energy flux such that model pulls close 
to Tskin observations.
Ideally small and white noise in time.

Assimilation flux [W/m2]

Excessive, non-white “assimilation flux” when assimilating w/o scaling.



MONTHLY average assimilation flux (1986MONTHLY average assimilation flux (1986--1995)1995)



Impact on root zone moisture (Impact on root zone moisture (BondvilleBondville, IL, USA, 1986, IL, USA, 1986--1995)1995)
Tskin [K]

Even though effects 
on monthly (incl. 
diurnal!) average 
Tskin are small, 
assimilation w/o 
scaling impacts 
latent heat, 
and eventually root 
zone soil moisture.

Latent heat flux [W/m2]

Root zone soil moisture [m3/m3]



Conclusions (land surface temperature)Conclusions (land surface temperature)

1.) Differences between satellite skin and model surface temperatures are 
due to errors in, and inconsistencies between:

- satellite retrieval algorithm,
- model physics and parameterization,
- representation of spatial heterogeneity,
- vertical resolution, …

2.) Assimilation of Tskin retrievals must consider differences between 
satellite and model climatologies.
Otherwise, excessive assimilation fluxes are required to force the model Tskin
towards the retrievals, and excessive and unrealistic sensible and latent 
heat fluxes are generated.

3.) Avoid such negative effects by scaling the satellite Tskin into the 
model climatology prior to assimilation.
Because of the strong diurnal and seasonal cycles of Tskin, scaling statistics 
must be broken down by month and hour of day.



ConclusionsConclusions

Land surface conditions may contribute to predictability at sub-seasonal 
time scales.

EnKF is suitable for estimating land surface conditions.

Large biases between satellite and model estimates can be addressed 
with  a scaling approach (“assimilate percentiles”).

Assimilation of SMMR soil moisture retrievals provides superior soil 
moisture estimates when compared to the model or the satellite alone.

Much is left to be done…
… demonstrate skill with AMSR-E & Tskin assimilation,
… develop snow assimilation,
… assimilation in the coupled land-atmosphere system,
…



The End


